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Abstract: Autoregressive Integrated Moving Average (ARIMA) is a time series analysis model that
can be dated back to 1955. It has been used in many different fields of study to analyze time series
and forecast future data points; however, it has not been widely used to forecast daily wastewater
influent flow. The objective of this study is to explore the possibility for wastewater treatment plants
(WWTPs) to utilize ARIMA for daily influent flow forecasting. To pursue the objective confidently,
five stations across North America are used to validate ARIMA’s performance. These stations include
Woodward, Niagara, North Davis, and two confidential plants. The results demonstrate that ARIMA
models can produce satisfactory daily influent flow forecasts. Considering the results of this study,
ARIMA models could provide the operating engineers at both municipal and rural WWTPs with
sufficient information to run the stations efficiently and thus, support wastewater management and
planning at various levels within a watershed.
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1. Introduction

Predicting wastewater influent flow is important economically, environmentally, and socially.
Forecasting influent flow at wastewater treatment plants (WWTPs) can benefit the operators, as well as
the plant itself. With reliable predictions forecasted in advance, operators can run the plant efficiently,
which could support wastewater management and planning at various levels within a watershed [1,2].

Unlike hydrological forecasts, forecasting wastewater flow rates has not been researched to a
large extent. There are no well-established wastewater influent forecasting tools available to WWTPs
operators and managers. Traditionally, operators must rely on their knowledge to forecast ahead, or
possibly use extensive complex physical models which can be difficult to tune and monitor [3]. In the
past decade, to better predict wastewater characteristics, a few models were developed. For example,
Kim et al. (2015) used the k-nearest neighbor (k-NN) method to predict various wastewater qualities
such as chemical oxygen demand (COD), suspended solid (SS), total nitrogen (TN), as well as total
phosphorus (TP) [3]. Additionally, Nadiri et al. (2018) combined the Artificial Neural Network (ANN)
model with the fuzzy logic time series models and used a supervised committee fuzzy logic (SCFL)
model to predict various wastewater effluent quality parameters [4]. Moreover, Ottmar et al. (2013)
used the mass balance-based model to predict the concentrations of pharmaceuticals entering WWTPs
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in the United States [5]. The model concluded to be adequate to provide rough predictions of the
drug influent concentrations, however some factors were speculated to have caused inaccuracy in the
prediction results.

Amongst the multiple forecasting models available, time series models have been widely used as
they only depend on internal data to make their prediction [3]. For example, only the previous flow
data would be needed to forecast the future flow predictions. The autoregressive integrated moving
average (ARIMA) model is a well-developed time series model that can be dated back to 1955 [6]. In
1970, Box and Jenkins made several contributions to the ARIMA model [7]. Ever since, it has been
used in many different fields to analyze time series and forecast future data points. For example,
Santamaria-Bonfill et al. (2015) proposed an ARIMA model to predict wind speed [8]. Moreover,
in 1998, ARIMA was used to forecast monthly tourism in Singapore, China [9]. ARIMA has also
had a significant impact on hydrological modelling. Wang et al. (2015) made use of ARIMA to
formulate long-term annual runoff predictions for three reservoirs in China [10]. The ARIMA model
was integrated with an ensemble empirical mode decomposition (EEMD) to improve the model’s
accuracy. Fifty years of the datasets were used to train the model, then approximately 10 years of data
were used for validation purposes. Similarly, annual runoff predictions were made for two reservoirs
in China using a hybrid ARIMA model with Singular Spectrum Analysis (SSA) [11]. The datasets were
first split into 45 and 46 years of training sets and then the 12 years remaining were used to validate
the model. SSA was used to extract trends and periodicities in the 45 and 46 years of the training
data from the two reservoirs. Once these subsets of data were created, ARIMA modelled each and
superimposed the subseries together to produce a 12-year forecast. Another dam reservoir forecast
was produced to predict monthly inflow discharge into the Dez dam [12]. The 47-year dataset was
split into 42 years for training and the last five years for validating the three different models [12]. The
root mean square error (RMSE) was used to compare the seasonal ARIMA, ARMA (Autoregressive
Moving Average), and the artificial neural network (ANN). It was discovered that the seasonal ARIMA
model was the most effective for monthly forecasts up to twelve months. Furthermore, larger scale
studies which evaluated the performance of ARIMA can be found in [13]. Models derived from the
Autoregressive Moving Average (ARMA) families and machine learning black box methods, such
as Neural Networks and Random Forests, were used to forecast monthly or annual hydrological
processes, such as streamflow rates. In this study, it was found that both black box and stochastic
models, such as ARIMA, provided accurate results according to their forecasting quality metrics, such
as Mean Absolute Percentage Error and the Nash (NSE) Coefficient, for short time series forecasting.
Another similar study by Papacharalampous et al. compared various stochastic and machine learning
models to create one-step ahead annual forecasts for temperature and precipitation [14].

