Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Expert System Methodology for Identifying the Quality of Wastewater to Treatment Plant
- identifier of reduced values of wastewater quality indicators:
- identifier of increased values of wastewater quality indicators:
2.3. The Choice of Method to Identify the Quality of Wastewater at the Inflow to the Wastewater Treatment Plant
3. Results and Discussion
3.1. Variability of Wastewater Quantity and Quality Inflow to the Treatment Plant
- and ;
- and ;
- and ;
- and
3.2. Selection of Independent Variables for Classification Models
3.3. Designation of Classification Models for Forecasting the Quality of Selected Wastewater Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henze, M.; Harremoes, P.; Arvin, E.; Lacour, J. Wastewater Treatment, Biological and Chemical Processes, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Bayo, J.; López-Castellanos, J. Principal factor and hierarchical cluster analyses for the performance assessment of an urban wastewater treatment plant in the Southeast of Spain. Chemosphere 2016, 155, 152–162. [Google Scholar] [CrossRef]
- Mąkinia, J. Mathematical Modelling and Computer Simulation of Activated Sludge Systems, 1st ed.; IWA Publishing: London, UK, 2010. [Google Scholar]
- Drewnowski, J.; Makinia, J.; Szaja, A.; Łagód, G.; Kopeć, Ł.; Aguilar, J.A. Comparative study of balancing SRT by using modified ASM2d in control and operation strategy at full-scale WWTP. Water 2019, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Pan, Z.; Chen, Y.; Tan, Z.; Zhang, J. Influent quality and quantity prediction in wastewater treatment plant: Model construction and evaluation. Polish J. Environ. Stud. 2021, 30, 4267–4276. [Google Scholar] [CrossRef]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.V.; Jeppsson, U.; Nopens, I.; Pons, M.N.; Rieger, L.; Rosen, C.; Steyer, J.P.; et al. Benchmark Simulation Model no, 1 (BSM1); Technical Report; Department of Industrial Electrical Engineering and Automation, Lund University: Lund, Sweden, 2008; LUTEDX/(TEIE7229)/162/(2008. [Google Scholar]
- Drewnowski, J.; Zmarzły, M. The use of mathematical models for diagnosis of activated sludge systems in WWTP. E3S Web Conf. 2017, 22, 37. [Google Scholar] [CrossRef] [Green Version]
- Shourjeh, M.S.; Kowal, P.; Drewnowski, J.; Szeląg, B.; Szaja, A.; Łagód, G. Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization. Energies 2020, 13, 5808. [Google Scholar] [CrossRef]
- Keerio, H.A.; Bae, W. Experimental investigation of substrate shock and environmental ammonium concentration on the stability of ammonia-oxidizing bacteria (AOB). Water 2020, 12, 223. [Google Scholar] [CrossRef] [Green Version]
- Gernaey, K.; Mussati, M.; Yuan, Z.; Nielsen, M.K.; Jørgensen, S.B. Control strategy evaluation for combined N and P removal using a benchmark wastewater treatment plant. IFAC Proc. Vol. 2002, 15, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Ingildsen, P.; Rosen, C.; Gernaey, K.V.; Nielsen, M.K.; Gulldal, T.; Jacobsen, B.N. Modelling and control strategy testing of biological and chemical phosphorus removal at Avedøre WWTP. Water Sci. Technol. 2006, 53, 105–113. [Google Scholar] [CrossRef]
