Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination
Abstract
:1. Introduction
2. Void Fraction Measurement Techniques
3. Sensor Simulations
3.1. Capacitance-Based Sensor Using COMSOL
3.2. Gamma-Ray Attenuation-Based Sensor by MCNP
3.3. ANN Models in Multiphase Flows Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Upp, E.L.; Edmund, L.; LaNasa, P.J. Fluid Flow Measurement: A Practical Guide to Accurate Flow Measurement; Gulf Professional Pub: Houston, TX, USA, 2002; ISBN 9780884157588. [Google Scholar]
- Abouelwafa, M.S.A.; Kendall, E.J.M. The Use of Capacitance Sensors for Phase Multiphase Pipelines. IEEE Trans. Instrum. Meas. 1980, 29, 24–27. [Google Scholar] [CrossRef]
- Elkow, K.J.; Rezkallah, K.S. Void fraction measurements in gas-liquid flows using capacitance sensors. Meas. Sci. Technol. 1996, 7, 1153. [Google Scholar] [CrossRef]
- Keska, J.K.; Williams, B.E. Experimental comparison of flow pattern detection techniques for air–water mixture flow. Exp. Therm. Fluid Sci. 1999, 19, 1–12. [Google Scholar] [CrossRef]
- Tollefsen, J.; Hammer, E.A. Capacitance sensor design for reducing errors in phase concentration measurements. Flow Meas. Instrum. 1998, 9, 25–32. [Google Scholar] [CrossRef]
- Belo, F.A.; Mendes De Moura, L.F. A high frequency electronic transducer for multiphase flow measurements. J. Brazilian Soc. Mech. Sci. 1999, 21, 611–621. [Google Scholar] [CrossRef]
- Pal, A.; Vasuki, B. Void fraction measurement using concave capacitor based sensor—Analytical and experimental evaluation. Measurement 2018, 124, 81–90. [Google Scholar] [CrossRef]
- Salehi, S.M.; Karimi, H.; Dastranj, A.A. A Capacitance Sensor for Gas/Oil Two-Phase Flow Measurement: Exciting Frequency Analysis and Static Experiment. IEEE Sens. J. 2017, 17, 679–686. [Google Scholar] [CrossRef]
- Salehi, S.M.; Karimi, H.; Moosavi, R.; Dastranj, A.A. Different configurations of capacitance sensor for gas/oil two phase flow measurement: An experimental and numerical study. Exp. Therm. Fluid Sci. 2017, 82, 349–358. [Google Scholar] [CrossRef]
- Salehi, S.M.; Karimi, H.; Dastranj, A.A.; Moosavi, R. Twin rectangular fork-like capacitance sensor to flow regime identification in horizontal co-current gas-liquid two-phase flow. IEEE Sens. J. 2017, 17, 4834–4842. [Google Scholar] [CrossRef]
- Salgado, C.M.; Pereira, C.M.N.A.; Schirru, R.; Brandão, L.E.B. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy 2010, 52, 555–562. [Google Scholar] [CrossRef]
- Osman, E.S.A. Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow. SPE Prod. Facil. 2004, 19, 33–40. [Google Scholar] [CrossRef]
- Johansen, G.A.; Jackson, P. Radioisotope Gauges for; John Wiley & Sons: New York, NY, USA, 2004; ISBN 0471489999. [Google Scholar]
- Hooker, H.H.; Popper, G.F. A Gamma-Ray Attenuation Method for Void Fraction Determinations in Experimental Boiling Heat Transfer Test Facilities; No. ANL-5766; Argonne National Lab: Lemont, IL, USA, November 1958. [Google Scholar] [CrossRef] [Green Version]
- Salgado, W.L.; Brandão, L.E.B. Study of volume fractions on biphasic stratified regime using gamma ray. Braz. J. Radiat. Sci. 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Cook, W.H.; Rhode, R.R. Effect of Preferred Void Distribution on Void Measurements; Argonne National Lab: Lemont, IL, USA, 1955. [Google Scholar]
- Richardson, B.L. Some Problems in Horizontal Two-Phase Tow-Component Flow (Thesis); Technical Report; Argonne National Lab.: Lemont, IL, USA, December 1958. [Google Scholar] [CrossRef] [Green Version]
- Petrick, M.; Swanson, B.S. Radiation Attenuation Method of Measuring Density of a Two-Phase Fluid. Rev. Sci. Instrum. 2004, 29, 1079. [Google Scholar] [CrossRef]
- Bishop, C.M.; James, G.D. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nucl. Instrum. Methods Phys. Res. 1993, 327, 580–593. [Google Scholar] [CrossRef]
- Åbro, E.; Johansen, G.A. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [Google Scholar] [CrossRef]
- Tjugum, S.A.; Hjertake, B.T.; Johansen, G.A. Multiphase flow regime identification by multibeam gamma-ray densitometry. Meas. Sci. Technol. 2002, 13, 1319–1326. [Google Scholar] [CrossRef]
- Hampel, U.; Bieberle, A.; Schleicher, E.; Hoppe, D.; Zippe, C. High Resolution Gamma Ray Tomography and its Application to Multiphase Flow Measurement. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2008. [Google Scholar]