Particularly, there have been several studies on the application of ARIMA in wastewater prediction.
Kim et al. (2006) used ARIMA to forecast COD, ammonia, phosphate, and flow rate [15]. Furthermore,
wastewater influent flow was predicted by Chen et al. (2014) using the autoregressive moving average
(ARMA) model to provide efficient chemical dosing for the effluent [16]. These studies demonstrated
ARIMA’s great potential in predicting wastewater characteristics. However, the performance and
reliability of ARIMA to model daily wastewater influent flowrate forecasts have not been extensively
tested. Given the promising potential of ARIMA for solving water and wastewater prediction problems,
it is desired that ARIMA be further demonstrated in the field of wastewater treatment inflow.

Therefore, the objective of this study is to propose an influent flow forecasting tool for WWTPs
using the ARIMA model and test ARIMA’s performance using multiple WWTPs in North America.
Wastewater inflow data will be collected from five stations across North America (Woodward, Niagara,
North Davis, and two confidential plants), in order to train and validate the ARIMA model. Different
statistical criterions, including RMSE, MAPE, and R-squared, will be used to evaluate the performance
of the ARIMA model. This study will provide important technical support for improving the design,
operation, and management of WWTPs. The rest of the paper is structured as follows: Section 2
presents the model structure and evaluation criterions. Section 3 introduces the five selected WWTPs
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and the data collection process. Section 4 presents the modeling results. Section 5 provides a discussion
regarding ARIMA’s advantages and disadvantage, as well as potential future research. Section 6
summarizes the major findings of this study.

2. Methodology

2.1. Autoregressive Integrated Moving Average (ARIMA)

ARIMA is an approach that seeks to predict future behavior from an examination of the previous
history of the series itself [14]. The early form of ARIMA originated in 1955 [6]. It is worth mentioning
that a more precise definition should use the “ARIMA (p, d, q)”, where parameter p is the order of the
autoregressive (AR) model, parameter d is the degree of differencing, and parameter q is the order of the
moving-average (MA) model. However, the model is denoted as ARIMA in this paper for simplicity.
According to Box et al. (2015), the general form of the ARIMA model is given as Equation (1).

ϕ(B)zt = φ(B)∇dzt = θ0 + θ(B)at (1)

where θ0 is a constant; at is a normal stationary stochastic process, called the white noise process; zt

is the discrete time series value at time t; B is a backward shift operator that gives Bzt = zt−1; ϕ(B)
is the nonstationary autoregressive operator with d of the roots of ϕ(B) = 0 equal to unity; φ(B) is
the stationary autoregressive operator and φ(B) = 1− φ1B− φ2B2 − · · · − φpBp; θ(B) is the moving
average operator and θ(B) = 1− θ1B− θ2B2 − · · · − θqBq. φ1 . . . φp and θ1 . . . θp are the autoregressive
and moving average coefficients, respectively. The readers are referred to Box et al. (2015) and Tyralis
and Papacharalampous (2017) for a more detailed definition of ARIMA [17,18].

