Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation and Structural Characterizations
2.2. Electrochemical Measurements
2.3. Self-Corrosion
2.4. Battery Performance
3. Results and Discussion
3.1. Microstructure
3.2. Hydrogen Evolution Test
3.3. Potentiodynamic Polarization
3.4. EIS Measurement
3.5. Battery Performance
3.6. Surface Analysis after Discharge
4. Conclusions
- (1)
- By doping Mn in the Al-1Zn-0.1In-0.1Sn-0.5Mg alloy, the average grain size is significantly refined, showing a decrease in size from over 100 μm to about 10 μm. The segregated phases in the as-cast alloys increase with the increasing content of Mn; meanwhile, the shape of the segregation phases transforms from nearly circle-like to rod-like.
- (2)
- After Mn doping, the alloy corrosion potential shifts negatively, while the hydrogen evolution rate and corrosion current of the alloy both increase continuously.
- (3)
- The Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn alloy possesses the optimal overall performance, with a lower self-corrosion rate (0.128 mL∙cm−2∙min−1), the highest working voltage (1.630 V) and energy density (2415 mWh·g−1), and higher capacity (1481 mAh·g−1) and anodic utilization (49.75%) in the 4 M NaOH solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buckingham, R.; Asset, T.; Atanassov, P. Aluminum-air batteries: A review of alloys, electrolytes and design. J. Power Sources 2021, 498, 229762. [Google Scholar] [CrossRef]
- Yang, L.X.; Wu, Y.T.; Chen, S.; Xiao, Y.Q.; Chen, S.; Zheng, P.H.; Wang, J.X.; Qu, J.E. A promising hybrid additive for enhancing the performance of alkaline aluminum-air batteries. Mater. Chem. Phys. 2021, 257, 123787. [Google Scholar] [CrossRef]
- Munoz-Torrero, D.; Leung, P.; Garcia-Quismondo, E.; Ventosa, E.; Anderson, M.; Palma, J.; Marcilla, R. Investigation of different anode materials for aluminum rechargeable batteries. J. Power Sources 2018, 374, 77–83. [Google Scholar] [CrossRef]
- Sumboja, A.; Ge, X.M.; Zong, Y.; Liu, Z.L. Progress in development of flexible metal-air batteries. Funct. Mater. Lett. 2016, 9, 1630001. [Google Scholar] [CrossRef]
- Sun, S.S.; Xue, Y.J.; Wang, Q.; Huang, H.R.; Miao, H.; Liu, Z.P. Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. Electrochim. Acta 2018, 263, 544–554. [Google Scholar] [CrossRef]
- Mori, R. Recent Developments for Aluminum-Air Batteries. Electrochem. Energy Rev. 2020, 3, 344–369. [Google Scholar] [CrossRef]
- Xie, J.D.; He, P.; Zhao, R.J.; Yang, J.H. Numerical Modeling and Analysis of the Performance of an Aluminum-Air Battery with Alkaline Electrolyte. Processes 2020, 8, 658. [Google Scholar] [CrossRef]
- Huang, L.S.; Zang, W.J.; Ma, Y.Y.; Zhu, C.Y.; Cai, D.M.; Chen, H.; Zhang, J.Z.; Yu, H.; Zou, Q.C.; Wu, L.M.; et al. In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery. Chem. Eng. J. 2021, 421, 129973. [Google Scholar] [CrossRef]
- Cheng, R.Q.; Wang, F.; Jiang, M.; Li, K.Q.; Zhao, T.S.; Meng, P.Y.; Yang, J.; Fu, C.P. Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum-Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 37123–37132. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.Q.; Yin, X.; Yan, Y.; Dai, Y.L.; Fan, S.F.; Qiao, X.Y.; Yu, K. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions. J. Mater. Eng. Perform. 2016, 25, 3456–3464. [Google Scholar] [CrossRef]
- Ma, J.L.; Ren, F.Z.; Wang, G.X.; Xiong, Y.; Li, Y.Q.; Wen, J.B. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys. Int. J. Hydrogen Energy 2017, 42, 11654–11661. [Google Scholar]
