Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Calculation of θCB
2.2. Data of Soil and Trees
3. Results
3.1. Relationship between θTHR and θCB
3.2. θR-CB and FTSWTHR
3.3. Effects of Soil and Tree on other
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Phrase |
θ | Soil water content |
θTHR | Soil water content threshold |
θFC | Field capacity |
Pn | Photosynthetic rate |
Tr | Transpiration rate |
TPAW | Total plant available water |
FPAW | Fraction of plant available water |
FTSW | Fraction of transpirable soil water |
APAW | Actual plant available water |
ATSW | Actual transpirable soil water |
TTSW | Total transpirable soil water |
θPWP | Permanent wilting point |
FPAWTHR | Threshold FPAW |
FTSWTHR | Threshold FTSW |
SWRC | Soil water retention curve |
θCB | Capillary break capacity |
θCB-E | Empirical estimate of capillary break water |
θR-CB | The ratio of θCB to θFC |
θR-THR | The ratio of θTHR to θFC |
θMH | The maximum hygroscopy |
θHE | Soil water held by surface tension |
Db | Soil bulk density |
References
- Ritchie, J.T. Water dynamics in the soil-plant-atmosphere system. Pant Soil 1981, 58, 81–96. [Google Scholar]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop. Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Devi, M.J.; Sinclair, T.R.; Beebe, S.E.; Rao, I.M. Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 2013, 364, 29–37. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Ludlow, M.M. Influence of Soil Water Supply on the Plant Water Balance of Four Tropical Grain Legumes. Aust. J. Plant Physiol. 1986, 13, 329–341. [Google Scholar] [CrossRef]
- Lecoeur, J.; Wery, J.; Sinclair, T.R. Model of Leaf Area Expansion in Field Pea Subjected to Soil Water Deficits. Agron. J. 1996, 88, 467–472. [Google Scholar] [CrossRef]
- Rosenthal, W.D.; Arkin, G.F.; Shouse, P.J.; Jordan, W.R. Water Deficit Effects on Transpiration and Leaf Growth. Agron. J. 1987, 79, 1019–1026. [Google Scholar] [CrossRef]
- Casadebaig, P.; Debaeke, P.; Lecoeur, J. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur. J. Agron. 2008, 28, 646–654. [Google Scholar] [CrossRef]
- Gholipoor, M.; Sinclair, T.R.; Prasad, P.V.V. Genotypic variation within sorghum for transpiration response to drying soil. Plant Soil 2012, 357, 35–40. [Google Scholar] [CrossRef]
- Nable, R.O.; Robertson, M.J.; Berthelsen, S. Response of shoot growth and transpiration to soil drying in sugarcane. Plant Soil 1998, 207, 59–65. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, G.C.; Gu, S.Y.; Xia, J.B.; Zhao, J.K. Critical responses of photosynthetic efficiency of goldspur apple tree to soil water variation in semiarid loess hilly area. Photosynthetica 2010, 48, 589–595. [Google Scholar] [CrossRef]
- Zhang, G.-C.; Xia, J.-B.; Shao, H.-B.; Zhang, S.-Y. Grading Woodland Soil Water Productivity and Soil Bioavailability in the Semi-Arid Loess Plateau of China. CLEAN–Soil Air Water 2012, 40, 148–153. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. For. Meteorol. 2002, 112, 67–85. [Google Scholar] [CrossRef]
- Robertson, M.J.; Fukai, S. Comparison of water extraction models for grain sorghum under continuous soil drying. Field Crop. Res. 1994, 36, 145–160. [Google Scholar] [CrossRef]