Box and Jenkins (1970) created the building blocks of ARIMA, breaking down the prediction
process into three iterative steps: identification, estimation, and validation—as seen in Figure 1 [3,19,20].
The Integration value (d) is found in the identification process. The estimation step includes finding
the ARIMA parameters and coefficients from the training set. Then, the model can be validated
by running the full time series using the best training (p, d, q) values. Box and Jenkins’ model was
later used by many researchers to forecast time series as forecasting became the fourth step in the
Box-Jenkins approach.
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There have been numerous technological and methodological innovations to improve ARIMA’s
forecasting abilities, such as outlier detection and Kalman filtering. Detecting outliers can help improve
the forecasting results as the abnormal variation within the data would decrease [21]. Furthermore,
outliers can be detected either before the forecasting process by analyzing the input data or after the
forecast is produced by comparing the forecasted values with the observed values. Liu et al. (2001)
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used outlier detection for their time series analysis on a fast-food restaurant [22]. ARIMA was utilized
to predict the daily demand for a product sold at a particular restaurant. After the ARIMA forecast,
eight outliers were detected by comparing the predicted results with the observations. Finding the
outliers proved to be beneficial to the restaurant owner as majority of them were related to holidays
and extreme weather events. Hence, in this case, outlier detection led to the discovery of certain
patterns in datasets. However, the difficulty surrounding outliers is determining whether or not that
data point is an outlier that can be deleted, or an extreme value that would be important to keep. As
explained in the fast-food restaurant case, those outliers deemed to be extreme values that helped the
owner detect a trend. However, there could be cases where the outliers would be best removed to
increase the model’s performance.

2.2. The ARIMA Model for Influent Forecasting

To build an ARIMA model for daily influent prediction, resampling of the data was necessary
depending on the frequency of the data in each WWTP. If the data was observed multiple times in a
day, it was averaged to daily frequency. The next step of the Box-Jenkins process is the identification
stage. The autocorrelation (AC) and partial autocorrelation (PAC) graphs were used to determine
if there were any signs of trends within the series [20]. If they exist in the series, a higher order of
differencing would be needed until the series appears to lose any trends. When no trends are present
in the series, the AC and PAC graphs quickly converge to zero, meaning that particular value of (d),
which denotes the number of times that the observation data are differenced, can be determined for
the ARIMA model.

Then, the dataset was split into two sections. Two-thirds of the data was used for the training of
the model, whereas one-third of the data was used for the validation of the model. For the training
set, three parameters, including p, d, and q, were configured manually. The integrated value d was
first found in the identification process, then a number of (p, q) sets were searched using a grid search
algorithm. For each (p, q) set, the other coefficients in the ARIMA model were estimated with fixed p, q,
d values. The optimal (p, d, q) combination would be found by choosing the set with the lowest root
mean square error (RMSE). Searching for the optimal combination of (p, d, q) could help calibrate the
model for best performance; however, it is worth mentioning that exploring all combinations in a large
subset of integer values may leave the model prone to overfitting. The higher the values of p and q, the
higher the number of parameters. An ARIMA model with a large number of parameters normally has
a lower generalization ability. Therefore, careful selection of p and q is suggested. In this study, models
with high number of parameters would not be penalized, which is not ideal. Certain procedures to
penalize overfitting should also be considered when the values of p and q are high [23].

Once the best combination of (p, d, q) was found and the other coefficients were calibrated, the
model could be finalized and loaded to make one-step ahead predictions for the testing period. The
authors are referred to Box et al. (2015) for detailed forecasting procedures. The loaded model was
used directly for the whole testing period, which means the predictions were not made in a roll-forecast
manner and the model was not updated with observations for each time step. In this study, no forecasts
were generated beyond the testing period because the main purpose of this work is demonstrating
ARIMA’s forecasting capability, rather than generating actual forecasts for the five WWTPs.

2.3. Model Evaluation

There are a number of error measures that could be used for making comparisons between
observed and predicted time series. Since no one measure is superior on all criteria, multiple
measures, including RMSE, Mean Absolute Percentage Error (MAPE), and coefficient of determination
(R-squared), were used for model evaluation [24].

In order to choose the best (p, q) set, the combination with the lowest RMSE was used. RMSE is
the square root of the average of square differences between the actual and predicted values at specific
timestamps. Since RMSE describes the magnitude of the error which could be useful to decision
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makers, it has been frequently used for evaluating the accuracy of a forecasting method [24]. It can be
calculated as in Equation (4) below.