- Martin, C.; Vanrolleghem, P.A. Analysing, completing, and generating influent data for WWTP modelling: A critical review. Environ. Model. Softw. 2014, 60, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Szeląg, B.; Mehrani, M.; Drewnowski, J.; Majewska, M.; Łagód, G.; Kumari, S.; Kumari, S.; Bux, F. Assessment of wastewater quality indicators for wastewater treatment influent using an advanced logistic regression model. Desalin Water Treat 2021, 232, 421–432. [Google Scholar] [CrossRef]
- Freni, G.; Mannina, G.; Viviani, G. Uncertainty in urban stormwater quality modelling: The effect of acceptability threshold in the GLUE methodology. Water Res. 2008, 42, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Freni, G.; Mannina, G.; Viviani, G. Urban runoff modelling uncertainty: Comparison among Bayesian and pseudo-Bayesian methods. Environ. Model. Softw. 2009, 24, 1100–1111. [Google Scholar] [CrossRef]
- Łagód, G.; Sobczuk, H.; Suchorab, Z.; Widomski, M. Advection-dispersion pollutant and dissolved oxygen transport as a part of sewage biodegradation model. Environ. Prot. Eng. 2009, 35, 305–317. [Google Scholar]
- Gernaey, K.V.; Flores-Alsina, X.; Rosen, C.; Benedetti, L.; Jeppsson, U. Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach. Environ. Model. Softw. 2011, 26, 1255–1267. [Google Scholar] [CrossRef]
- Szeląg, B.; Barbusiński, K.; Studziński, J. Activated sludge process modelling using selected machine learning techniques. Desalin. Water Treat. 2018, 117, 78–87. [Google Scholar] [CrossRef]
- Młyński, D.; Bugajski, P.; Młyńska, A. Application of the mathematical simulation methods for the assessment of the waste water treatment plant operation work reliability. Water 2019, 11, 873. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.; Othman, F.; Abunama, T.; El-Shafie, A. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: Case study of a sewage treatment plant, Malaysia. Environ. Sci. Pollut. Res. 2018, 25, 12139–12149. [Google Scholar] [CrossRef]
- Boyd, G.; Na, D.; Li, Z.; Snowling, S.; Zhang, Q.; Zhou, P. Influent forecasting for wastewater treatment plants in North America. Sustainability 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Najafzadeh, M.; Zeinolabedini, M. Prognostication of waste water treatment plant performance using efficient soft computing models: An environmental evaluation. Meas. J. Int. Meas. Confed. 2019, 138, 690–701. [Google Scholar] [CrossRef]
- Belanche, L.; Valdés, J.J.; Comas, J.; Roda, I.R.; Poch, M. Prediction of the bulking phenomenon in wastewater treatment plants. Artif. Intell. Eng. 2000, 14, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Szelag, B.; Barbusiński, K.; Studziński, J.; Bartkiewicz, L. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods. E3S Web Conf. 2017, 22, 00174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Z.; Snowling, S.; Siam, A.; El-Dakhakhni, W. Predictive models for wastewater flow forecasting based on time series analysis and artificial neural network. Water Sci. Technol. 2019, 80, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y.; Kim, H.; Piao, W.; Kim, C. Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant. Front. Environ. Sci. Eng. 2016, 10, 299–310. [Google Scholar] [CrossRef]
- Lakner, G.; Lakner, J.; Hajnal, É.; Belafi-Bako, K. Mathematical modelling of real-time control system for industrial wastewater management. Desalin. Water Treat. 2017, 75, 268–273. [Google Scholar] [CrossRef]
