Adsorption of NH3 and NO2 Molecules on Sn-Doped and Undoped ZnO (101) Surfaces Using Density Functional Theory
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis
3.2. Adsorption Energy
3.3. Electronic Properties
3.4. Work Function
3.5. Charge Density Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong, Y.; Ren, F.; Zhao, Z.; Gao, R.; Hu, S.; Zhou, Q.; Kuang, Y. Highly enhanced NH3-sensing performance of BC6N monolayer with single vacancy and Stone-Wales defects: A DFT study. Appl. Surf. Sci. 2021, 551, 149383. [Google Scholar] [CrossRef]
- Ou, J.Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A.F.; Wlodarski, W. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 2015, 9, 10313–10323. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Lee, J.; Majhi, S.M.; Weber, M.; Bechelany, M.; Kim, H.W.; Kim, S.S. Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 2019, 126, 241102. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Joshi, A.; Kaur, M. Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 2010, 122, 57–62. [Google Scholar] [CrossRef]
- Shingange, K.; Mhlongo, G.H.; Motaung, D.E.; Ntwaeaborwa, O.M. Tailoring the sensing properties of microwave assisted grown ZnO nanorods: Effect of irradiation time on luminescence and magnetic behavior. J. Alloys Compd. 2016, 657, 917–926. [Google Scholar] [CrossRef]
- Onkar, S.G.; Nagdeote, S.B.; Wadatkar, A.S.; Kharat, P.B. Gas sensing behavior of ZnO thick film sensor towards H2S, NH3, LPG and CO2. J. Phys. Conf. Ser. 2020, 1644, 012060. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, M.Y.; Mirzaei, A.; Kim, H.; Kim, S.; Baek, S.; Chun, D.W.; Jin, C.; Lee, K.H. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Wei, S.; Wang, S.; Zhang, Y.; Zhou, M. Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B Chem. 2014, 192, 480–487. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance. Phys. B Condens. Matter 2018, 535, 216–220. [Google Scholar] [CrossRef]
- Yu, A.; Li, Z.; Yi, J. Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sens. Actuators B Chem. 2021, 333, 129545. [Google Scholar] [CrossRef]
- Kolhe, P.S.; Shinde, A.B.; Kulkarni, S.G.; Maiti, N.; Koinkar, P.M.; Sonawane, K.M. Gas sensing performance of Al doped ZnO thin film for H2S detection. J. Alloys Compd. 2018, 748, 6–11. [Google Scholar] [CrossRef]
- Chu, Y.; Young, S.; Ji, L.; Chu, T.; Lam, K.; Hsiao, Y.; Tang, I.; Kuo, T. Characteristics of gas sensors based on Co-doped ZnO nanorod arrays. J. Electrochem. Soc. 2020, 167, 117503. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Joshi, M.; Myung, J. Sputtered SnO2/ZnO heterostructures for improved NO2 gas sensing properties. Chemosensors 2020, 8, 67. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Zhao, L.; Sun, P.; Wang, T.; Liu, F.; Yan, X.; Gao, Y.; Liang, X.; Zhang, S. One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens. Actuators B Chem. 2019, 281, 415–423. [Google Scholar] [CrossRef]
- Patil, V.L.; Dalavi, D.S.; Dhavale, S.B.; Tarwal, N.L.; Vanalakar, S.A.; Kalekar, A.S.; Kim, J.H.; Patil, P.S. NO2 gas sensing properties of chemically grown Al doped ZnO nanorods. Sens. Actuators A Phys. 2022, 340, 113546. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Li, A.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceram. Int. 2021, 47, 24218–24226. [Google Scholar] [CrossRef]
- Qu, Y.; Ding, J.; Fu, H.; Peng, J.; Chen, H. Adsorption of CO, NO, and NH3 on ZnO monolayer decorated with noble. Appl. Surf. Sci. 2020, 508, 145202. [Google Scholar] [CrossRef]
- Liangruksa, M.; Laomettachit, T.; Siriwong, C. Enhancing gas sensing properties of novel palladium-decorated zinc oxide surface: A first-principles study. Mater. Res. Express 2021, 8, 045004. [Google Scholar] [CrossRef]