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − ŷj

)2 (2)

where yj is the actual value, ŷj is the predicted value, and n is the total number of data points [25].
RMSE depends on a few different factors. First, RMSE depends on the units and the frequency

of the dataset, meaning it cannot be absolutely defined as a good or bad value [24]. If the RMSE
is the same as the standard deviation, the ARIMA model would only be as accurate as using the
mean as the prediction. Hence, if the RMSE value is lower than the standard deviation, it implies
that the ARIMA model better predicts the data compared to using the mean as the prediction. To
continue, RMSE also depends on the variance between the actual and predicted values because the
difference is squared. Therefore, the primary benefit of RMSE is that it gives high weights to larger
deviations, which in return, represents a better model performance [25]. However, a disadvantage
includes the fact that outstanding outliers can heavily skew the RMSE results and show a misleading
model performance [24].

MAPE has also been used widely in scientific research as it is simple to use [26]. MAPE was
not used for the calibration of the ARIMA model, however it was used for model evaluation in the
validation process. MAPE is the mean of the individual theoretical errors calculated at each timestamp,
as seen in Equation (5) [23]. Hence, lower MAPE values infer better model performance.

MAPE =

(
1
n ∑

∣∣yj − ŷJ
∣∣∣∣yj

∣∣
)
∗ 100 (3)

The coefficient of determination (R-squared) is another error criterion which was used for model
validation. R-squared has been used frequently for model evaluation. It is a statistical measure which
represents the ability of the independent variable (observed) to predict the variations of the dependent
variable (predictions). Therefore, the correlation is between the line of best fit and the predicted
values [27]. The closer the R-squared is to the value of one, the better the model has performed as there
is less error variance [28]. The opposite is said to be as the R-squared approaches zero. In general, an
R-squared value greater than 0.5 is acknowledged as being acceptable [28]. As seen in the Equation (6)
below, R-squared is the sum of the distance between the predicted value and the linear line, divided
by the sum of the distance between the predicted value and the mean of predictions [29].

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (4)

3. Study Area and Data Collection

3.1. Selected Wastewater Treatment Plants

The five WWTPs used to test the ARIMA model in this study include the following stations:
Woodward (Canada), North Davis (United States), Niagara (Canada), Confidential Plant I, and
Confidential Plant II. The approximate location of each treatment plant (except the two confidential
plants) is shown in Figure 2.
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Woodward Avenue Wastewater Treatment Plant is one of the two WWTPs located in the City of
Hamilton, Ontario, Canada. Hamilton has a total area of 1117 km2 and a population of approximately
536,900 [30,31]. As Hamilton is an older city, some regions still use combined sewer systems.
Woodward Avenue WWTP treats both sanitary and combined sewage, with an average capacity
of 4.73 m3/s. At this plant, five wastewater treatment processes occur: preliminary treatment, primary
treatment, secondary treatment, effluent disinfection, and sludge digestion. Currently, an upgrade
project is occurring at Woodward Avenue WWTP and is expected to be completed in 2022. With this
project, an additional new third level of treatment will occur in the wastewater treatment process [31].

The North Davis Sewer District WWTP in Utah serves the area extending from Roy to Kaysville
(North to South) and from Wasatch Mountains to the Great Salt Lake (from East to West) [32]. The
District covers about 207 km2 of area which is populated with an estimated 200,000 people. Each
city in the area has its individual sewage collection lines; however, they are discharged into the
larger District lines. The treatment plant can treat 34 million gallons of wastewater each day and
discharges the treated water into the Great Salt Lake. The process at the North Davis plant includes the
following: wastewater collection, pretreatment, headworks, primary treatment, secondary treatment,
disinfection and effluent, solids treatment, as well as cogeneration of products. The products from
the treatment process include biosolids, which are used as a source of organic soil amendment and
fertilizer, electricity, and heat [32].

The WWTP in the Niagara Region is situated in Crystal Beach, a town of roughly 11 km2 [33].
The population of Crystal Beach in 2016 was found to be about 8500 people, a 5.8% increase from 2011.
The two confidential WWTPs are located in North America. Currently, the detailed locations of these
plants cannot be disclosed.