- Wang, J.B.; Wang, J.M.; Shao, H.B.; Chang, X.T.; Wang, L.; Zhang, J.Q.; Cao, C.N. The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions. Mater. Corros. 2009, 60, 269–273. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H.M.; Leng, J.; Sun, Z.G. Performance of Al-0.6 Mg-0.05 Ga-0.1 Sn-0.1 In as Anode for Al-Air Battery in KOH Electrolytes. J. Electrochem. Soc. 2015, 162, A2623–A2627. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.G.; Wang, R.C.; Peng, C.Q.; Liu, L. Influence of cerium on microstructures and electrochemical properties of Al-Mg-Sn-Hg anode materials for seawater battery. J. Rare Earths 2015, 33, 1010–1016. [Google Scholar] [CrossRef]
- Gudic, S.; Smoljko, I.; Kliskic, M. Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution. Mater. Chem. Phys. 2010, 121, 561–566. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, J.B.; Li, Q.A.; Zhang, Q. Electrochemical polarization and corrosion behavior of Al-Zn-In based alloy in acidity and alkalinity solutions. Int. J. Hydrogen Energy 2013, 38, 14896–14902. [Google Scholar] [CrossRef]
- Wang, J.B.; Wang, J.M.; Shao, H.B.; Zhang, J.Q.; Cao, C.N. The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions. J. Appl. Electrochem. 2007, 37, 753–758. [Google Scholar] [CrossRef]
- Varnell, J.A.; Bakir, M.; DiAscro, A.M.; Chen, X.Y.; Nilufar, S.; Jasiuk, I.; Gewirth, A.A. Understanding the influence of carbon addition on the corrosion behavior and mechanical properties of Al alloy “covetics”. J. Mater. Sci. 2019, 54, 2668–2679. [Google Scholar] [CrossRef]
- Sun, Z.G.; Lu, H.M.; Fan, L.; Hong, Q.S.; Leng, J.; Chen, C.B. Performance of Al-Air Batteries Based on Al-Ga, Al-In and Al-Sn Alloy Electrodes. J. Electrochem. Soc. 2015, 162, A2116–A2122. [Google Scholar] [CrossRef]
- Sun, Z.G.; Lu, H.M. Performance of Al-0.5In as Anode for Al-Air Battery in Inhibited Alkaline Solutions. J. Electrochem. Soc. 2015, 162, A1617–A1623. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, J.B.; Gao, J.W.; Li, Q.A. Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as Anode for Al-Air Battery. J. Electrochem. Soc. 2014, 161, A376–A380. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, J.B.; Gao, J.W.; Li, Q.A. Performance of Al-1Mg-1Zn-0.1Ga-0.1Sn as anode for Al-air battery. Electrochim. Acta 2014, 129, 69–75. [Google Scholar] [CrossRef]
- Tang, Y.G.; Lu, L.B.; Roesky, H.W.; Wang, L.W.; Huang, B.Y. The effect of zinc on the aluminum anode of the aluminum-air battery. J. Power Sources 2004, 138, 313–318. [Google Scholar] [CrossRef]
- Saidman, S.B.; Munoz, A.G.; Bessone, J.B. Electrodeposition of indium and zinc on aluminium. J. Appl. Electrochem. 1999, 29, 245–251. [Google Scholar] [CrossRef]
- Pourgharibshahi, M.; Lambert, P. The role of indium in the activation of aluminum alloy galvanic anodes. Mater. Corros. 2016, 67, 857–866. [Google Scholar] [CrossRef]
- Puridetvorakul, C.; Poolthong, N.; Tareelap, N. Corrosion Behavior of Al-Zn-In Sacrificial Anode Alloys Produced by Conventional Casting and Semi-Solid Metal Casting Processes. Key Eng. Mater. 2017, 751, 101–106. [Google Scholar] [CrossRef]
- Khireche, S.; Boughrara, D.; Kadri, A.; Hamadou, L.; Benbrahim, N. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution. Corros. Sci. 2014, 87, 504–516. [Google Scholar] [CrossRef]
- Ge, L.; Cheng, R.; Lu, Z.; Zhou, C.; Cao, L. Effects of Mn content on microstructure and mechanical properties of Al-Mg alloy plate. Heat Treat. Met. 2017, 42, 14–17. [Google Scholar]