- Yu, P.; Cao, J.; Jegatheesan, V.; Du, X. A real-time BOD estimation method in wastewater treatment process based on an optimized extreme learning machine. Appl. Sci. 2019, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Szeląg, B.; Drewnowski, J.; Łagód, G.; Majerek, D.; Dacewicz, E.; Fatone, F. Soft sensor application in identification of the activated sludge bulking considering the technological and economical aspects of smart systems functioning. Sensors 2020, 20, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ratnaweera, H.; Holm, J.A.; Olsbu, V. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control. J. Environ. Manage. 2017, 193, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abyaneh, H.Z. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Health Sci. Eng. 2014, 12, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Jurik, L.; Kaletova, T.; Sedmakova, M.; Balazova, P.; Cervenanska, A. Comparison of service characteristics of two town’s WWTP. J. Ecol. Eng. 2017, 18, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Gawdzik, A.; Gawdzik, J.; Gawdzik, B.; Gawdzik, A.; Rybotycki, M. Prediction of bod5 content of the inflow to the treatment plant using different methods of black box—The case study. Desalin. Water Treat. 2020, 196, 58–66. [Google Scholar] [CrossRef]
- Häck, M.; Köhne, M. Estimation of wastewater process parameters using neural networks. Water Sci. Technol. 1996, 33, 101–115. [Google Scholar] [CrossRef]
- Kusiak, A.; Verma, A.; Wei, X. A data-mining approach to predict influent quality. Environ. Monit. Assess. 2013, 185, 2197–2210. [Google Scholar] [CrossRef] [PubMed]
- Ahnert, M.; Marx, C.; Krebs, P.; Kuehn, V. A black-box model for generation of site-specific WWTP influent quality data based on plant routine data. Water Sci. Technol. 2016, 74, 2978–2986. [Google Scholar] [CrossRef] [Green Version]
- Cristea, V.M.; Pop, C.; Serban Agachi, P. Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1; Elsevier: Amsterdam, The Netherlands, 2009; Volume 26, ISBN 9780444534330. [Google Scholar]
- Bagheri, M.; Mirbagheri, S.A.; Bagheri, Z.; Kamarkhani, A.M. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Saf. Environ. Prot. 2015, 95, 12–25. [Google Scholar] [CrossRef]
- Abba, S.I.; Elkiran, G. Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application. Procedia Comput. Sci. 2017, 120, 156–163. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. Training algorithm for optimal margin classifiers. Proc. Fifth Annu. ACM Work. Comput. Learn. Theory 1992, 144–152. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory, 1st ed.; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Osowski, S. Neural Networks for Information Processing; Publishing House of the Warsaw University of Technology: Warszawa, Poland, 2013. (in Polish) [Google Scholar]
- Collobert, R.; Bengio, S. Links between perceptrons, MLPs and SVMs. In Proceedings of the 21st International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; Association for Computing Machinery: New York, NY, USA, 2004; Volume 23. [Google Scholar] [CrossRef] [Green Version]
- Zanaty, E. Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egypt. Inform. J 2012, 13, 177–183. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Kaczor, G. Influence of air temperature on sewage temperature in sewerage system and in biological reactor. Infrastruct. Ecol. Rural. Areas 2008, 3, 129–137. [Google Scholar]
