Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review
Abstract
:1. Introduction
2. Antimicrobial Peptides
2.1. Antimicrobial Peptide Classification
2.2. Antimicrobial Peptide Mechanisms of Action
2.3. The Use of Antimicrobial Peptides in Food Preservation
2.4. The Use of Antimicrobial Peptides with Chemical Preservatives
3. Non-Thermal Technologies Combined with Antimicrobial Peptides
3.1. Ultrasound
3.1.1. Effect of US on Microbial Inactivation in Food Matrices
3.1.2. Effect of US and AMPs on Microbial Inactivation in Food Matrices
Media | US Device | US Parameters | AMP | AMP Concentration | Microorganism | Maximal Inactivation | Reference | ||
---|---|---|---|---|---|---|---|---|---|
US | AMP | US + AMP | |||||||
Milk | Ultrasonic probe, UCD-150, BIOBASE, Jinan, China | 20–25 kHz; 150 W, 16–30 min, 30 ± 5 °C | Thurincin H | 40 ppm | L. innocua | 0.4 log CFU/mL | <0.1 log CFU/mL | 0.7 log CFU/mL | [8] |
E. coli | 1.1 log CFU/mL | <0.1 log CFU/mL | 2.8 log CFU/mL | ||||||
Orange juice | Ultrasonic probe, UCD-150, BIOBASE, Jinan, China | 20–25 kHz; 150 W (B); 16–30 min; 30 ± 5 °C | Thurincin H | 40 ppm | L. innocua | 0.8 log CFU/mL | 5.5 log CFU/mL | 5.5 log CFU/mL | [8] |
E. coli | 1.5 log CFU/mL | 1 log CFU/mL | 3.4 log CFU/mL | ||||||
Orange juice | Ultrasonic probe, ATPIO-1000D Xianou Co., Nanjing, China | 20-25 kHz; 7000 W; 10 min; 50 °C | Nisin | 200 ppm | Aerobic bacteria | 2.3 log CFU/mL * | Not reported | 1.4 log CFU/mL * | [61] |
E. coli | n.d. * | n.d. * | |||||||
Molds | n.d. * | n.d. * | |||||||
Xanthan gum | Ultrasonic device designed by Costello et al. [60] | 500, kHz; 30 W; 30 min; 20 °C | Nisin | 35 UI/mL | L. innocua | 6 CFU/mL * | 6 CFU/mL * | 5 log CFU/mL * | [60] |
E. coli | 4.8 log CFU/mL | 6 CFU/mL * | 4 log CFU/mL * | ||||||
Grape juice | Ultrasonic probe, ATPIO-1000D, Xianou Co., Nanjing, China | 20–25 kHz; 7000 W; 10 min; 55 °C | Nisin | 200 ppm | Aerobic bacteria | 1.9 log CFU/mL * | Not reported | 1.7 log CFU/mL * | [59] |
E. coli | n.d. * | n.d. * | |||||||
Yeast and mold | 2.2 log CFU/mL * | 2.1 log CFU/mL * | |||||||
Carrot juice | Ultrasonic probe, SCIENTZ-IID, Scientz Biotech Co., Ningbo, China | 20 kHz; 271,321 W; 10 min; 3 °C | Nisin | 80 ppm | Aerobic bacteria | 3 log cycles | Not reported | 3.7 log cycles | [58] |
Yeast and mold | 3.6 log cycles | 3.7 log cycles | |||||||
Pomegranate juice | Ultrasonic probe, UP200St, Hielscher Ultrasonics, Teltow, Germany | 26 kHz; 48 W, 5 min | Natamycin | 12.5 ppm | Aerobic bacteria | n.d. * | 4.2 log CFU/mL * | n.d. * | [21] |
Yeast and mold | n.d. * | n.d. * | n.d. * | ||||||
Lactic acid bacteria | n.d. * | 3.9 log CFU/mL | n.d. * | ||||||
Growth medium | Ultrasonic probe, VCX 130 Cell, Sonics, Oklahoma City, OK, USA | 20 kHz; 130 W; 20 min; <52 °C; pH 4.5 | Nisin | 175 μM | S. flexneri | <1 log CFU/mL | 1.3 log CFU/mL | 3.5 log CFU/mL | [57] |
Milk (100%) | Ultrasonic probe, Sonifier 450, Branson Ultrasonics, Brookfield, CT, USA | 20 kHz; 160 W; 60 min; 25 °C; pH 4 | Cecropin P1 | 20 μg/mL | E. coli | 106 CFU/mL * | 107 CFU/mL * | 105 CFU/mL * | [22] |
Orange juice (100%) | Ultrasonic probe, Sonifier 450, Branson Ultrasonics, Brookfield, CT, USA | 20 kHz; 160 W; 60 min; 25 °C; pH 4 | Cecropin P1 | 20 μg/mL | E. coli | 105 CFU/mL * | 106 CFU/mL * | 103 CFU/mL * | [22] |
Phosphate buffered saline | Ultrasonic probe, Sonifier 450, Branson Ultrasonics, Brookfield, CT, USA | 20 kHz; 160 W; 60 min; 25 °C; pH 4 | Cecropin P1 | 20 μg/mL | E. coli | 107 CFU/mL * | 106 CFU/mL * | 103 CFU/mL * | [22] |
Apple juice | Ultrasonic probe, Scientz-IID, Scientz Biotech Co., Ningbo, China | 20–25 kHz; 950 W; 40 min; 52 °C | Nisin | 100 ppm | Aerobic bateria | 2.8 log cycles | Not reported | 3.6 log cycles | [18] |
Yeast and mold | 3.1 log cycles | 1.5 log cycles | |||||||
Nutrient broth | Ultrasonic probe, Scientz-IID, Scientz Biotech Co., Ningbo, China | 968 W/cm2; 5 min; 0 °C | Nisin | 20 ppm | E. coli | 0.7 log cycles | Not reported | 0.8 log cycles | [44] |
Phosphate buffered saline | Ultrasonic probe, Scientz-IID, Scientz Biotech Co., Ningbo, China | 968 W/cm2; 5 min; 0 °C | Nisin | 20 ppm | E. coli | 0.9 log cycles | Not reported | 1 log cycles | [44] |
Milk | Ultrasonic probe, Scientz-IID, Scientz Biotech Co., Ningbo, China | 968 W/cm2; 5 min; 0 °C | Nisin | 20 ppm | E. coli | 0.9 log cycles | Not reported | 1 log cycles | [44] |
Growth medium | Ultrasonic bath | 20–100 kHz; 60 W; 60 min; 25 °C | Melittin | 0.78 μg/mL | L. monocytogenes | 4 log CFU/mL * | 6.5 log CFU/mL * | n.d. * | [23] |
3.2. Pulsed Electric Fields
3.2.1. Effect of PEF on Microbial Inactivation in Food Matrices
3.2.2. Effect of PEF and AMPs on Microbial Inactivation in Food Matrices
Media | PEF Device | PEF Parameters | AMP | AMP Concentration | Microorganism | Maximal Inactivation | Reference | ||