- Yoo, H.S.; Kim, Y.H.; Jung, C.G.; Lee, S.C.; Lee, S.H.; Son, H.T. Effects of Mn Addition on Microstructure and Mechanical Properties of the Al-Si-Fe-Cu-Zn Based Alloys. J. Nanosci. Nanotechnol. 2017, 17, 7619–7622. [Google Scholar] [CrossRef]
- He, Y.D.; Zhang, X.M.; Cao, Z.Q. Effect of Minor Cr, Mn, Zr, Ti and B on Grain Refinement of As-Cast Al-Zn-Mg-Cu Alloys. Rare Metal Mater. Eng. 2010, 39, 1135–1140. [Google Scholar]
- Nam, S.W.; Lee, D.H. The effect of Mn on the mechanical of Al alloys. Korean J. Met. Mater. 2000, 6, 13. [Google Scholar] [CrossRef]
- Liu, S.H.; Pan, Q.L.; Li, H.; Huang, Z.Q.; Li, K.; He, X.; Li, X.Y. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy. J. Mater. Sci. 2019, 54, 4366–4383. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N. Effect of Grain Size on Corrosion: A Review. Corrosion 2010, 66, 075005. [Google Scholar] [CrossRef]
- Jung, H.D.; Alfantazi, A. An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co-P alloy in 0.1 M H2SO4 esolution. Electrochim. Acta 2006, 51, 1806–1814. [Google Scholar] [CrossRef]
- Nie, F.L.; Wang, S.G.; Wang, Y.B.; Wei, S.C.; Zheng, Y.F. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel. Dent. Mater. 2011, 27, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Li, D.Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta 2002, 47, 3939–3947. [Google Scholar] [CrossRef]
- Cho, Y.J.; Park, I.J.; Lee, H.J.; Kim, J.G. Aluminum anode for aluminum-air battery—Part I: Influence of aluminum purity. J. Power Sources 2015, 277, 370–378. [Google Scholar] [CrossRef]
- He, J.G.; Wen, J.B.; Li, X.D. Effects of precipitates on the electrochemical performance of Al sacrificial anode. Corros. Sci. 2011, 53, 1948–1953. [Google Scholar] [CrossRef]
- Srinivas, M.; Adapaka, S.K.; Neelakantan, L. Solubility effects of Sn and Ga on the microstructure and corrosion behavior of Al-Mg-Sn-Ga alloy anodes. J. Alloys Compd. 2016, 683, 647–653. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H.M. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J. Power Sources 2015, 284, 409–415. [Google Scholar] [CrossRef]
- Yin, X.; Yu, K.; Zhang, T.; Fang, H.J.; Dai, H.; Xiong, H.Q.; Dai, Y.L. Influence of Rolling Processing on Discharge Performance of Al-0.5Mg-0.1Sn-0.05Ga-0.05In Alloy as Anode for Al-air Battery. Int. J. Electrochem. Sci. 2017, 12, 4150–4163. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, J.B.; Ren, F.Z.; Wang, G.X.; Xiong, Y. Electrochemical Performance of Al-Mg-Sn Based Alloys as Anode for Al-Air Battery. J. Electrochem. Soc. 2016, 163, A1759–A1764. [Google Scholar] [CrossRef]
- Umoren, S.A.; Li, Y.; Wang, F.H. Effect of aluminium microstructure on corrosion and inhibiting effect of polyacrylic acid in H2SO4 solution. J. Appl. Electrochem. 2011, 41, 307–315. [Google Scholar] [CrossRef]
- Sovizi, M.R.; Afshari, M.; Jafarzadeh, K.; Neshati, J. Electrochemical and microstructural investigations on an as-cast and solution-annealed Al-Mg-Sn-Ga alloy as anode material in sodium chloride solution. Ionics 2017, 23, 3073–3084. [Google Scholar] [CrossRef]
- Ren, J.M.; Ma, J.B.; Zhang, J.; Fu, C.P.; Sun, B.D. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries. J. Alloys Compd. 2019, 808, 151708. [Google Scholar] [CrossRef]
