Hazardous Waste Advanced Management in a Selected Region of Poland
Abstract
:1. Introduction
2. Materials and Methods
- Generation;
- Disposal;
- Recovery during installation;
- Outside of the installation, recovery
- The mass of generated and processed waste (recovery and disposal) is broken down by counties.
- Asbestos-containing insulation materials (170601 *);
- Other insulation materials containing dangerous substances (170603 *);
- Insulating materials other than those mentioned in 170601 and 170603 (170604);
- Asbestos-containing construction materials (170605 *);
- Other wastes (including mixed substances and objects) from the mechanical treatment of waste containing hazardous substances (191211 *);
- Fluorescent lamps and other mercury-containing waste (200121 *);
- Devices containing freons (200123 *);
- Medicines other than those mentioned in 200131 (200132);
- Batteries and accumulators, including batteries and accumulators mentioned in 160601, 160602, or 160603 and unsorted batteries and accumulators containing these batteries (200133 *).
- Insulating materials other than those mentioned in 170601 and 170603 (170604);
- Other wastes (including mixed substances and objects) from the mechanical treatment of waste containing hazardous substances (191211 *);
- Solvents (200113 *);
- Fluorescent lamps and other mercury-containing waste (200121 *);
- Devices containing freons (200123 *);
- Oils and fats other than those mentioned in 200125 (200126 *);
- Paints, inks, printing inks, adhesives, adhesives and resins containing dangerous substances (200127*);
- Medicines other than those mentioned in 200131 (200132);
- Batteries and accumulators, including batteries and accumulators mentioned in 160601, 160602, or 160603 and unsorted batteries and accumulators containing these batteries (200133 *);
- Discarded electrical and electronic equipment other than those mentioned in 200121 and 200123 containing hazardous ingredients (200135 *).
- Medicines other than those mentioned in 200131 (200132).
- Asbestos-containing insulation materials (170601 *);
- Insulating materials other than those mentioned in 170601 and 170603 (170604);
- Asbestos-containing construction materials (170605 *);
- Solvents (200113 *);
- Oils and fats other than those mentioned in 200125 (200126 *);
- Paints, inks, printing inks, adhesives, adhesives, and resins containing dangerous substances (200127 *);
- Cytotoxic and cytostatic drugs (200131 *);
- Medicines other than those mentioned in 200131 (200132);
- Wood containing dangerous substances (200137 *).
2.1. Hazardous Waste Management
2.2. Characteristics of the Małopolskie Region Area
2.3. Qualitative and Quantitative Analysis of Hazardous Waste
2.3.1. Produced Hazardous Waste
2.3.2. Recovery of Hazardous Waste in Installations
2.3.3. Recovery of Hazardous Waste Outside Installations
2.3.4. Disposal of Hazardous Waste
2.3.5. The Amount of Hazardous Waste Broken down by Counties
- 52,431.53 represents the amount of hazardous waste generated in 2016–2018 (tons);
- 28,366.56 represents the recovery of hazardous waste in installations and recovery outside the facilities in 2016–2018 (tons);
- 19,014.19 represents the amount of assembled hazardous waste in 2016–2018 (tons).
3. Discussion
4. Conclusions
- The largest amount of hazardous waste generated was recorded in 2016 and comprised asbestos-containing construction materials (24,872.13 tons), with an overall significant share of over 80%.
- The largest amount of generated waste, 37,173.25 tons, occurred in the Krakow City area.
- Generated waste accounted for the overwhelming share, while processed waste remained at a lower share of 28%. The highest index of 0.54 concerned the ratio of processed to generated waste.
- The largest share, 43%, of waste recovered in installations was constituted by equipment containing freons, and the amount of recovered waste increased favorably by over 5000 tons.
- In 2016, there was the largest amount of treated waste (construction materials) asbestos, which was three times lower than that produced, with the highest share exceeding 90%, and a noticeable decrease occurred at the same time.
- The downward trend of recovered and managed hazardous waste by more than 700 tons on average indicates the need to identify the sources of its generation. On the other hand, this may indicate a reduction in impact on the natural environment.
