Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications
Abstract
:1. Introduction
2. Taxonomic Classification and Botanical Features of Horned Melon
3. How to Eat and Store a Horned Melon?
4. Nutritional Composition of Horned Melon
4.1. Horned Melon Pulp
4.2. Horned Melon Peel
4.3. Horned Melon Seed
5. Phytochemical Composition of Horned Melon
5.1. Horned Melon Pulp
5.2. Horned Melon Peel
5.3. Horned Melon Seed
6. Biological Benefits of Horned Melon
6.1. Antioxidant Potential
6.2. Health Benefits of Horned Melon in Specific Disease Conditions
6.3. Antimicrobial Activity
6.3.1. Antibacterial Activity
6.3.2. Antifungal Activity
6.3.3. Antiviral Activity
7. Potential Use as an Antimicrobial Agent
7.1. As Symbiotic Cultivars
7.2. As Biological Fungicides
7.3. As a Flavouring Agent
7.4. As a Medicinal Plant with Prospective Benefits
7.5. As an Ingredient for Functional Foods’ Fortification
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amicarelli, V.; Fiore, M.; Bux, C. Hidden flows assessment in the agri-food sector: Evidence from the Italian beef system. Br. Food J. 2021, 123, 384–403. [Google Scholar] [CrossRef]
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Ćetković, G. New concept of fortified yoghurt formulation with encapsulated carrot waste extract. LWT 2021, 138, 110732. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; O’Brien, N. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–51. [Google Scholar] [CrossRef]
- Usman, J.G.; Sodipo, O.A.; Kwaghe, A.V.; Sandabe, U.K. Uses of Cucumis metuliferus: A Review. Cancer Biol. 2015, 5, 24–34. [Google Scholar]
- Ferrara, L. A fruit to discover: Cucumis metuliferus E.Mey Ex Naudin(Kiwano). Clin. Nutr. Metab. 2018, 5, 1–2. [Google Scholar] [CrossRef]
- Carr, C.A.; Maggini, S. Vitamine C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, E.; Grosso, C.; Rodrigues, F.; Moreira, M.; Cruz Fernandes, V.; Delerue-Matos, C. Bioactive Compounds of Horned Melon (Cucumis metuliferus E. Meyer ex Naudin). In Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry; Murthy, H.N., Paek, K.Y., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Dembitsky, V.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- National Research Council. Horned melon. In Lost Crops of Africa: Volume III: Fruits.; National Research Council, Ed.; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. 2009. Available online: http://faostat.fao.org/site/339/default.aspx. (accessed on 10 November 2021).
- USDA. The Plants Database. United States Department of Agriculture—Natural Resources Conservations Service. 2015. Available online: http://plants.usda.gov (accessed on 15 November 2021).
- Romero-Rodriguez, M.A.; Vazquez-Oderiz, M.L.; Lopez-Hernandez, J.; Simal-Lozano, J. Physical and analytical characteristics of the kiwano. J. Food Compos. Anal. 1992, 5, 319–322. [Google Scholar] [CrossRef]
- Savarino, V.; Marabotto, E.; Zentilin, P.; Demarzo, M.G.; de Bortoli, N.; Savarino, E. Pharmacological Management of Gastro-Esophageal Reflux Disease: An Update of the State-of-the-Art. Drug Des. Dev. Ther. 2021, 15, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Ezekaibeya, A.C.; Nnenna, A.O.; Kenechukwu, O.C. Proximate, phytochemical and vitamin compositions of Cucumis metuliferus (horned melon) rind. JOCAMR 2020, 9, 40–50. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk. Washington (DC): National Academies Press (US); 1989. 11, Fat-Soluble Vitamins. Available online: https://www.ncbi.nlm.nih.gov/books/NBK218749/ (accessed on 8 November 2021).