- Park, I.J.; Choi, S.R.; Kim, J.G. Aluminum anode for aluminum-air battery—Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J. Power Sources 2017, 357, 47–55. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H.M.; Leng, J.; Sun, Z.G.; Chen, C.B. The Study of Industrial Aluminum Alloy as Anodes for Aluminum-Air Batteries in Alkaline Electrolytes. J. Electrochem. Soc. 2016, 163, A8–A12. [Google Scholar] [CrossRef]
Samples | Al | Zn | In | Sn | Mg | Mn | Fe | Si |
---|---|---|---|---|---|---|---|---|
x = 0 | Bal. | 1.050 | 0.098 | 0.101 | 0.511 | - | 0.007 | 0.001 |
x = 0.1 | Bal. | 1.003 | 0.102 | 0.105 | 0.506 | 0.110 | 0.006 | 0.003 |
x = 0.2 | Bal. | 1.011 | 0.106 | 0.096 | 0.504 | 0.191 | 0.006 | 0.001 |
x = 0.3 | Bal. | 1.008 | 0.099 | 0.095 | 0.508 | 0.283 | 0.005 | 0.004 |
Point | Al-K | Mg-K | Zn-K | In-L | Sn-L | Mn-K |
---|---|---|---|---|---|---|
A | 82.94 | 1.02 | 11.47 | 0.44 | 4.13 | - |
B | 95.47 | 0.53 | 3.13 | 0.48 | 0.18 | 0.21 |
C | 93.87 | 0.92 | 3.14 | 1.1 | 0.66 | 0.31 |
D | 94.31 | 0.95 | 2.58 | 0.6 | 1.15 | 0.41 |
Samples | Ecorr (V vs. Hg/HgO) | Icorr (A∙cm−2) | Rp (Ω∙cm2) | H2 Evolution Rate (mL∙cm−2∙min−1) |
---|---|---|---|---|
x = 0 | −1.603 | 9.39 × 10−4 | 33 | 0.083 |
x = 0.1 | −1.776 | 3.203 × 10−3 | 5 | 0.128 |
x = 0.2 | −1.707 | 1.077 × 10−2 | 4 | 0.227 |
x = 0.3 | −1.653 | 1.534 × 10−2 | 3 | 0.313 |
Samples | x = 0 | x = 0.1 | x = 0.2 | x = 0.3 |
---|---|---|---|---|
L1 (×10−6 H·cm2) | 1.702 | 1.731 | 3.035 | 3.331 |
Rs (Ω·cm2) | 3.742 | 2.585 | 5.203 | 4.512 |
CPE1 (×10−5 Ω−1·cm−2·s−1) | 8.501 | 5.312 | 7.121 | 3.522 |
n1 (0 < n < 1) | 0.956 | 0.926 | 0.912 | 0.896 |
Rt (Ω·cm2) | 12.424 | 1.451 | 1.012 | 0.441 |
CPE2 (Ω−1·cm−2·s−1) | 0.014 | 0.015 | 0.025 | 0.033 |
n2 (0 < n < 1) | 0.7815 | 0.992 | 0.982 | 0.950 |
R2 (Ω·cm2) | 7.073 | 4.018 | 2.827 | 1.727 |
L2 (H·cm2) | 1.077 | 0.857 | 0.341 | 0.172 |
R3 (Ω·cm2) | 3.018 | 2.829 | 2.156 | 1.241 |
x2 (×10−5) | 3.81 | 4.35 | 4.84 | 2.11 |
Samples | Average Voltage (V) | η (%) | Capacity (mAh·g−1) | Energy Density (mWh·g−1) |
---|---|---|---|---|
x = 0 | 1.550 | 51.66 | 1538 | 2385 |
x = 0.1 | 1.630 | 49.75 | 1481 | 2415 |
x = 0.2 | 1.606 | 45.23 | 1347 | 2163 |
x = 0.3 | 1.581 | 40.70 | 1212 | 1916 |
Samples | Current Density (mA g−1) | Electrolyte | Discharge Voltage (V) | Reference |
---|---|---|---|---|
Al-Mg-Sn | 20 | 4 M KOH | 1.42 | [45] |
Al-Sn | 20 | 4 M KOH | 1.41 | [45] |
Al-Mg | 20 | 4 M KOH | 1.33 | [45] |
Al-Zn | - | 4M NaOH | 1.45 | [46] |
Al-Zn-In | - | 4M NaOH | 1.46 | [46] |
8011 Al alloy | 10 | 4 M KOH | 1.30 | [47] |
Al-0.6Mg-0.05Ga-0.1Sn-0.1In | 30 | 4 M KOH | 1.55 | [13] |
Al-0.5Mg-0.07Sn | 30 | 4 M KOH | 1.25 | [13] |
Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn | 20 | 4M NaOH | 1.63 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Hu, T.; Chen, T.; Yang, X.; Zhu, Y.; Yang, T.; Li, L. Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery. Processes 2022, 10, 420. https://doi.org/10.3390/pr10020420
Zhang W, Hu T, Chen T, Yang X, Zhu Y, Yang T, Li L. Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery. Processes. 2022; 10(2):420. https://doi.org/10.3390/pr10020420
Chicago/Turabian StyleZhang, Wenfeng, Tongrui Hu, Tao Chen, Xiaowei Yang, Yunfeng Zhu, Tainian Yang, and Liquan Li. 2022. "Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery" Processes 10, no. 2: 420. https://doi.org/10.3390/pr10020420
APA StyleZhang, W., Hu, T., Chen, T., Yang, X., Zhu, Y., Yang, T., & Li, L. (2022). Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery. Processes, 10(2), 420. https://doi.org/10.3390/pr10020420