- The suggested solution would be to optimize the treatment conditions and minimize the costs of hazardous waste management, while maintaining the correctness of environmental aspects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishchenko, V.; Pohrebennyk, V.; Kochanek, A.; Przydatek, G. Comparative environmental analysis of waste processing methods in paper recycling. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM, Vienna, Austria, 27–29 November 2017; Volume 17, pp. 227–234. [Google Scholar]
- Counto, N.; Valter, S.; Monteiro, E.; Rouboa, A. Hazardous waste management in Portugal: An overview. Energy Procedia 2013, 36, 607–611. [Google Scholar]
- Przydatek, G.; Kochanek, A.; Basta, M. Analysis of changes in municipal waste management at the county level. J. Ecol. Eng. 2017, 18, 72–80. [Google Scholar] [CrossRef] [Green Version]
- SEPA. European Waste Catalogue. Available online: https://www.sepa.org.uk/ (accessed on 27 November 2021).
- European Union. Council Directive 91/689/EEC of 12 December 1991 on Hazardous Waste. Available online: https://eur-lex.europa.eu (accessed on 27 November 2021).
- Sign, R.P.; Tyagi, V.V.; Allen, T.; Ibrahim, A.H.; Kothari, R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 2011, 15, 4797–4808. [Google Scholar]
- Act of 14 December 2012 on Waste (Journal of Laws of 2013, Item 699). Available online: http//www.sejm.gov.pl (accessed on 21 September 2022). (In Polish)
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Nema, A.K.; Gupta, S.K. Optimization of regional hazardous waste management systems: An improved formulation. Waste Manag. 1999, 19, 441–451. [Google Scholar] [CrossRef]
- LaGrega, M.D.; Buckingham, P.L.; Evans, J.C. Hazardous Waste Management, 2nd ed.; Waveland Press: Long Grove, IL, USA, 2010. [Google Scholar]
- Alumur, S.; Kara, B.Y. A new model for the hazardous waste location-routing problem. Comput. Oper. Res. 2007, 34, 1406–1423. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huang, L.; Lee, D.-H.; Peng, Q. Improved approaches to the network design problem in regional hazardous waste management systems. Transp. Res. Part E Logist. Transp. Rev. 2016, 88, 52–75. [Google Scholar] [CrossRef]
- Misra, V.; Pandey, S.D. Hazardous waste, impact on health and environment for the development of better waste management strategies in future in India. Environ. Int. 2005, 31, 417–431. [Google Scholar] [CrossRef]
- Danesh, G.; Monavari, S.M.; Omrani, G.A.; Karbasi, A.; Farsad, F. Compilation of a model for hazardous waste disposal site selection using GIS-based multi-purpose decision-making models. Environ. Monit. Assess. 2019, 191, 122. [Google Scholar] [CrossRef]
- Chen, W.-H.; Tuan, H.A.; Nižetić, S.; Pandey, A.; Kui, C.C.; Luque, R.; Ong, H.C.; Thomas, S.; Nguyen, X.P. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Saf. Environ. Prot. 2022, 160, 704–733. [Google Scholar] [CrossRef]
- Rosik-Dulewska, C. Podstawy Gospodarki Odpadami; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- Millano, E.F. Hazardous waste: Storage, disposal, remediation and closure. Water Environ. Res. 1996, 68, 586–607. [Google Scholar] [CrossRef]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Minister of Climate of January 2, 2020 in the Waste Catalog (Journal of Laws 2020 Item 10). Available online: https://www.sejm.gov (accessed on 27 November 2021).
- National Waste Management Plan 2022 (P.M. 2016.784). Available online: https://bip.mos.gov.pl (accessed on 27 November 2021).
- Przydatek, G. Assessment of changes in the municipal waste accumulation in Poland. Environ. Sci. Pollut. Res. 2020, 27, 25766–25773. [Google Scholar] [CrossRef] [PubMed]
- Urzad Statystyczny w Krakowie. Available online: https://krakow.stat.gov.pl (accessed on 27 November 2021).