---|---|---|---|---|---|---|---|---|---|
PEF | AMP | PEF + AMP | |||||||
Whole and skim milk | Pilot plant, Physics International, USA | 40 kV/cm; 2.5 µs (p.w.); 10 Hz; 65 °C; 276, 144 n.p. | Nisin | 50 IU/mL | Bacillus cereus | 2.5 log spores/mL | Not reported | 3.6 log spores/mL | [73] |
Apple juice | PEF unit, OSU-4F HIPEF, Ohio State University, USA | 35 kV/cm; 1000 µs (t); 4 µs (p.w.); 150 Hz; 20 °C | Enterocin AS-48 | 0.613 AU/mL | Pediococcus parvulus | 3.1 log CFU/mL | 3.7 log CFU/mL | 6.6 log CFU/mL | [76] |
Apple juice | PEF unit, OSU-4F HIPEF, Ohio State University, USA | 35 kV/cm; 1000 µs (t); 4 µs (p.w.); 150 Hz; 20 °C | Enterocin AS-48 | 2 µg/mL | Lactobacillus diolivorans | 3 log | < 1 log | 4.9 log | [74] |
Skim milk | PEF unit, OSU-4F HIPEF, Ohio State University, USA | 35 kV/cm; 1200 µs (t); 6 µs (p.w.); 75 Hz; 25 °C | Enterocin AS-48 | 28 AU/mL | Staphylococcus aureus | 3.5 log | Values not reported | 4.5 log | [75] |
Apple juice | PEF unit, OSU-4F HIPEF, Ohio State University, USA | 35 kV/cm; 1000 µs (t); 4 µs (p.w.); 150 Hz; 40 °C | Enterocin AS-48 | 60 μg/mL | Salmonella enterica | 3 log cycles | <1 Log | 4.5 log cycles | [69] |
Skim milk | PEF unit, OSU-4F HIPEF, Ohio State University, USA | 35 kV/cm; 2400 µs (t); 4 µs (p.w.); 100 Hz; 25 °C | Nisin | 20 ppm | Staphylococcus aureus | 1 log units | <1 Log | 6 log units | [72] |
Growth medium | PEF system, Gene Pulser II Electroporation, Bio-Rad, Hercules, CA, USA | 5 kV/cm; 3 n.p.; 95 (w.a.) | Nisin | 1500 IU/mL | Escherichia coli | 0.2 log cycles | 3.2 log cycles | 5 log cycles | [71] |
Simulated milk ultrafiltrate | Gene Pulser II Electroporation system (Bio-Rad) | 11.25 kV/cm; 3 n.p. | Nisin | 7.15 µM | Escherichia coli | 1.5 log cycles | 3 log cycles | 4 log cycles | [70] |
3.3. High Hydrostatic Pressure
3.3.1. Effect of HHP on Microbial Inactivation in Food Matrices
3.3.2. Effect of HHP and AMPs on Microbial Inactivation in Food Matrices
Media | HHP Device | HHP Parameters | AMP | AMP Concentration | Microorganism | Maximal Inactivation | Reference | ||
---|---|---|---|---|---|---|---|---|---|
HHP | AMP | HHP + AMP | |||||||
Green juice | HHP equipment, 914-100 Engineered Pressure Systems Inc., Haverhill, MA, USA | 400 MPa, 3 min, 20 °C | Nisin | 100 mg/L | E. coli | 1.9 log CFU/mL | 0.1 log CFU/mL | 7.5 log CFU/mL | [17] |
200 mg/L | L. innocua | 0.7 log CFU/mL | Values not reported | 6.4 log CFU/mL | |||||
Milk | HHP equipment, Hiperbaric 55, Burgos, Spain | 300 MPa, 5 min, 10 °C | Pediocin PA-1 | 1280 AU/mL | L. monocytogenes | 0.3 log/CFU | Values not reported | 4.5 log CFU/mL | [99] |
Phage P100 | |||||||||
Carrot juice | HHP equipment, Engineering Pressure Systems Inc., Haverhill, MA, USA | 500 MPa, 2 min, 20 °C | Nisin | 25 ppm | L. innocua | 4 log CFU/mL | Not reported | 7 log CFU/mL | [88] |
E. coli | 5 log CFU/mL | 7 log CFU/mL | |||||||
Fermented meat product | HHP equipment, Unipress U33, Poland | 300 MPa, 5 min, 10 °C | Pediocin bacHA-6111-2 | 320 AU/g | L. innocua | 1.0 log CFU/g | 1.2 log CFU/g | 2 log CFU/g | [19] |
Ready-to-eat meat slices | HHP equipment, Unipress U33, Poland | 300 MPa, 5 min, 10 °C | Pediocin bacHA-6111-2 | 6400 AU/mL | L. innocua | 0.5 log CFU/g | 0.5 log CFU/g | 1.0 log CFU/g | [20] |
Cured cooked pork loins | HHP equipment, Stansted Fluid Power Ltd. System, Harlow, UK | 600 MPa, 5 min, 5 °C (C) | Lactocin AL705 | 105 AU/cm2 | L. innocua | n.d. * | 5.5 log CFU/cm2 | n.d. * | [84] |
Aerobic bacteria | n.d. * | 2 log CFU/cm2 | n.d. * | ||||||
Lactic acid bacteria | n.d. * | 7 log CFU/cm2 | n.d. * | ||||||
Cherimoya pulp | HHP equipment, Stansted Fluid Power LTD, Harlow, UK | 600 MPa, 8 min, 23–27 °C | EnterocinAS-48 | 35 mg/g | Cocktail of Leuconostoc; L. mesenteroides, L. gasicomitatum and L. gelidum | 0.5 log CFU/g * | 4.5 log CFU/g * | n.d. * | [98] |
Cherimoya pulp | HHP equipment, Stansted Fluid Power LTD, UK | 600 MPa, 8 min, 23–27 °C | EnterocinAS-48 | 50 μg/g | Epiphytic microbiota | 2 log CFU/g | 6.5 log CFU/g | n.d. * | [97] |
Laboratory solution | HHP equipment, ACB Pressure Systems, France | 472 MPa, 5 min, 53 °C | Nisin | 121 UI/mL | B. sporothermodurans spores | Values not reported | 1 log spores/mL | 5 log spores/mL | [24] |
Dry-cured ham | HHP prototype, ACIP 6000, France | 500 MPa, 10 min, 12 °C | Nisin | 100 IU/g | E. coli | 1.3 log CFU/g | Not reported | 1.8 log CFU/g | [96] |
Dry-cured ham | HHP equipment, Wave 6000/120, Hyperbaric, Spain | 600 MPa, 5 min, 15 °C, 0.92 (a.w.) | Nisin | 200 AU/cm2 | L.monocytogenes | 3.5 log CFU/g * | 6.5 log CFU/g * | 1 log CFU/g * | [87] |
Rice puddings | HHP equipment, Stansted Fluid Power LTD, Harlow, UK | 500 MPa, 5 min | Nisin | 500 IU/g | S. aureus cocktail | 2.9 log cycles | Not reported | 3.7 log cycles | [95] |
Enterocin AS-48 | 50 µg/g | 3.7 log cycles | |||||||