- Richards, L.A.; Weaver, L.R. Fifteen-atmosphere percentage as related to the permanent wilting point. Soil Sci. 1944, 56, 331–339. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Characterization of the Least Limiting Water Range of Soils. Soil Sci. Soc. Am. J. 1994, 58, 1775–1781. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, W. Studies on the relationship between soil water-retention characters in low suction range and the early stage of soil drought. Acta Pedol. Sin. 1986, 23, 29–31. [Google Scholar]
- Shao, X.; Wang, Y.; Bi, L.; Dai, L.; Yuan, Y.; Su, X.; Mo, J. Evaluation on soil water validity using optimum partitioning clustering method. Trans. CSAE 2010, 26, 106–111. [Google Scholar]
- Shao, M.; Horton, R. Integral Method for Estimating Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 585–592. [Google Scholar] [CrossRef]
- Xia, J.-B.; Zhang, S.-Y.; Zhao, Z.-G.; Zhao, Y.-Y.; Gao, Y.; Gu, G.-Y.; Sun, J.-K. Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its thres-hold grade in shell ridge island. Chin. J. Plant Ecol. 2013, 37, 851–860. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, M. Threshold Effect of Photosynthesis in Forsythia suspense to Soil Water and its Photosynthetic Productivity Grading in Spring and Summer. Sci. Silvae Sin. 2016, 52, 38–46. [Google Scholar]
- Qian, S. On theoretical equation of field moisture capacity. Acta Pedol. Sin. 1985, 22, 233–240. [Google Scholar]
- Brutsaert, W. Probability laws for pore-size distribution. Soil Sci. 1966, 101, 85–92. [Google Scholar] [CrossRef]
- Terleev, V.V.; Mirschel, W.; Badenko, V.L.; Guseva, I.Y. An improved Mualem–Van Genuchten method and its verification using data on Beit Netofa clay. Eurasian Soil Sci. 2017, 50, 445–455. [Google Scholar] [CrossRef]
- Zhang, W. Studies on Photosynthetic Physiology and Water Consumption Characteristics of Main Tree Species in Semi-Arid Region on Loess Plateau; Beijing Forest University: Beijing, China, 2006. [Google Scholar]
- Zhang, C.Z.; Liu, X.; He, K.N. Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil's water availability and productivity in semi-arid region of Loess Plateau. Chin. J. Appl. Ecol. 2003, 14, 858–862. [Google Scholar]
- Wu, Y. Studying on the Soil Water Availability to Typical Plants on the Loess Plauteau; Gruduate University of Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Xia, J.-B.; Zhang, G.-C.; Sun, J.-K.; Liu, X. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity. Chin. J. Plant Ecol. 2011, 35, 322–329. [Google Scholar] [CrossRef]
- Jing, X.; Fan, S.; Cai, C.; Liu, G.; Wang, S.; Luo, H.; Liu, M. Classification of soil water availability and productivity of Moso bamboo (Phyllostachys edulis) seedlings based on photosynthetic characteristics. Chin. J. Ecol. 2021, 40, 3088–3097. [Google Scholar]
- Haise, H.R.; Haas, H.J.; Jensen, L.R. Soil Moisture Studies of Some Great Plains Soils: II. Field Capacity as Related to 1/3-Atmosphere Percentage, and “Minimum Point” as Related to 15- and 26-Atmosphere Percentages. Soil Sci. Soc. Am. J. 1955, 19, 20–25. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Leão, T.P.; da Silva, A.P.; Macedo, M.C.M.; Imhoff, S.; Euclides, V.P.B. Least limiting water range: A potential indicator of changes in near-surface soil physical quality after the conversion of Brazilian Savanna into pasture. Soil Tillage Res. 2006, 88, 279–285. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Carter, M. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling. Soil Tillage Res. 1988, 12, 37–51. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Effect of simulated dairy cow treading on soil physical properties and ryegrass pasture yield. N. Zealand J. Agric. Res. 2001, 44, 181–190. [Google Scholar] [CrossRef]