- Duan, H.; Huang, Q.; Wang, Q.; Zhou, B.; Li, J. Hazardous waste generation and management in China: A review. J. Hazard. Mater. 2008, 158, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Akpan, V.E.; Olukanni, D.O. Hazardous Waste Management: An African Overview. Recycling 2020, 5, 15. [Google Scholar] [CrossRef]
- Przydatek, G.; Ciągło, K. Factors of variability in the accumulation of waste in a mountain region of southern Poland. Environ. Monit. Assess. 2020, 192, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balde, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017. Quantities, Flows and Resources. Available online: https://collections.unu.edu/view/UNU:6341 (accessed on 16 February 2022).
- Sadala, S.; Dutta, S.; Raghava, R.; Jyothsna, T.S.S.; Chakradhar, B.; Sadhan, K.G. Resource recovery as alternative fuel and raw material from hazardous waste. Waste Manag. Res. 2019, 37, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.; Barriokanal, C.; Diez, M.A.; Cimadevilla, J.L.G.; Casal, M.D.; Canga, C.S. Recycling of hazardous waste materials in the coking process. Environ. Sci. Technol. 2004, 38, 1611–1615. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Azuh, D.A.; Toogun, O.T.; Okorie, U.E. Medical waste management practices among selected health-care facilities in Nigeria: A case study. Sci. Res. Essays 2014, 9, 431–439. [Google Scholar]
- Quina, M.J.; Bordadob, J.C.; Quinta-Ferreiraa, R.M. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 2008, 28, 2097–2121. [Google Scholar] [CrossRef] [Green Version]
- Pecorini, I.; Baldia, F.; Bacchia, D.; Antonio, E.; Carnevalea, E.A.; Corti, A. Leaching behaviour of hazardous waste under the impact of different ambient conditions. Waste Manag. 2017, 63, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Luppi, B.; Parisi, F.; Radżagopalan, Ś. The rise and fall of the polluter-pays principle in developing countries. Int. Rev. Law Econ. 2012, 32, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, A.; Fajfer, J.; Kozie, J.; Labryga, B.; Zasucha, J. Gospodarka odpadami niebezpiecznymi w Krajowym Planie Gospodarki Odpadami. Przegląd Geol. 2002, 50, 1195–1198. (In Polish) [Google Scholar]
- Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; et al. Management of municipal solid waste incineration residues. Waste Manag. 2003, 23, 61–88. [Google Scholar] [CrossRef]
- Emek, E.; Kara, B.Y. Hazardous waste management problem: The case for incineration. Comput. Oper. Res. 2007, 34, 1424–1441. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.-L.; Sheu, J.-B.; Huang, K.-H. A reverse logistics cost minimization model for the treatment of hazardous wastes. Transp. Res. Part E Logist. Transp. Rev. 2002, 38, 457–473. [Google Scholar] [CrossRef]
- Tuan, A.; Petar, H.; Varbanov, S.; Nižetić, S.; Pandey, A.; Luque, R.; Hoong, K.; VietPham, N.V. Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 2022, 359, 131897. [Google Scholar]
Amount of Waste [tons] | Contribution [%] | |||
---|---|---|---|---|
Code of Waste | 2016 | 2017 | 2018 | |
170601 * | 63.04 | 0.61 | 1.95 | 0.13 |