- Prades, J.D.; Cirera, A.; Morante, J.R.; Pruneda, J.M.; Ordejón, P. Ab initio study of NOx compounds adsorption on SnO2 surface. Sens. Actuators B Chem. 2007, 126, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Li, Y.; Qiao, X.; Zhao, Y.; Zhang, Q.; Ju, Y.; Shi, Y. Molecular modelling of ammonia gas adsorption onto the Kaolonite surfaces with DFT study. Minerals 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Fang, Q.; Sun, Y.; Yin, S.; Li, G.; Zi, Z. Adsorption properties of NO, NH3, and O2 over beta MnO2 (110) surface. J. Mater. Sci. 2018, 53, 11500–11511. [Google Scholar] [CrossRef]
- Supatutkul, C.; Pramchu, S.; Jarroenjittichai, A.P.; Laosiritaworn, Y. Density functional theory investigation of surface defects in Sn-doped ZnO. Surf. Coat. Technol. 2016, 298, 53–57. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Mhlongo, G.H.; Shingange, K.; Tshabalala, Z.P.; Dhonge, B.P.; Mahmoud, F.A.; Mwakikunga, B.W.; Motaung, D.E. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 2016, 390, 804–815. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, Y.L.; Gong, F.L.; Xie, K.F.; Liu, M.; Zhang, H.L.; Fang, S.M. Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation. Sens. Actuators B Chem. 2020, 305, 127489. [Google Scholar] [CrossRef]
- Guo, G.; Wu, H.; Liu, J.; Zhang, Y.; Xie, Z. Tuning the electronic and magnetic properties of monolayer germanium triphosphide adsorbed by halogen atoms: Insights from first principles study. Physica E 2021, 127, 114537. [Google Scholar] [CrossRef]
- Schlesinger, R.; Xu, Y.; Hofmann, O.T.; Winkler, S.; Frisch, J.; Niederhausen, J.; Vollmer, A.; Blumstengel, S.; Henneberger, F.; Rinke, P.; et al. Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Phys. Rev. B 2013, 87, 155311. [Google Scholar] [CrossRef] [Green Version]
- Roman, T.; Gossenberger, F.; Forster-Tonigold, K.; Groß, A. Halide adsorption on close-packed metal electrodes. Phys. Chem. Chem. Phys. 2014, 16, 13630–13634. [Google Scholar] [CrossRef] [PubMed]
- Tshwane, D.M.; Modiba, R.; Govender, G.; Ngoepe, P.E.; Chauke, H.R. The adsorption of halogen molecules on Ti (110) surface. J. Mater. Res. 2021, 36, 592–601. [Google Scholar] [CrossRef]
Eads (eV) | ||||
---|---|---|---|---|
Physisorption | Chemisorption | |||
System | (dN-Zn, dN-Sn, Å) | 1 Å | 2 Å | Å |
NH3/ZnO (101) | 2.163–2.162 | −1.042 | −0.746 | −0.746 |
NO2/ZnO (101) | 2.361–2.360 | −0.354 | −0.280 | −0.279 |
NH3/Sn-ZnO (101) | 2.785–3.148 | −0.339 | −0.187 | −0.357 |
NO2/Sn-ZnO (101) | 2.493–2.522 | −1.105 | −0.436 | −0.438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, R.S.; Tshwane, D.M.; Shingange, K.; Modiba, R.; Maluta, N.E.; Maphanga, R.R. Adsorption of NH3 and NO2 Molecules on Sn-Doped and Undoped ZnO (101) Surfaces Using Density Functional Theory. Processes 2022, 10, 2027. https://doi.org/10.3390/pr10102027
Dima RS, Tshwane DM, Shingange K, Modiba R, Maluta NE, Maphanga RR. Adsorption of NH3 and NO2 Molecules on Sn-Doped and Undoped ZnO (101) Surfaces Using Density Functional Theory. Processes. 2022; 10(10):2027. https://doi.org/10.3390/pr10102027
Chicago/Turabian StyleDima, Ratshilumela S., David Magolego Tshwane, Katekani Shingange, Rosinah Modiba, Nnditshedzeni E. Maluta, and Rapela R. Maphanga. 2022. "Adsorption of NH3 and NO2 Molecules on Sn-Doped and Undoped ZnO (101) Surfaces Using Density Functional Theory" Processes 10, no. 10: 2027. https://doi.org/10.3390/pr10102027
APA StyleDima, R. S., Tshwane, D. M., Shingange, K., Modiba, R., Maluta, N. E., & Maphanga, R. R. (2022). Adsorption of NH3 and NO2 Molecules on Sn-Doped and Undoped ZnO (101) Surfaces Using Density Functional Theory. Processes, 10(10), 2027. https://doi.org/10.3390/pr10102027