Cinnamon oil | 0.2% | 4.5 log cycles | |||||||
Clove oil | 0.25% | 5 log cycles | |||||||
Growth medium | ABB Quintus Food Processor, QFP-6 Cold Isostatic Press, USA). | 400 MPa, 10 min, 25 °C | Nisin | 200 IU/mL | S. Enteritidis FDA | 5 log CFU/mL | <1 log CFU/mL | 8 log CFU/mL | [94] |
Skim milk | HHP equipment, Stansted Foodlab 900, UK | 500 MPa, 5 min, 40 °C | Nisin | 500 IU/mL | B. subtilis spores | 2.5 log CFU/mL | Not reported | 5.9 log CFU/mL | [85] |
Milk | High pressure unit 200 mL, 52 Institute, China | 545 MPa, 13 min, 51 °C | Nisin | 129 IU/mL | C. botulinum spores | Values not reported | Not reported | 6 log cycles | [86] |
Cheese | Discontinuous HHP equipment, ALSTOM, France | 60 + 400 MPa, 210 + 15 min, 30 °C | Nisin | 1.56 mg/L | B. cereus spores | 1.4 log CFU/g | Not reported | 2.4 log CFU/g | [93] |
Lysozyme | 22.4 mg/L | 1.9 log CFU/g | |||||||
Cooked ham | Industrial hydrostatic pressurization unit, Alstom, France | 400 MPa, 10 min, 17 °C | Nisin A | 1280 AU/g | E. coli | 4.5 log CFU/g | Not reported | >6 log CFU/g | [92] |
Potassium phosphate buffer | Pressure vessel, Resato, The Netherlands | 450 MPa, 15 min, 20 °C | Nisin | 100 IU/mL | E. coli | 6.3 log CFU/mL | Not reported | >8.3 log CFU/mL | [90] |
Lysozyme | 50 µg/mL | ||||||||
Milk | Pressure vessel, Stansted Fluid Power Ltd., Harlow, UK | 250 MPa, 30 min, 25 °C | Lacticina 3147 | 15000 AU/mL | S. aureus | 2.2 log CFU/mL | 1 log CFU/mL | >6 log CFU/mL | [91] |
L. innocua | 2.5 log CFU/mL | 1.2 log CFU/mL | >6.4 log CFU/mL | ||||||
Growth medium | Hydrostatic pressure unit, Harwood, USA | 345 MPa, 5 min, 25 °C | Nisin A and pediocin AcH mixture | 5000 AU/mL | L. monocytogenes | 7.8 log CFU/g * | Not reported | 4.5 log CFU/g * | [89] |
E. coli | 9.3 log CFU/g * | 5.7 log CFU/g * | |||||||
S. typhimurium Ml | 7.6 log CFU/g * | 4 log CFU/g * |
3.4. Other Non-Thermal Technologies Used with AMPs for Microbial Inactivation
4. Applications and Prospects of AMP Use in the Food Industry in Combination with Non-Thermal Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinho, V.J.P.D.; Bartkiene, E.; Djekic, I.; Tarcea, M.; Barić, C.; Černelič-bizjak, M.; Szűcs, V.; Sarcona, A.; Ferreira, V.; Klava, D.; et al. Determinants of economic motivations for food choice: Insights for the understanding of consumer behaviour. Int. J. Food Sci. Nutr. 2022, 73, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, A.; Wijaya, T.; Ishak, A.; Rejeki Ekasasi, S.; Zalzalah, G.G. Model of the Consumer Switching Behavior Related to Healthy Food Products. Sustainability 2021, 13, 3555. [Google Scholar] [CrossRef]
- Putnik, P.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative hurdle technologies for the preservation of functional fruit juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, Z.; Aweya, J.J.; Huang, S.; Deng, S.; Shi, L.; Zheng, M.; Zhang, Y.; Liu, G. Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. Ultrason. Sonochem. 2021, 77, 105676. [Google Scholar] [CrossRef]
- Yildiz, S.; Pokhrel, P.R.; Unluturk, S.; Barbosa-Cánovas, G.V. Identification of equivalent processing conditions for pasteurization of strawberry juice by high pressure, ultrasound, and pulsed electric fields processing. Innov. Food Sci. Emerg. Technol. 2019, 57, 102195. [Google Scholar] [CrossRef]
- Ruiz-De Anda, D.; Ventura-Lara, M.G.; Rodríguez-Hernández, G.; Ozuna, C. The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend. J. Food Meas. Charact. 2019, 13, 3140–3148. [Google Scholar] [CrossRef]
- Ruiz-De Anda, D.; Casados-Vázquez, L.E.; Ozuna, C. The synergistic effect of thurincin H and power ultrasound: An alternative for the inactivation of Listeria innocua ATCC 33090 and Escherichia coli K-12 in liquid food matrices. Food Control 2022, 135, 108778. [Google Scholar] [CrossRef]
- Anumudu, C.; Hart, A.; Miri, T. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef]
- Kashani, H.H.; Nikzad, H.; Mobaseri, S.; Hoseini, E.S. Synergism Effect of Nisin Peptide in Reducing Chemical Preservatives in Food Industry. Life Sci. J. 2012, 9, 1–8. [Google Scholar]
- Anacarso, I.; Niederhäusern, S.; Iseppi, R.; Sabia, C.; Bondi, M.; Messi, P. Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control 2011, 22, 2076–2080. [Google Scholar] [CrossRef]