170603 * | 0.25 | 0.71 | 14.66 | 0.03 |
170604 | 2508.10 | 1026.78 | 1955.50 | 10.47 |
170605 * | 24,872.13 | 13,143.38 | 4042.77 | 80.22 |
191211 * | 1004.87 | 1427.39 | 2310.83 | 9.05 |
200121 * | 0.009 | 0.08 | - | 0.00 |
200123 * | 3.63 | - | 54.76 | 0.11 |
200132 | - | 0.05 | - | 0.00 |
200133 * | - | 0.05 | 0.005 | 0.00 |
Total | 28,452.02 | 15,599.04 | 8380.47 | 100.00 |
Max. | 24,872.13 | 13,143.38 | 4042.77 | - |
Min. | 0.009 | 0.05 | 0.005 | |
Average | 3161.34 | 1733.23 | 931.16 | |
Standard deviation | 7717.09 | 4066.17 | 1402.68 | - |
Indictor of hazardous waste accumulation | 0.012 | 0.006 | 0.003 | - |
[kg cap.−1 year−1] | ||||
Waste accumulation per area [tons km−2] | 1.87 | 1.03 | 0.55 | - |
Amount of Waste [tons] | Contribution [%] | |||
---|---|---|---|---|
Code of Waste | 2016 | 2017 | 2018 | |
170604 | 1407.45 | 1347.85 | 484.43 | 11.42 |
191211 * | - | 1750.08 | 4489.46 | 22.00 |
200113 * | - | - | 0.003 | 0.00 |
200121 * | 23.71 | 68.26 | 54.81 | 0.52 |
200123 * | 3321.23 | 3754.34 | 4983.91 | 42.51 |
200126 * | - | - | 0.04 | 0.00 |
200127 * | 0.67 | 0.61 | - | 0.03 |
200132 | 0.05 | - | 0.005 | 0.00 |
200133 * | 121.28 | 113.590 | 141.72 | 1.33 |
200135 * | 2160.69 | 2055.85 | 2080.50 | 22.20 |
Total | 7041.11 | 9090.58 | 12,234.87 | 100.00 |
Max. | 3321.23 | 3754.34 | 4983.91 | - |
Min. | 0.05 | 0.61 | 0.003 | |
Average | 704.12 | 909,058 | 1223.48 | |
Standard deviation | 1128.62 | 1222.90 | 1860.41 | - |
Amount of Waste [tons] | |||
---|---|---|---|
Code of Waste | 2016 | 2017 | 2018 |
200132 | 0.60 | 0.40 | 0.60 |
Amount of Waste [tons] | Contribution [%] | |||
---|---|---|---|---|
Code of Waste | 2016 | 2017 | 2018 | |
170601 * | 47.38 | - | 11.38 | 0.31 |
170604 | 248.90 | 474.65 | 746.46 | 7.73 |
170605 * | 7402.27 | 6735.51 | 3254.16 | 91.47 |
200113 * | 0.10 | - | 0.005 | 0.00 |
200126 * | 0.057 | - | - | 0.00 |
200127 * | 0.23 | 0.52 | 3.22 | 0.02 |
200131 * | 0.25 | - | - | 0.00 |
200132 | 14.59 | 38.30 | 17.20 | 0.37 |
200137 * | 3.26 | 5.40 | 10.34 | 0.10 |
Total | 7717.04 | 7254.38 | 4042.77 | 100 |
Max. | 7402.27 | 6735.51 | 3254.16 | - |
Min. | 0.057 | 0.52 | 0.005 | |
Average | 857.45 | 806.04 | 449.20 | |
Standard deviation | 2315.19 | 2101.50 | 1018.24 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzegorz, P.; Emilian, M.; Adrian, C.; Oana, I. Hazardous Waste Advanced Management in a Selected Region of Poland. Processes 2022, 10, 2032. https://doi.org/10.3390/pr10102032
Grzegorz P, Emilian M, Adrian C, Oana I. Hazardous Waste Advanced Management in a Selected Region of Poland. Processes. 2022; 10(10):2032. https://doi.org/10.3390/pr10102032
Chicago/Turabian StyleGrzegorz, Przydatek, Moșneguțu Emilian, Cabała Adrian, and Irimia Oana. 2022. "Hazardous Waste Advanced Management in a Selected Region of Poland" Processes 10, no. 10: 2032. https://doi.org/10.3390/pr10102032
APA StyleGrzegorz, P., Emilian, M., Adrian, C., & Oana, I. (2022). Hazardous Waste Advanced Management in a Selected Region of Poland. Processes, 10(10), 2032. https://doi.org/10.3390/pr10102032