- Dymaczewski, Z.; Krajewski, P. Wpływ wybranych enzymów i bakterii na efektywność podczyszczania ścieków w kanalizacji. In Polska Inżynieria Środowiska. Prace, Tom II; Dudzińska, M.R., Pawłowski, A., Eds.; Komitet Inżynierii Środowiska PAN: Lublin, Poland, 2012; Volume 100, pp. 135–150. [Google Scholar]
- Dymaczewski, Z.; Komorowska-Kaufman, M.; Krajewski, P.; Michałkiewicz, M.; Jeż-Walkowiak, J. Determination of potential possibility of organic compounds removal in a sewer system. Rocz. Ochr. Sr. 2016, 18, 518–529. [Google Scholar]
- Dogan, E.; Ates, A.; Yilmaz, E.C.; Eren, B. Application of Artificial Neural Networks to Estimate Wastewater Treatment Plant Inlet Biochemical Oxygen Demand. Environ. Prog. 2008, 27, 439–446. [Google Scholar] [CrossRef]
- Ansari, M.; Othman, F.; El-Shafie, A. Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant. Sci. Total Environ. 2020, 722, 137878. [Google Scholar] [CrossRef]
- Rousseau, D.; Ve9rdonck, F.; Moerman, O.; Carrette, R.; Thoeye, C.; Meirlaen, J.; Vanrolleghem, P.A. Development of a risk assessment based technique for design/retrofitting of WWTPs. Water Sci. Technol. 2001, 43, 287–294. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Gerber, E.L.; Rockaway, T.D. Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis. J. Environ. Manage. 2017, 193, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Langergraber, G.; Alex, J.; Weissenbacher, N.; Woerner, D.; Ahnert, M.; Frehmann, T.; Halft, N.; Hobus, L.; Plattes, M.; Spering, V.; et al. Generation of diurnal variation for influent data for dynamic simulation. Water Sci. Technol. 2008, 57, 1483–1486. [Google Scholar] [CrossRef]
- Szeląg, B.; Barbusiński, K.; Studziński, J. Application of the model of sludge volume index forecasting to assess reliability and improvement of wastewater treatment plant operating conditions. Desalin. Water Treat. 2019, 140, 143–154. [Google Scholar] [CrossRef]
- Barbusiński, K.; Szeląg, B.; Studziński, J. Simulation of the influence of wastewater quality indicators and operating parameters of a bioreactor on the variability of nitrogen in outflow and bulking of sludge: Data mining approach. Desalin. Water Treat. 2020, 186, 134–143. [Google Scholar] [CrossRef]
- Bayo, J.; Angosto, J.M.; Serrano-Aniorte, J.; Cascales-Pujalte, J.A.; Fernández-López, C.; López-Castellanos, J. Evaluation of physicochemical parameters influencing bulking episodes in a municipal wastewater treatment plant. WIT Trans. Ecol. Environ. 2006, 95, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Makinia, J.; Rosenwinkel, K.H.; Spering, V. Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP. Water Res. 2005, 39, 1489–1502. [Google Scholar] [CrossRef]
Indicators | Units | Winter | Spring, Summer, Autumn | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Std. Dev. | Min | Mean | Max | Std. Dev. | ||
Q | m3/d | 29,952 | 39,364 | 88,986 | 6563 | 30,125 | 41,842 | 94,772 | 8559 |
BOD5 | mg O2/L | 151 | 290 | 489 | 81.8 | 132 | 340 | 557 | 81.2 |
COD | mg O2/L | 384 | 782 | 1183 | 161 | 342 | 820 | 1703 | 178 |
TN | mg/L | 56.2 | 82.01 | 95.16 | 8.42 | 39.9 | 95.15 | 124.1 | 11.6 |
TP | mg/L | 3.1 | 7.22 | 12.1 | 1.44 | 3.5 | 7.83 | 12.6 | 1.65 |