- Verdonck, O.; Penninck, R.; De Boodt, M. Physical properties of different horticultural substrates. Acta Hortic. 1983, 150, 155–160. [Google Scholar] [CrossRef]
- Warrick, A.W. Soil Physics Companion; CRC Press LLC.: Boca Raton, FL, USA, 2002. [Google Scholar]
- White, R.E. Principles and Practice of Soil Science, 4th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Liu, N.B.; Dong, S.L. Evaluation on Water Capacity and Antidrought of Main Soils in Loess Plateau. Bulletin of Soil and Water Conservation 1997, 7, 20–26. [Google Scholar]
Soil Number | Plant | Db g cm−3 | θFC | 1θPWP | 2TPAW | References |
---|---|---|---|---|---|---|
cm3 cm−3 | ||||||
1# | Robinia pseudoacacia | 1.35 | 0.321 | 0.093 | 0.228 | [26] |
2# | Ulmus pumila | 1.22 | 0.247 | 0.053 | 0.194 | [24] |
2# | Robinia pseudoacacia | 1.22 | 0.247 | 0.057 | 0.190 | |
2# | Pinus tabulaeformis | 1.22 | 0.247 | 0.045 | 0.202 | |
2# | Platycladus orientalis | 1.22 | 0.247 | 0.047 | 0.200 | |
2# | Prunus armeniaca | 1.22 | 0.247 | 0.054 | 0.193 | |
2# | Acer truncatum | 1.22 | 0.247 | 0.048 | 0.199 | |
2# | Caragana microphylla | 1.22 | 0.247 | 0.049 | 0.198 | |
2# | Hippophae Rhamnoides | 1.22 | 0.247 | 0.058 | 0.189 | |
3# | Robinia pseudoacacia | 1.20 | 0.252 | 0.054 | 0.198 | [25] |
3# | Platycladus orientalis | 1.20 | 0.252 | 0.047 | 0.205 | |
4# | Salix matsudana | 1.24 | 0.253 | 0.045 | 0.208 | [19] |
5# | Phyllostachys edulis | 1.14 | 0.326 | 0.057 | 0.269 | [28] |
6# | Prunus armeniaca | 1.21 | 0.333 | 0.076 | 0.257 | [27] |
Soil Number | Plant | θTHR | θCB | θR-THR | θR-CB | FTSWTHR |
---|---|---|---|---|---|---|
cm3 cm−3 | ||||||
1# | Robinia pseudoacacia | 0.219 | 0.218 | 0.68 | 0.68 | 0.55 |
2# | Ulmus pumila | 0.132 | 0.134 | 0.53 | 0.54 | 0.41 |
2# | Robinia pseudoacacia | 0.137 | 0.134 | 0.55 | 0.54 | 0.42 |
2# | Pinus tabulaeformis | 0.139 | 0.134 | 0.56 | 0.54 | 0.46 |
2# | Platycladus orientalis | 0.134 | 0.134 | 0.54 | 0.54 | 0.43 |
2# | Prunus armeniaca | 0.132 | 0.134 | 0.53 | 0.54 | 0.41 |
2# | Acer truncatum | 0.137 | 0.134 | 0.55 | 0.54 | 0.45 |
2# | Caragana microphylla | 0.134 | 0.134 | 0.54 | 0.54 | 0.43 |
2# | Hippophae Rhamnoides | 0.135 | 0.134 | 0.55 | 0.54 | 0.41 |
3# | Robinia pseudoacacia | 0.138 | 0.137 | 0.55 | 0.54 | 0.42 |
3# | Platycladus orientalis | 0.132 | 0.137 | 0.52 | 0.54 | 0.42 |
4# | Salix matsudana | 0.142 | 0.141 | 0.56 | 0.56 | 0.47 |
5# | Phyllostachys edulis | 0.209 | 0.206 | 0.64 | 0.63 | 0.57 |
6# | Prunus armeniaca | 0.206 | 0.219 | 0.62 | 0.66 | 0.51 |
Mean | 0.152 | 0.152 | 0.57 | 0.57 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, C.; Wang, J.; Zhi, J. Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes 2022, 10, 2354. https://doi.org/10.3390/pr10112354
Chi C, Wang J, Zhi J. Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes. 2022; 10(11):2354. https://doi.org/10.3390/pr10112354
Chicago/Turabian StyleChi, Chunming, Jingjing Wang, and Jinhu Zhi. 2022. "Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau" Processes 10, no. 11: 2354. https://doi.org/10.3390/pr10112354
APA StyleChi, C., Wang, J., & Zhi, J. (2022). Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes, 10(11), 2354. https://doi.org/10.3390/pr10112354