- Sun, Z.; Zhang, H. Neural networks approach for prediction of gas–liquid two-phase flow pattern based on frequency domain analysis of vortex flowmeter signals. Meas. Sci. Technol. 2007, 19, 015401. [Google Scholar] [CrossRef] [Green Version]
- Ozbayoglu, A.M.; Yuksel, H.E. Estimation of multiphase flow properties using computational intelligence models. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 6, pp. 493–498. [Google Scholar]
- Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H. Void fraction prediction in two-phase flows independent of the liquid phase density changes. Radiat. Meas. 2014, 68, 49–54. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Meas. J. Int. Meas. Confed. 2015, 62, 25–32. [Google Scholar] [CrossRef]
- Khayat, O.; Afarideh, H. Design and simulation of a multienergy gamma ray absorptiometry system for multiphase flow metering with accurate void fraction and water-liquid ratio approximation. Nukleonika 2019, 64, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.R.; Crivelaro, K.C.O.; Seleghim, P. On the application of self-organizing neural networks in gas-liquid and gas-solid flow regime identification. J. Braz. Soc. Mech. Sci. Eng. 2010, 32, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Jamialahmadi, M.; Zehtaban, M.R.; Müller-Steinhagen, H.; Sarrafi, A.; Smith, J.M. Study of Bubble Formation Under Constant Flow Conditions. Chem. Eng. Res. Des. 2001, 79, 523–532. [Google Scholar] [CrossRef]
- Brennen, C.E.; Christopher, E. Fundamentals of Multiphase Flow; Cambridge University Press: Cambridge, UK, 2005; ISBN 0521848040. [Google Scholar]
- Roshani, M.; Phan, G.T.T.; Nazemi, E.; Eftekhari-Zadeh, E.; Phan, N.-H.; Corniani, E.; Tran, H.-N.; Duong, V.H.; Roshani, G.H. Performance comparison of capacitance-based flowmeter with gamma-ray attenuation-based two-phase flowmeter for determining volume fractions in an annular flow regime’s components. Eur. Phys. J. Plus 2021, 136, 176. [Google Scholar] [CrossRef]
- Mosorov, V.; Zych, M.; Hanus, R.; Petryka, L. Modelling of dynamic experiments in MCNP5 environment. Appl. Radiat. Isot. 2016, 112, 136–140. [Google Scholar] [CrossRef]
- Salgado, W.L.; de Freitas Dam, R.S.; Miranda, R.O.; Salgado, C.M.; da Silva Xavier, A. Volume fractions calculation of a biphasic system on cylindrical tube using gamma ray and MCNP6 code. Braz. J. Radiat. Sci. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]
- Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.B.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [Google Scholar] [CrossRef]
- Zych, M.; Petryka, L.; Kępński, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows in an ope channel. Flow Meas. Instrum. 2014, 35, 11–15. [Google Scholar] [CrossRef]
- Zych, M.; Hanus, R.; Wilk, B.; Petryka, L.; Świsulski, D. Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows. Measurement 2018, 129, 288–295. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [Google Scholar] [CrossRef]
Void Fraction. | Capacitance (pF) | Gamma Count (Count per 100 Source Particles) |
---|---|---|
1 | 8.2 | 14 |
0.95 | 8.51 | 13.7 |
0.9 | 8.72 | 13.5 |
0.85 | 8.91 | 13.2 |
0.8 | 9.15 | 13 |
0.75 | 9.31 | 12.8 |
0.7 | 9.49 | 12.5 |
0.65 | 9.65 | 12.3 |
0.6 | 9.79 | 12 |
0.55 | 9.9 | 11.7 |
0.5 | 10.04 | 11.4 |
0.45 | 10.16 | 11.1 |
0.4 | 10.26 | 10.9 |
0.35 | 10.38 | 10.6 |
0.3 | 10.48 | 10.3 |
0.25 | 10.57 | 9.94 |
0.2 | 10.69 | 9.59 |
0.15 | 10.8 | 9.17 |
0.1 | 10.9 | 8.78 |
0.05 | 11 | 7.93 |
0 | 11.11 | 7.07 |
Technique(s) | Capacitance-Based | Gamma-Ray | Both Techniques |
---|---|---|---|
Mean Absolute Error (MAEtest) | 0.0268 | 0.0383 | 0.0056 |
Root Mean Square Error (RMSEtest) | 0.0084 | 0.0422 | 0.0068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, S.; Abdulkareem, L.; Roshani, G.H.; Eftekhari-Zadeh, E.; Haso, E. Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination. Processes 2022, 10, 2371. https://doi.org/10.3390/pr10112371
Mohammed S, Abdulkareem L, Roshani GH, Eftekhari-Zadeh E, Haso E. Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination. Processes. 2022; 10(11):2371. https://doi.org/10.3390/pr10112371
Chicago/Turabian StyleMohammed, Shivan, Lokman Abdulkareem, Gholam Hossein Roshani, Ehsan Eftekhari-Zadeh, and Ezadin Haso. 2022. "Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination" Processes 10, no. 11: 2371. https://doi.org/10.3390/pr10112371
APA StyleMohammed, S., Abdulkareem, L., Roshani, G. H., Eftekhari-Zadeh, E., & Haso, E. (2022). Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination. Processes, 10(11), 2371. https://doi.org/10.3390/pr10112371