- Achikanu, C.E.; Ani, O.N.; Akpata, E.I. Proximate, vitamin and phytochemical composition of Cucumis metuliferus seed. Int. J. Food Sci. Nutr. 2020, 5, 20–24. [Google Scholar]
- Sadou, H.; Seini Sabo, H.; Malam Alma, M.; Mahamane, S.; Leger, C.L. Chemical content of the seeds and physico-chemical characteristic of the seed oils from Citrullus colocynthis, Coccinia grandis, Cucumis metuliferus and Cucumis prophetarum. Bull. Chem. Soc. Ethiop. 2007, 21, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Šaponjac, V.T.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel During Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Garrido, L.; Faba, S.; Guarda, A.; Galotto, M.J.; Dicastillo, C.L. Cucumis metuliferus fruit extract loaded acetate cellulose coatings for antioxidant active packaging. Polymers 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Matsusaka, Y.; Kawabata, J. Evaluation of antioxidant capacity of non-edible parts of some selected tropical fruits. Food Sci. Technol. Res. 2010, 16, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Mester, M.G.; Condrat, D.; Zdremtan, M.G.; Diaconescu, J. Phenolic profile and antioxidant activity of some species of the Cucurbitaceae family. In Proceedings of the 19th international multidisciplinary scientific geoconference SGEM-Sofia, Albena, Bulgaria, 8 June–7 July 2019. [Google Scholar]
- Busuioc, A.C.; Botezatu, A.-V.D.; Furdui, B.; Vinatoru, C.; Maggi, F.; Caprioli, G.; Dinica, R.-M. Comparative Study of the Chemical Compositions and Antioxidant Activities of Fresh Juices from Romanian Cucurbitaceae Varieties. Molecules 2020, 25, 5468. [Google Scholar] [CrossRef]
- Frenoux, J.M.; Prost, E.D.; Belleville, J.L.; Prost, J.L. A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. J. Nut. 2001, 131, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bölek, S. Determination of in Vitro Antioxidant Activity and Bioactive Compounds of Kiwano Seeds. In Proceedings of the International Conference on Research in Health Sciences, Kuala Lumpur, Malaysia, 5–16 May 2020. [Google Scholar]
- Rivero-Pérez, M.D.; Muñiz, P.; González-Sanjosé, M.L. Antioxidant Profile of Red Wines Evaluated by Total Antioxidant Capacity, Scavenger Activity, and Biomarkers of Oxidative Stress Methodologies. J. Agric. Food Chem. 2007, 55, 5476–5483. [Google Scholar] [CrossRef] [PubMed]
- Motlhanka, D.M. Free radical scavenging activity of selected medicinal plants of Eastern Botswana. Pak. J. Biol. Sci. 2008, 11, 805–808. [Google Scholar] [CrossRef]
- Striegel, L.; Weber, N.; Dumler, C.; Chebib, S.; Netzel, M.E.; Sultanbawa, Y.; Rychlik, M. Promising Tropical Fruits High in Folates. Foods 2019, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Mortality Database 2019. Available online: https://www.who.int/healthinfo/statistics/mortality_rawdata/en/ (accessed on 17 November 2021).
- Jimam, N.; Wannang, N.; Omale, S.; Gotom, B. Evaluation of the Hypoglycemic Activity of Cucumis metuliferus (Cucurbitaceae) Fruit Pulp Extract in Normoglycemic and Alloxan-Induced Hyperglycemic Rats. JYP 2010, 2, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Gotep, J. Glycosides fraction extracted from the fruit pulp of Cucumis metuliferus E. Meyer has antihyperglycemic effect in rats with alloxan-induced diabetes. Jundishapur. J. Nat. Pharm. Prod. 2010, 2, 48. [Google Scholar] [CrossRef]
- Wannang, N.N.; Gyang, S.S.; Omale, S.; Dapar, M.L.; Jimam, N.S.; Anakwe, C. The effect of Cucumis Metuliferus E Meye (Cucurbitaceae) on rat gastric functions and mucosa integrity. Niger. J. Nat. Prod. Med. 2008, 12, 37–39. [Google Scholar]
- Omale, S.; Wuyep, N.N.; Auta, A.; Wannang, N.N. Anti-ulcer properties of alkaloids isolated from the fruit pulp of Cucumis metuliferus (Cucurbitaceae). Int. J. Pharm. Sci. Res. 2011, 2, 2586–2588. [Google Scholar]
- Semenya, S.S.; Maroyi, A. Plants used by bapedi traditional healers to treat asthma and related symptoms in Limpopo province, South Africa. J. Evid. -Based Complementary Altern. Med. 2018, 2018, 2183705. [Google Scholar] [CrossRef] [PubMed]