- Cobo, A.; Abriouel, H.; Lucas, R.; Ben, N.; Valdivia, E.; Gálvez, A. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 2009, 47, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.I.; Ukuku, D.O.; Kawasaki, T.; Inatsu, Y.; Isshiki, K.; Kawamoto, S. Combined Efficacy of Nisin and Pediocin with Sodium Lactate, Citric Acid, Phytic Acid, and Potassium Sorbate and EDTA in Reducing the Listeria monocytogenes Population of Inoculated. J. Food Prot. 2005, 68, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.P.; Sati, N. Stability Indicating Rp–Hplc Method for Combination of Ambroxol Hydrochloride and Cefadroxil Monohydrate in Pharmaceutical Formulation. Int. J. Pharm. Sci. Res. 2013, 4, 2496–2501. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Hammami, R. Recent insights into structure–function relationships of antimicrobial peptides. J. Food Biochem. 2019, 43, e12546. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.A.T.; Mantovani, H.C.; Jain, S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit. Rev. Biotechnol. 2017, 37, 852–864. [Google Scholar] [CrossRef]
- Oner, M.E. The effect of high-pressure processing or thermosonication in combination with nisin on microbial inactivation and quality of green juice. J. Food Process. Preserv. 2020, 44, e14830. [Google Scholar] [CrossRef]
- Liao, H.; Jiang, L.; Cheng, Y.; Liao, X.; Zhang, R. Application of nisin-assisted thermosonication processing for preservation and quality retention of fresh apple juice. Ultrason. Sonochem. 2018, 42, 244–249. [Google Scholar] [CrossRef]
- Castro, S.M.; Silva, J.; Casquete, R.; Queirós, R.; Saraiva, J.A.; Teixeira, P. Combined effect of pediocin bacHA-6111-2 and high hydrostatic pressure to control Listeria innocua in fermented meat sausage. Int. Food Res. J. 2018, 25, 553–560. [Google Scholar]
- Castro, S.M.; Kolomeytseva, M.; Casquete, R.; Silva, J.; Teixeira, P.; Castro, S.M.; Queirós, R.; Saraiva, J.A. Biopreservation strategies in combination with mild high pressure treatments in traditional Portuguese ready-to-eat meat sausage. Food Biosci. 2017, 19, 65–72. [Google Scholar] [CrossRef]
- Yikmiş, S. Investigation of the effects of non-thermal, combined and thermal treatments on the physicochemical parameters of pomegranate (Punica granatum L.) Juice. Food Sci. Technol. Res. 2019, 25, 341–350. [Google Scholar] [CrossRef]
- Fitriyanti, M.; Narsimhan, G. Synergistic effect of low power ultrasonication on antimicrobial activity of cecropin P1 against E. coli in food systems. LWT 2018, 96, 175–181. [Google Scholar] [CrossRef]
- Wu, X.; Narsimhan, G. Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT–Food Sci. Technol. 2017, 75, 578–581. [Google Scholar] [CrossRef]
- Aouadhi, C.; Simonin, H.; Mejri, S.; Maaroufi, A. The combined effect of nisin, moderate heating and high hydrostatic pressure on the inactivation of Bacillus sporothermodurans spores. J. Appl. Microbiol. 2013, 115, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Klaenhammer, T.R. Bacteriocins of lactic acid bacteria. Biochimie 1988, 70, 337–349. [Google Scholar] [CrossRef]
- Duraisamy, S.; Balakrishnan, S.; Ranjith, S.; Husain, F.; Sathyan, A. Bacteriocin—A potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environ. Sci. Pollut. Res. 2020, 27, 44922–44936. [Google Scholar] [CrossRef]
- Vogel, V.; Spellerberg, B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021, 10, 867. [Google Scholar] [CrossRef]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 2006, 72, 1148–1156. [Google Scholar] [CrossRef] [Green Version]
- Meindl, K.; Schmiederer, T.; Schneider, K.; Reicke, A.; Butz, D.; Keller, S.; Gühring, H.; Vértesy, L.; Wink, J.; Hoffmann, H.; et al. Labyrinthopeptins: A new class of carbacyclic lantibiotics. Angew. Chemie Int. Ed. 2010, 49, 1151–1154. [Google Scholar] [CrossRef]
- Kawulka, K.E.; Sprules, T.; Diaper, C.M.; Whittal, R.M.; McKay, R.T.; Mercier, P.; Zuber, P.; Vederas, J.C. Structure of Subtilosin A, A Cyclic Antimicrobial Peptide from Bacillus subtilis with Unusual Sulfur to α-Carbon Cross-Links: Formation and Reduction of α-Thio-α-Amino Acid Derivatives. Biochemistry 2004, 43, 3385–3395. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.T.; Chopko, A.L.; van Wassenaar, P.D. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 1992, 295, 5–12. [Google Scholar] [CrossRef]
- Abee, T.; Klaenhammer, T.R.; Letellier, L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 1994, 60, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Visscher, L.A.; Yoganathan, S.; Sit, C.S.; Lohans, C.T.; Vederas, J.C. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiol. Lett. 2011, 317, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, K.V.; Kristiansen, P.E.; Straume, D.; Jensen, M.S.; Aleksandrzak-Piekarczyk, T.; Nes, I.F.; Diep, D.B. The leaderless bacteriocin enterocin K1 is highly potent against Enterococcus faecium: A study on structure, target spectrum and receptor. Front. Microbiol. 2017, 8, 774. [Google Scholar] [CrossRef] [Green Version]
- De Lorenzo, V.; Pugsley, A.P. Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob. Agents Chemother. 1985, 27, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Müller, E.; Radler, F. Caseicin, a bacteriocin from Lactobacillus casei. Folia Microbiol. 1993, 38, 441–446. [Google Scholar] [CrossRef]