BOD5 | COD | TN | TP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Chi-sq. | p | Variable | Chi-sq. | p | Variable | Chi-sq. | p | Variable | Chi-sq. | p |
Q(t − 4) | 25.350 | 0.0003 | Q(t − 1) | 25.251 | 0.0007 | Q(t − 4) | 46.085 | 0.000001 | Q(t − 4) | 22.954 | 0.0008 |
Q(t − 3) | 26.790 | 0.0004 | Q(t − 3) | 23.322 | 0.0015 | Q(t − 1) | 42.670 | 0.000001 | Q(t − 2) | 26.480 | 0.0009 |
Q(t − 1) | 24.519 | 0.0009 | Q(t − 2) | 18.834 | 0.0087 | Q(t − 2) | 42.217 | 0.000001 | Q(t − 3) | 20.328 | 0.0049 |
Q(t − 5) | 18.646 | 0.0094 | Q(t − 5) | 19.486 | 0.0125 | Q(t − 5) | 39.748 | 0.000001 | Q(t − 1) | 19.977 | 0.0056 |
Q(t − 6) | 17.475 | 0.0255 | Q(t − 6) | 17.452 | 0.0147 | Q(t − 6) | 40.159 | 0.000003 | Q(t − 5) | 14.772 | 0.0390 |
Q(t − 2) | 16.467 | 0.0362 | Q(t − 7) | 18.974 | 0.0150 | Q(t − 3) | 38.005 | 0.000003 | |||
Q(t − 7) | 14.785 | 0.0389 | Q(t − 4) | 15.062 | 0.0198 | Q(t − 7) | 33.013 | 0.000061 |
BOD5 | TN | COD | TP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Chi-sq. | p | Variable | Chi-sq. | p | Variable | Chi-sq. | p | Variable | Chi-sq. | p |
Q(t − 4) | 14.47 | 0.0248 | Q(t − 1) | 20.519 | 0.0046 | Q(t − 1) | 20.374 | 0.0053 | Q(t − 4) | 13.595 | 0.0021 |
Q(t − 1) | 14.567 | 0.0362 | Q(t − 4) | 17.053 | 0.0091 | Q(t − 2) | 18.257 | 0.0113 | Q(t − 2) | 5.149 | 0.0101 |
Q(t − 3) | 14.634 | 0.0402 | Q(t − 2) | 16.677 | 0.0336 | Q(t − 3) | 16.479 | 0.0214 | Q(t − 3) | 4.333 | 0.0206 |
Q(t − 2) | 14.234 | 0.046 | Q(t − 5) | 12.748 | 0.0376 | Q(t − 6) | 14.696 | 0.0405 | Q(t − 1) | 13.595 | 0.0345 |
Indicator | SVM | BT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | γ | ɛ | Test | Validation | N.T. | Test | Validation | |||||
SENS, % | SPEC, % | SENS, % | SPEC, % | SENS, % | SPEC, % | SENS, % | SPEC, % | |||||
BOD5,upper | 30 | 0.32 | 0.1 | 97.2 | 91.67 | 96.15 | 90.22 | 200 | 91.30 | 84.67 | 90.15 | 80.42 |
BOD5,lower | 25 | 0.36 | 0.1 | 91.46 | 96.43 | 93.03 | 98.4 | 250 | 87.32 | 87.56 | 86.03 | 91.40 |
CODupper | 50 | 0.15 | 0.1 | 92.04 | 91.67 | 95.00 | 90.91 | 190 | 85.30 | 82.17 | 91.00 | 86.41 |
CODlower | 46 | 0.41 | 0.1 | 96.52 | 95.24 | 87.11 | 97.52 | 220 | 84.26 | 84.45 | 79.11 | 92.52 |
TNupper | 55 | 0.27 | 0.1 | 88.79 | 88.11 | 89.30 | 87.70 | 270 | 80.34 | 80.11 | 81.80 | 81.70 |
TNlower | 50 | 0.32 | 0.1 | 90.5 | 88.56 | 88.70 | 91.50 | 220 | 80.20 | 80.56 | 81.90 | 87.00 |
TPupper | 40 | 0.25 | 0.01 | 96.69 | 95.8 | 97.29 | 94.65 | 240 | 82.44 | 85.90 | 89.49 | 86.25 |
TPlower | 50 | 0.35 | 0.01 | 99.23 | 97.03 | 89.47 | 95.38 | 235 | 86.56 | 89.03 | 80.17 | 86.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wodecka, B.; Drewnowski, J.; Białek, A.; Łazuka, E.; Szulżyk-Cieplak, J. Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods. Processes 2022, 10, 85. https://doi.org/10.3390/pr10010085
Wodecka B, Drewnowski J, Białek A, Łazuka E, Szulżyk-Cieplak J. Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods. Processes. 2022; 10(1):85. https://doi.org/10.3390/pr10010085
Chicago/Turabian StyleWodecka, Barbara, Jakub Drewnowski, Anita Białek, Ewa Łazuka, and Joanna Szulżyk-Cieplak. 2022. "Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods" Processes 10, no. 1: 85. https://doi.org/10.3390/pr10010085
APA StyleWodecka, B., Drewnowski, J., Białek, A., Łazuka, E., & Szulżyk-Cieplak, J. (2022). Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods. Processes, 10(1), 85. https://doi.org/10.3390/pr10010085