Auto-Ignition Delay Characteristics of Ammonia Substitution on Methane
Abstract
1. Introduction
2. Experimental Setup and Numerical Analysis
3. Results and Discussion
3.1. Validation of the Model
3.2. Effect of Pressure
3.3. Effect of Equivalence Ratio
3.4. Effect of Ammonia-Substituted Methane Fuel Blends Composition
3.5. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Yapicioglu, A.; Dincer, I. A review on clean ammonia as a potential fuel for power generators. Renew. Sustain. Energy Rev. 2019, 103, 96–108. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; de Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Ammonia-fed solid oxide fuel cells for power generation—A review. Int. J. Energy Res. 2009, 33, 943–959. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrog. Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Ryu, K.; Zacharakis-Jutz, G.E.; Kong, S.-C. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine. Appl. Energy 2014, 116, 206–215. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Marsh, R.; Runyon, J.; Pugh, D.; Beasley, P.; Hughes, T.; Bowen, P. Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Appl. Energy 2017, 185, 1362–1371. [Google Scholar] [CrossRef]
- Okafor, E.C.; Somarathne, K.K.A.; Ratthanan, R.; Hayakawa, A.; Kudo, T.; Kurata, O.; Iki, N.; Tsujimura, T.; Furutani, H.; Kobayashi, H. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combust. Flame 2020, 211, 406–416. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S.; Kwon, O.C. Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy 2015, 85, 503–510. [Google Scholar] [CrossRef]
- Gross, C.W.; Kong, S.-C. Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures. Fuel 2013, 103, 1069–1079. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. NOx Reduction in Diesel-Hydrogen Engines Using Different Strategies of Ammonia Injection. Energies 2019, 12, 1255. [Google Scholar] [CrossRef]
- Mathieu, O.; Hargis, J.; Camou, A.; Mulvihill, C.; Petersen, E.L. Ignition delay time measurements behind reflected shock-waves for a representative coal-derived syngas with and without NH3 and H2S impurities. Proc. Combust. Inst. 2015, 35, 3143–3150. [Google Scholar] [CrossRef]
- Desantes, J.M.; Bermúdez, V.; López, J.J.; López-Pintor, D. Correlations for the ignition characteristics of six different fuels and their application to predict ignition delays under transient thermodynamic conditions. Energy Convers. Manag. 2017, 152, 124–135. [Google Scholar] [CrossRef]
- Shu, B.; Vallabhuni, S.; He, X.; Issayev, G.; Moshammer, K.; Farooq, A.; Fernandes, R. A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures. Proc. Combust. Inst. 2019, 37, 205–211. [Google Scholar] [CrossRef]
- He, X.; Shu, B.; Nascimento, D.; Moshammer, K.; Costa, M.; Fernandes, R.X. Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures. Combust. Flame 2019, 206, 189–200. [Google Scholar] [CrossRef]
- Dai, L.; Gersen, S.; Glarborg, P.; Mokhov, A.; Levinsky, H. Autoignition studies of NH3/CH4 mixtures at high pressure. Combust. Flame 2020, 218, 19–26. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, W.; Feng, Y.; Wang, W.; Zhu, J.; Qian, Y.; Lu, X. The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study. Combust. Flame 2020, 217, 4–11. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne KDKunkuma, A.; Okafor Ekenechukwu, C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Mashruk, S.; Xiao, H.; Valera-Medina, A. Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems. Int. J. Hydrog. Energy 2021, 46, 4472–4484. [Google Scholar] [CrossRef]