- Joerger, M.C.; Klaenhammer, T.R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986, 167, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J. Ind. Microbiol. Biotechnol. 2018, 45, 213–227. [Google Scholar] [CrossRef]
- Zhao, H.; Mattila, J.; Holopainen, J.M.; Kinnunen, P.K.J. Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophys. J. 2001, 81, 2979–2991. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Chen, F.; Huang, H.W. Energetics of Pore Formation Induced by Membrane Active Peptides. Biochemistry 2004, 43, 3590–3599. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 2009, 7, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bi, X.; Xiang, R.; Chen, L.; Feng, X.; Zhou, M.; Che, Z. Inactivation of Escherichia coli by ultrasound combined with nisin. J. Food Prot. 2018, 81, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean label: Why this ingredient but not that one? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Jia, W.; Wu, X.; Li, R.; Liu, S.; Shi, L. Effect of nisin and potassium sorbate additions on lipids and nutritional quality of Tan sheep meat. Food Chem. 2021, 365, 130535. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura Codex Alimentarius Norma Internacional De Los Alimentos Norma General Para Los Aditivos Alimentarios Codex Stan 192-1995. Fao Omg 2019, 53, 3–4. [Google Scholar]
- Taylor, T.M.; Ravishankar, S.; Bhargava, K.; Juneja, V.K. Chemical preservatives and natural food antimicrobials. Food Microbiol. Fundam. Front. 2019, 705–731. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Scudino, H.; Ramos, G.L.; Oliveira, G.A.; Margalho, L.P.; Costa, L.E.; Freitas, M.Q.; Duarte, M.C.K.; Sant’Ana, A.S.; Cruz, A.G. Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Curr. Opin. Food Sci. 2021, 42, 140–147. [Google Scholar] [CrossRef]
- Gao, S.; Lewis, G.D.; Ashokkumar, M.; Hemar, Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem. 2014, 21, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Characterisation of volatile compounds generated in milk by high intensity ultrasound. Int. Dairy J. 2009, 19, 269–272. [Google Scholar] [CrossRef]
- Dolas, R.; Saravanan, C.; Kaur, B.P. Emergence and era of ultrasonic’s in fruit juice preservation: A review. Ultrason. Sonochem. 2019, 58, 104609. [Google Scholar] [CrossRef] [PubMed]
- Starek, A.; Kobus, Z.; Sagan, A.; Chudzik, B.; Pawłat, J.; Kwiatkowski, M.; Terebun, P.; Andrejko, D. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Bochu, W.; Lanchun, S.; Jing, Z.; Yuanyuan, Y.; Yanhong, Y. The influence of Ca2+ on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells. Colloids Surf. B Biointerfaces 2003, 32, 35–42. [Google Scholar] [CrossRef]
- Freitas, L.L.D.; Prudêncio, C.V.; Peña, W.E.L.; Vanetti, M.C.D. Modeling of Shigella flexneri inactivation by combination of ultrasound, pH and nisin. LWT 2019, 109, 40–46. [Google Scholar] [CrossRef]
- Bi, X.; Zhou, Z.; Wang, X.; Jiang, X.; Chen, L.; Xing, Y.; Che, Z. Changes in the Microbial Content and Quality Attributes of Carrot Juice Treated by a Combination of Ultrasound and Nisin During Storage. Food Bioprocess Technol. 2020, 13, 1556–1565. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, L.; Yang, Y.; Yang, W.; Wang, H.; Lan, T.; Zhang, Q.; Sun, X. Ultrasound-combined sterilization technology: An effective sterilization technique ensuring the microbial safety of grape juice and significantly improving its quality. Foods 2020, 9, 1512. [Google Scholar] [CrossRef]
- Costello, K.M.; Velliou, E.; Gutierrez-Merino, J.; Smet, C.; Kadri, H.E.; Impe, J.F.V.; Bussemaker, M. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. Ultrason. Sonochem. 2021, 79, 105776. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yuan, Q.; Gao, C.; Wang, X.; Zhu, B.; Wang, J.; Ma, T.; Sun, X. Thermosonication combined with natural antimicrobial nisin: A potential technique ensuring microbiological safety and improving the quality parameters of orange juice. Foods 2021, 10, 1851. [Google Scholar] [CrossRef] [PubMed]
- Dziadek, K.; Kopeć, A.; Dróżdż, T.; Kiełbasa, P.; Ostafin, M.; Bulski, K.; Oziembłowski, M. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J. Food Sci. Technol. 2019, 56, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, F.; Gao, Q.Y.; Han, Z.; Zeng, X.A.; Yu, S.J. Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chem. 2016, 194, 1313–1319. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; El-Din Bekhit, A.; Liu, Z.W.; Aadil, R.M. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Pataro, G.; Ferrari, G. Limitations of Pulsed Electric Field Utilization in Food Industry; Academic Press: Cambridge, MA, USA, 2020; ISBN 9780128164020. [Google Scholar]
- Zhang, Z.; Zhang, B.; Yang, R.; Zhao, W. Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field. Food Rev. Int. 2020, 00, 1–19. [Google Scholar] [CrossRef]