- Roodt, V. Medicinal Plants. In Trees and Shrubs of the Okavango Delta: Medicinal Uses and Nutritive Value, 1st ed.; Roodt, V., Ed.; Shell Oil Botswana: Gaborone, Botswana, 1998. [Google Scholar]
- Lee Ventola, C. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microb. 2019, 10, 911. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliero, A.A.; Gumi, A.M. Studies on the germination, chemical composition and antimicrobial properties of Cucumis metuliferus. Ann. Biol. Res. 2012, 3, 4059–4064. [Google Scholar]
- Nwadiaro, P.O.; Ogbonna, A.I.; Wuyep, P.A.; Sila-Gyang, M.D. Antifungal Activity of Cucumis metuliferus E.Mey. ex Naudin on Some Post-harvest Decay Fungi of String beans. JAIR 2015, 3, 490–496. [Google Scholar]
- Nimzing, L. Evaluation of the antiviral properties of the ethanolic extract of the fruit pulp of Cucumis metuliferus E. Meye (Curcubitaceae). Niger. J. Sci. Res. 2009, 8, 55–59. [Google Scholar]
- Amagon, K.I.; Wannang, N.N.; Iliya, H.A.; Ior, L.D.; Chris-Otubo, G.O. Flavonoids extracted from fruit pulp of Cucumis metuliferus have antiviral properties. Br. J. Pharm. Res. 2012, 2, 249–258. [Google Scholar] [CrossRef]
- Anyanwu, A.A.; Jimam, N.S.; Simeon, O.; Wannang, N.N. Antiviral activities of Cucumis metuliferus fruits alkaloids on infectious Bursal Disease Virus (IBDV). Phytopharmacology 2017, 6, 98–101. [Google Scholar] [CrossRef]
- Anyanwu, A.A.; Jimam, N.S.; Dangiwa, D.A.; Wannang, N.N. Alkaloids of Cucumis metuliferus fruit pulp reduces hepatitis b virus (HBV) in laboratory animals. Eur. J. Biotechnol. Biosci. 2015, 3, 5–7. [Google Scholar]
- Lin, C.W.; Su, M.H.; Lin, Y.T.; Chung, C.H.; Ku, H.M. Functional characterization of Cucumis metuliferus proteinase inhibitor gene (CmSPI) in potyviruses resistance. Viruses 2015, 7, 3816–3834. [Google Scholar] [CrossRef] [Green Version]
- Walters, S.A.; Wehner, T.C. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica 2002, 128, 371–374. [Google Scholar] [CrossRef]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.-W.; Avery, S.V. Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Saleh, I.; Al-Thani, R. Fungal food spoilage of supermarkets’ displayed fruits. Vet. World 2019, 12, 1877–1883. [Google Scholar] [CrossRef]
- Yurdakul, M.; Kazan, H. Effects of Eco-Innovation on Economic and Environmental Performance: Evidence from Turkey’s Manufacturing Companies. Sustainability 2020, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Allemailem, K.S. Prophylactic and Therapeutic Role of Vitamin D3 in Combination with Fluconazole Against Vaginal Candidiasis in a Murine Model. Curr. Pharm. Biotechnol. 2021, 22, 1812–1820. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Kovačević, S.; Šeregelj, V.; Šovljanski, O.; Mandić, A.; Ćetković, G.; Vulić, J.; Podunavac-Kuzmanović, S.; Čanadanović-Brunet, J. Improvement of Carrot Accelerated Solvent Extraction Efficacy Using Experimental Design and Chemometric Techniques. Processes 2021, 9, 1652. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Čanadanović-Brunet, J.; Ćetković, G.; Jakišić, M.; Vulić, J.J.; Stajčić, S.; Šeregelj, V. Optimisation of Beetroot Juice Encapsulation by Freeze-Drying. Pol. J. Food Nutr. Sci. 2020, 70, 25–34. [Google Scholar] [CrossRef]
- Carvalho, R.S.; Carollo, C.A.; de Magalhães, J.C.; Palumbo, J.M.C.; Boaretto, A.G.; Nunes e Sá, I.C.; Ferraz, A.C.; Lima, W.G.; de Siqueira, J.M.; Ferreira, J.M.S. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. S. Afr. J. Bot. 2018, 114, 181–187. [Google Scholar] [CrossRef]
- Ivanov, M.S. Mechanisms of Action of Selected Flavonoids, Terpenes and Nitrate Esters of Heterocyclic Compounds on Candida albicans Isolates from the Human Oral Cavity. Ph.D. Thesis, Faculty of Biology, University of Belgrade, Belgrade, Serbia, 2019. (In Serbian). [Google Scholar]