- Xiao, H.; Lai, S.; Valera-Medina, A.; Li, J.; Liu, J.; Fu, H. Experimental and modeling study on ignition delay of ammonia/methane fuels. Int. J. Energy Res. 2020, 44, 6939–6949. [Google Scholar] [CrossRef]
- Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust. Flame 2019, 204, 162–175. [Google Scholar] [CrossRef]
- Du, W.; Ma, Z.; Yin, Z.; Lv, E.; Liu, C.; Hu, E. Auto-ignition and deflagration characteristics of ethanol-gasoline/air at high temperature. Fuel 2019, 255, 115768. [Google Scholar] [CrossRef]
- Reaction Design, I. CHEMKIN-PRO, Release 15101; Reaction Design, Inc.: San Diego, CA, USA, 2010. [Google Scholar]
- Jain, S.; Li, D.; Aggarwal, S.K. Effect of hydrogen and syngas addition on the ignition of iso-octane/air mixtures. Int. J. Hydrog. Energy 2013, 38, 4163–4176. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Zhang, L.; Glarborg, P.; Qi, F. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust. Flame 2009, 156, 1413–1426. [Google Scholar] [CrossRef]
- Mitu, M.; Zakel, S.; Brandes, E.; Hirsch, W. Ignition temperature of combustible liquids in mixtures of air with nitrous oxide. Fire Mater. 2021, 46, 544–548. [Google Scholar] [CrossRef]
- Mitu, M.; Brandes, E.; Hirsch, W. Ignition temperatures of combustible liquids with increased oxygen content in the (O2 + N2) mixture. J. Loss Prev. Process Ind. 2019, 62, 103971. [Google Scholar] [CrossRef]
- Prodan, M.; Mitu, M.; Razus, D.; Oancea, D. Spark ignition and propagation properties of methane-air. Rev. Roum. Chim. 2016, 61, 299–305. [Google Scholar]
- Mitu, M.; Razus, D.; Oancea, D. The development of a new optical method to measure the delay time of spark ignition. Studia Univ. Babeș-Bolyai Chem. 2019, 64, 309–322. [Google Scholar] [CrossRef]
- Kumar, P.; Meyer, T.R. Experimental and modeling study of chemical-kinetics mechanisms for H2–NH3–air mixtures in laminar premixed jet flames. Fuel 2013, 108, 166–176. [Google Scholar] [CrossRef]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Arakawa, Y.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel 2015, 159, 98–106. [Google Scholar] [CrossRef]
No. | CH4 | NH3 | Air | Equivalence Ratio (φ) | Temperature | Pressure |
---|---|---|---|---|---|---|
1 | 4.77% | 0.53% | 94.70% | 0.5 | 1415–1813 K | 2 atm |
2 | 9.06% | 1.01% | 89.93% | 1.0 | 1665–1877 K | 2 atm |
3 | 16.47% | 1.83% | 81.70% | 2.0 | 1479–1559 K | 2 atm |
4 | 4.77% | 0.53% | 94.70% | 0.5 | 1390–1712 K | 5 atm |
5 | 9.06% | 1.01% | 89.93% | 1.0 | 1375–1643 K | 5 atm |
6 | 16.47% | 1.83% | 81.70% | 2.0 | 1355–1709 K | 5 atm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Chen, A.; Guo, Y.; Zhang, L.; Zhang, M.; Deng, X.; Li, J.; Ying, W. Auto-Ignition Delay Characteristics of Ammonia Substitution on Methane. Processes 2022, 10, 2214. https://doi.org/10.3390/pr10112214
Xiao H, Chen A, Guo Y, Zhang L, Zhang M, Deng X, Li J, Ying W. Auto-Ignition Delay Characteristics of Ammonia Substitution on Methane. Processes. 2022; 10(11):2214. https://doi.org/10.3390/pr10112214
Chicago/Turabian StyleXiao, Hua, Aiguo Chen, Yanze Guo, Lifu Zhang, Minghui Zhang, Xi Deng, Jun Li, and Wenxuan Ying. 2022. "Auto-Ignition Delay Characteristics of Ammonia Substitution on Methane" Processes 10, no. 11: 2214. https://doi.org/10.3390/pr10112214
APA StyleXiao, H., Chen, A., Guo, Y., Zhang, L., Zhang, M., Deng, X., Li, J., & Ying, W. (2022). Auto-Ignition Delay Characteristics of Ammonia Substitution on Methane. Processes, 10(11), 2214. https://doi.org/10.3390/pr10112214