- Calderón-Miranda, M.L.; Barbosa-Cánovas, G.V.; Swanson, B.G. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. Int. J. Food Microbiol. 1999, 51, 19–30. [Google Scholar] [CrossRef]
- Pol, I.E.; Mastwijk, H.C.; Bartels, P.V.; Smid, E.J. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 2000, 66, 428–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez Viedma, P.; Sobrino López, A.; Ben Omar, N.; Abriouel, H.; Lucas López, R.; Valdivia, E.; Martín Belloso, O.; Gálvez, A. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. Int. J. Food Microbiol. 2008, 128, 244–249. [Google Scholar] [CrossRef]
- Terebiznik, M.R.; Jagus, R.J.; Cerrutti, P.; de Huergo, M.S.; Pilosof, A.M.R. Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. J. Food Prot. 2000, 63, 741–746. [Google Scholar] [CrossRef]
- Terebiznik, M.; Jagus, R.; Cerrutti, P.; De Huergo, M.S.; Pilosof, A.M.R. Inactivation of Escherichia coli by a combination of nisin, pulsed electric fields, and water activity reduction by sodium chloride. J. Food Prot. 2002, 65, 1253–1258. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Enhancing Inactivation of Staphylococcus aureus in Skim Milk. J. Food Prot. 2006, 69, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Aguirre, D.; Dunne, C.P.; Barbosa-Cánovas, G.V. Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. Int. Dairy J. 2012, 24, 13–21. [Google Scholar] [CrossRef]
- Martínez Viedma, P.; Abriouel, H.; Sobrino López, A.; Ben Omar, N.; Lucas López, R.; Valdivia, E.; Martín Belloso, O.; Gálvez, A. Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiol. 2009, 26, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Lopez, A.; Viedma-Martínez, P.; Abriouel, H.; Valdivia, E.; Gálvez, A.; Martin-Belloso, O. The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. J. Dairy Sci. 2009, 92, 2514–2523. [Google Scholar] [CrossRef] [Green Version]
- Viedma, P.M.; López, A.S.; Nabil Omar, B.E.N.; Abriouel, H.; López, R.L.; Belloso, O.M.; Gálvez, A. Increased inactivation of exopolysaccharide-producing pediococcus parvulus in apple Juice by combined treatment with enterocin AS-48 and high-intensity pulsed electric field. J. Food Prot. 2010, 73, 39–43. [Google Scholar] [CrossRef]
- Mok, J.H.; Pyatkovskyy, T.; Yousef, A.; Sastry, S.K. Combined effect of shear stress and moderate electric field on the inactivation of Escherichia coli K12 in apple juice. J. Food Eng. 2019, 262, 121–130. [Google Scholar] [CrossRef]
- Mok, J.H.; Pyatkovskyy, T.; Yousef, A.; Sastry, S.K. Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice. Food Control 2020, 113, 107209. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Wang, C.-Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef]
- Aaliya, B.; Valiyapeediyekkal Sunooj, K.; Navaf, M.; Parambil Akhila, P.; Sudheesh, C.; Ahmed Mir, S.; Sabu, S.; Sasidharan, A.; Theingi Hlaing, M.; George, J. Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Res. Int. 2021, 147, 110514. [Google Scholar] [CrossRef]
- Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of high pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Guillou, S.; Membré, J.-M. Inactivation of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica under High Hydrostatic Pressure: A Quantitative Analysis of Existing Literature Data. J. Food Prot. 2019, 82, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Dallagnol, A.M.; Barrio, Y.; Cap, M.; Szerman, N.; Castellano, P.; Vaudagna, S.R.; Vignolo, G. Listeria Inactivation by the Combination of High Hydrostatic Pressure and Lactocin AL705 on Cured-Cooked Pork Loin Slices. Food Bioprocess Technol. 2017, 10, 1824–1833. [Google Scholar] [CrossRef]
- Black, E.P.; Linton, M.; McCall, R.D.; Curran, W.; Fitzgerald, G.F.; Kelly, A.L.; Patterson, M.F. The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. J. Appl. Microbiol. 2008, 105, 78–87. [Google Scholar] [CrossRef]
- Gao, Y.L.; Ju, X.R. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. J. Microbiol. Methods 2008, 72, 20–28. [Google Scholar] [CrossRef]
- Hereu, A.; Bover-Cid, S.; Garriga, M.; Aymerich, T. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. Int. J. Food Microbiol. 2012, 154, 107–112. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Toniazzo, T.; Boulet, C.; Oner, M.E.; Sablani, S.S.; Tang, J.; Barbosa-Cánovas, G.V. Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 93–102. [Google Scholar] [CrossRef]
- Kalchayanand, N.; Sikes, T.; Dunne, C.P.; Ray, B. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl. Environ. Microbiol. 1994, 60, 4174–4177. [Google Scholar] [CrossRef] [Green Version]
- Masschalck, B.; García-Graells, C.; Van Haver, E.; Michiels, C.W. Inactivation of high pressure resistant Escherichia coli by lysozyme and nisin under high pressure. Innov. Food Sci. Emerg. Technol. 2000, 1, 39–47. [Google Scholar] [CrossRef]