- Mukherjee, P.K. Bioactive Phytocomponents and Their Analysis. Qual. Control Eval. Herb. Drugs 2019, 7, 237–328. [Google Scholar]
- Maurya, R.; Singh, G.; Yadav, P.P. Antiosteoporotic Agents From Natural Sources. Stud. Nat. Prod. Chem. 2008, 35, 517–548. [Google Scholar]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Wildman, R.E.C.; Kelley, M. Handbook of Nutraceuticals and Functional Foods. J. Nutraceuticals Funct. Med. Foods 2001, 1, 2–22. [Google Scholar]
- Karabagias, V.K.; Karabagias, I.K.; Prodromiti, M.; Gatzias, I.; Badeka, A. Bio-functional alcoholic beverage preparation using prickly pear juice and its pulp in combination with sugar and blossom honey. Food Biosci. 2020, 35, 100591. [Google Scholar] [CrossRef]
- Van Wyk, B.E. The potential of South African plants in the development of new food and beverage products. S. Afr. J. Bot. 2011, 77, 857–868. [Google Scholar] [CrossRef] [Green Version]
Horned Melon | |
Domain | Eukaryota |
Kingdom | Plantae |
Subkingdom | Tracheobionta |
Phylum | Spermatophyta |
Subphylum | Angiospermae |
Class | Magnoliopsida |
Order | Violales/Curcubitales |
Family | Cucurbitaceae |
Genus | Cucumis |
Species | Cucumis metuliferus |
Horned Melon | ||||||
---|---|---|---|---|---|---|
Pulp [6,12,13] | Peel [15] | Seed [18,19] | ||||
Vitamins (mg/g fw) | ||||||
Thiamin (B1) | 0.025 | - | - | 1.69 | - | 2.20 |
Riboflavin (B2) | 0.015 | - | - | 1.74 | - | 1.72 |
Niacin (B3) | 0.565 | - | - | - | - | - |
Pantothenic acid (B5) | 0.183 | - | - | - | - | - |
Pyridoxine (B6) | 0.063 | - | - | - | - | - |
Folic acid (B9) | 0.003 | - | - | 1.93 | - | 2.10 |
Vitamin C | 5.30 | 0.50 | 0.60 | 3.44 | - | 1.72 |
Vitamin A | 0.007 | - | - | 1.85 | - | 2.22 |
Vitamin D | - | - | - | 2.28 | - | 1.86 |
Vitamin E | - | - | - | 2.92 | - | 2.05 |
Vitamin K | - | - | - | 1.69 | - | 2.58 |
Minerals (mg/100 g fw) | ||||||
Sodium | 2 | 5.60 | 2.30 | - | 247 | - |
Calcium | 13 | 17 | 16 | - | 247 | - |
Iron | 1.13 | 0.50 | 0.50 | - | 10.90 | - |
Magnesium | 40 | 23 | 16.2 | - | 289 | - |
Phosphorus | 37 | 50 | 50 | - | 44.70 | - |
Potassium | 123 | 266 | 302 | - | 1174 | - |
Zinc | 0.48 | 0.20 | 0.20 | - | 1.70 | - |
Copper | - | 0.10 | - | - | 5.40 | - |
Manganese | 0.039 | 0.20 | 0.10 | - | - | - |
Horned Melon | |||
---|---|---|---|
Compound | Pulp [24] | Peel [15] | Seed [18,19] |
Flavonoids | Rutin, quercetin, quercetin-3-d-galactoside, kampferol-3-glucoside, and kamferol | 1.71 mg/g dw | 0.97 mg/g dw |
Phenolics | Gallic acid, catechin, epicatechin, neochlorogenic acid, caffeic acid, p-coumaric acid, oleanolic acid, and ursolic acid | 1.54 mg/g dw | 1.20 mg/g dw |
Tannins | - | 1.38 mg/g dw | 2.93 mg/g dw |
Alkaloids | - | 1.06 mg/g dw | 2.54 mg/g dw |
Steroids | - | 0.93 mg/g dw | 2.62 mg/g dw |
Carotenoids | β-carotene | - | 1.56 mg/g dw; 130 mg/g dw |
Glycosides | - | 2.19 mg/g dw | - |
Saponins | - | 0.72 mg/g dw | 1.41 mg/g dw |
Fatty acids | - | - | C14:0, C16:0, C18:0, C20:0, C16:1n-9, C18:1n-9, C18:1n-7 C8:2n-6, C18:3n-3 |
Tocopherols | - | - | α-tocopherol, γ-tocopherol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Vulić, J.; Ćetković, G.; Markov, S.; Čanadanović-Brunet, J. Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes 2022, 10, 94. https://doi.org/10.3390/pr10010094
Šeregelj V, Šovljanski O, Tumbas Šaponjac V, Vulić J, Ćetković G, Markov S, Čanadanović-Brunet J. Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes. 2022; 10(1):94. https://doi.org/10.3390/pr10010094
Chicago/Turabian StyleŠeregelj, Vanja, Olja Šovljanski, Vesna Tumbas Šaponjac, Jelena Vulić, Gordana Ćetković, Siniša Markov, and Jasna Čanadanović-Brunet. 2022. "Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications" Processes 10, no. 1: 94. https://doi.org/10.3390/pr10010094
APA StyleŠeregelj, V., Šovljanski, O., Tumbas Šaponjac, V., Vulić, J., Ćetković, G., Markov, S., & Čanadanović-Brunet, J. (2022). Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes, 10(1), 94. https://doi.org/10.3390/pr10010094