- Morgan, S.M.; Ross, R.P.; Beresford, T.; Hill, C. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J. Appl. Microbiol. 2000, 88, 414–420. [Google Scholar] [CrossRef]
- Garriga, M.; Aymerich, M.T.; Costa, S.; Monfort, J.M.; Hugas, M. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiol. 2002, 19, 509–518. [Google Scholar] [CrossRef]
- López-Pedemonte, T.J.; Roig-Sagués, A.X.; Trujillo, A.J.; Capellas, M.; Guamis, B. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. J. Dairy Sci. 2003, 86, 3075–3081. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kaletunç, G. Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. Int. J. Food Microbiol. 2010, 140, 49–56. [Google Scholar] [CrossRef]
- Pérez Pulido, R.; Toledo del Árbol, J.; Grande Burgos, M.J.; Gálvez, A. Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control 2012, 28, 19–24. [Google Scholar] [CrossRef]
- de Alba, M.; Bravo, D.; Medina, M. Inactivation of Escherichia coli O157: H7 in dry-cured ham by high-pressure treatments combined with biopreservatives. Food Control 2013, 31, 508–513. [Google Scholar] [CrossRef]
- Pérez Pulido, R.; Toledo, J.; Grande, M.J.; Gálvez, A.; Lucas, R. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. Int. J. Food Microbiol. 2015, 196, 62–69. [Google Scholar] [CrossRef]
- Toledo del Árbol, J.; Pérez Pulido, R.; Grande Burgos, M.J.; Gálvez, A.; Lucas López, R. Inactivation of leuconostocs in cherimoya pulp by high hydrostatic pressure treatments applied singly or in combination with enterocin AS-48. LWT-Food Sci. Technol. 2016, 65, 1054–1058. [Google Scholar] [CrossRef]
- Komora, N.; Maciel, C.; Pinto, C.A.; Ferreira, V.; Brandão, T.R.S.; Saraiva, J.M.A.; Castro, S.M.; Teixeira, P. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol. 2020, 86, 103315. [Google Scholar] [CrossRef]
- Costello, K.M.; Smet, C.; Gutierrez-Merino, J.; Bussemaker, M.; Van Impe, J.F.; Velliou, E.G. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int. J. Food Microbiol. 2021, 337, 108948. [Google Scholar] [CrossRef]
- Ferreira, T.V.; Mizuta, A.G.; Menezes, J.L.D.; Dutra, T.V.; Bonin, E.; Castro, J.C.; Szczerepa, M.M.D.A.; Pilau, E.J.; Nakamura, C.V.; Mikcha, J.M.G.; et al. Effect of ultraviolet treatment (UV–C) combined with nisin on industrialized orange juice in Alicyclobacillus acidoterrestris spores. LWT 2020, 133, 109911. [Google Scholar] [CrossRef]
- Pérez-Lamela, C.; Franco, I.; Falqué, E. Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: A review. Molecules 2021, 26, 5265. [Google Scholar] [CrossRef] [PubMed]
Class | Bacteriocin | Mass (kDa) | Bacteriocin Producing Organism | Reference |
---|---|---|---|---|
I: lantibiotic post-translationally modified peptides (1-3 kDa) | Nisin | 3.352 | Lactobacillus lactis | [28] |
Nisin U | 3.029 | Staphylococcus uberis | [29] | |
Labyrinthopeptin A2 | 1.922 | Actinomadura sp. | [30] | |
Subtilosin A | 3.399 | Bacillus subtilis 168 | [31] | |
II: non-lantibiotic non-modified linear peptides (4-8 kDa) | Pediocin PA1 | 4.629 | Pediococcus acidilactici | [32] |
Lactafin F | 4.755 | Lactobacillus johnsonii | [33] | |
Carnocyclin A | 5.862 | Carnobacteroium maltaromaticum UAL307 | [34] | |
Enterocin EJ97 | 5.340 | Enterococcus faecalis | [35] | |
Enterocin K1 | 4.561 | Enterococcus faecium En Gen002 | ||
Microcin E492 | 7.887 | Klebsiella pneumoniae | [36] | |
III: heat labile proteins (˃30 kDa) | Enterolisin A | 34.501 | Enterococcus faecalis LMG2333 | [37] |
Helveticin J | 37.535 | Lactobacillus helveticus 481 | [38] | |
Helveticin-M | 35.000 | Lactobacillus crispatus | [39] |
Preservative | Food Product | Maximum Dose |
---|---|---|
Benzoates (benzoic acid, and sodium, potassium, and calcium salts). | Fruit juices and concentrates, sauces, and similar products. | 1000 mg/kg |
Phosphates (phosphoric acid, trisodium phosphate). | Fruit juices, concentrates, and nectars, and flavored water-based drinks. | 1000 mg/kg |
Sorbates (sorbic acid, potassium, and calcium salts). | Fruit juices, concentrates, and nectars, flavored milk drinks, sauces, and similar products. | 1000 mg/kg |
Sulfites (sulfur dioxide, sodium, and potassium sulfite) | Fruit and vegetable juices, fruit concentrates and nectars. | 50 mg/kg |
Lysozyme (lysozyme hydrochloride) | Cider, pear cider, and grape wines | 500 mg/L |
Natamycin (pimaricin) | Cheese and similar products | 40 mg/kg |
Nisin | Cheese and similar products | 12.5 mg/kg |
Media | Chemical Preservative | AMP | AMP Concentration | Microorganism | Maximal Inactivation (log CFU/g) | Reference | ||
---|---|---|---|---|---|---|---|---|
Chemical Preservative | AMP | Combination | ||||||
Mueller–Hinton Broth | Benzoic acid 50 ppm | Nisin | 350 ppm | S. aureus | Not reported | Not reported | 5.69 | [10] |
Sodium nitrite 200 ppm | Nisin | 100 ppm | L. monocytogenes | Not reported | Not reported | 5.69 | ||
Apples, grapes | Chitosan 2% | Enterocin 416K1 | 1920 AU/mL | L. monocytogenes | 2.2 * | 4 * | n.d. * | [11] |
Pineapple, melon | Chitosan 2% | Enterocin 416K1 | 1920 AU/mL | L. monocytogenes | 1 * | 1 * | 1 * | [11] |
Zucchini, corn, radishes | Chitosan 2% | Enterocin 416K1 | 1920 AU/mL | L. monocytogenes | 2 * | 2 * | 2 * | [11] |
Mixed salad, carrots, zucchini | Chitosan 2% | Enterocin 416K1 | 1920 AU/mL | L. monocytogenes | 2.4 * | 1.9 * | 3 * | [11] |
Russian-type salad | Carvacrol 30 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 4.42 ** | 3.87 ** | 1.00 ** | [12] |
Eugenol 32 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.80 ** | 3.87 ** | 0.69 ** | ||
Thymol 5 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.34 ** | 3.87 ** | n.d. ** | ||
Terpineol 30 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.47 ** | 3.87 ** | n.d. ** | ||
Tyrosol 0.5 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.90 ** | 3.87 ** | n.d. ** | ||
Caffeic acid 1 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 2.60 ** | 3.87 ** | 0.47 ** | ||
Ferulic acid 10 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.43 ** | 3.87 ** | 1.65 ** | ||
Vanillic acid 1 mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 3.43 ** | 3.87 ** | 2.09 ** | ||
Isopropyl methyl phenol 5mM | Enterocin AS-48 | 30 µg/g | L. monocytogenes | 2.41 ** | 3.87 ** | n.d. ** | ||
Cabbage | Sodium lactate 2% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.94 | 2.04 | [13] |
Citric acid 10 mM | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.94 | 2.21 | ||
Phytic acid 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.94 | 2.50 | ||
Potassium sorbate 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.94 | 1.96 | ||
EDTA 0.02M | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.94 | 2.44 | ||
Sodium lactate 2% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.77 | 3.22 | ||
Citric acid 10 mM | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.77 | 2.47 | ||
Phytic acid 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.77 | 4.35 | ||
Potassium sorbate 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.77 | 2.43 | ||
EDTA 0.02M | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.77 | 2.94 | ||
Broccoli | Sodium lactate 2% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.11 | 1.53 | [13] |
Citric acid 10 mM | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.11 | 2.35 | ||
Phytic acid 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.11 | 1.70 | ||
Potassium sorbate 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.11 | 1.43 | ||
EDTA 0.02 M | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.11 | 1.90 | ||
Sodium lactate 2% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.55 | 1.65 | ||
Citric acid 10 mM | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.55 | 1.70 | ||
Phytic acid 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.55 | 4.18 | ||
Potassium sorbate 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.55 | 1.55 | ||
EDTA 0.02 M | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 2.55 | 2.47 | ||
Mung bean sprout | Sodium lactate 2% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.54 | 1.20 | [13] |
Citric acid 10 mM | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.54 | 1.59 | ||
Phytic acid 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.54 | 1.36 | ||
Potassium sorbate 0.02% | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.54 | 1.06 | ||
EDTA 0.02 M | Pediocin | 100 AU/mL | L. monocytogenes | Not reported | 1.54 | 1.38 | ||
Sodium lactate 2% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 1.31 | 1.06 | ||
Citric acid 10 mM | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 1.31 | 1.23 | ||
Phytic acid 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 1.31 | 1.57 | ||
Potassium sorbate 0.02% | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 1.31 | 0.82 | ||
EDTA 0.02 M | Nisin | 50 µg/mL | L. monocytogenes | Not reported | 1.31 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andaluz-Mejía, L.; Ruiz-De Anda, D.; Ozuna, C. Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes 2022, 10, 995. https://doi.org/10.3390/pr10050995
Andaluz-Mejía L, Ruiz-De Anda D, Ozuna C. Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes. 2022; 10(5):995. https://doi.org/10.3390/pr10050995
Chicago/Turabian StyleAndaluz-Mejía, Larissa, Daniela Ruiz-De Anda, and César Ozuna. 2022. "Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review" Processes 10, no. 5: 995. https://doi.org/10.3390/pr10050995
APA StyleAndaluz-Mejía, L., Ruiz-De Anda, D., & Ozuna, C. (2022). Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes, 10(5), 995. https://doi.org/10.3390/pr10050995