3.2. Data Collection

The data for this study was provided by Hydromantis. Hydromantis is a company from Hamilton,
Ontario, Canada that focuses on wastewater and hydraulic aspects of environmental engineering, as
well as the development of wastewater modelling and simulation software. Each WWTP varies in the
time period that the data was collected, the data frequency, and the flow unit. These variations between
the WWTPs was not significant in affecting the individual WWTP results as they were tested separately.
Although the data for each station was collected at different periods of time, it is still consistent in
the context of this study as each individual data set was split to use two-thirds for calibration and
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one-third for validation, regardless of the data collection time period. The details of data collected for
each WWTP are given in Table 1 where MLD refers to millions of liters per day and MGD refers to
millions of gallons per day. The missing values of the confidential plants in Table 1 do not affect the
results of the study as they were not used to train or test the data.

Table 1. Details of each WWTP (wastewater treatment plants) used for the ARIMA (Autoregressive
Integrated Moving Average) process.

Station Data Collection
Time Period

Data
Frequency Flow Units Mean Flow

(m3/s)

Mean Annual
Temperature

(◦C)

Mean Annual
Precipitation

(mm)

Woodward,
ON

January 2015–
December 2017 5 min MLD 3.5934 7.92 930.10

Niagara, ON January 2016–
August 2017 Daily m3/d 0.0512 8.62 1051.50

North Davis,
UT

January 2016–
April 2017 Daily MGD 0.9135 12.70 472.00

Confidential
Plant I

January 2015–
April 2016 15 min MGD 0.4986 N/A N/A

Confidential
Plant II

November 2015–
October 2016 15 min m3/h 0.6491 N/A N/A

4. Results

4.1. Characterization of the Influent Time Series

The wastewater influent flow rate shows many different patterns for each WWTP. Due to the
diverse social and environmental factors, such as population in the surrounding area, land use,
collection system, and climate conditions, each WWTP hosts a unique dataset. Despite the many
differences that each geographical area encompasses, each plant’s flow rate has a general tendency
to rise into spring and decrease towards the summer. This commonality can be explained by more
frequent and intense rainfalls in the springtime, combined with snowmelt.

Confidential Plant II’s flow data follows a general increasing trend from November 2015 to the
maximum peak in April 2016. Afterwards, it decreases to a minimum towards the fall and winter of
2016, as seen in Figure 3a. As for the flow at Woodward WWTP, it varies significantly within each
month, as seen in Figure 3b. Since ARIMA does not use any information from exogenous variables,
such as precipitation and snowmelt, variations in these variables cannot be well captured, which
generally lowers ARIMA’s forecasting accuracy. The flow data from Niagara’s WWTP is observed in
Figure 3c. It shows a steady rise in flow rate from October 2016 to April 2017 as it approaches the peak
flow. In both 2016 and 2017, the minimum flow rate occurs around August. Additionally, the flow rate
is greater in 2017 in comparison to 2016. Figure 3d represents the flow in North Davis WWTP. The flow
is fairly constant throughout 2016 from June to October. A high peak is seen at the end of February
2017 and low flows are observed in the winter of 2016. Unlike the other WWTPs, North Davis does not
show any seasonal patterns throughout 2016, such as an increase in spring and a decrease in summer.
This may be due to the lower amounts of precipitation in the winter of 2016. For Confidential Plant I, it
is observed from Figure 3e that the highest peak flow occurs in March 2016. However, large flow rates
occur in the winter of 2015 and 2016 as well. There is a steady decrease in flow through the spring and
into the summer, while a steady increase begins in the fall.

The weekly and seasonal patterns of hourly inflow rate were also analyzed and the patterns
at Confidential Plant II are presented in Figure 4 as an example. As shown in Figure 3a, there are
many local peaks within each month. The local peaks most likely result from an increase in flow
rate throughout the week and into the weekend. This weekly trend can be seen in Figure 4. Figure 4
displays seven different lines which represent the flow rate for each of the days in a week. Typically,
the flow rates are greater throughout the day on Saturday and Sunday.
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Like many sets of data, outliers were present for this study. Outliers in the data were identified
using professional judgement by the WWTP engineers. The engineers at each WWTP know the
conditions of the plant, thus they were able to distinguish outliers from extreme values. Once
the outliers were confirmed, they were deleted and replaced by a linearly interpolated value.
Likewise, missing values or null values within the data collection were also deleted and filled using
linear interpolation.

Furthermore, to ensure that the data for ARIMA analysis is stationary, the AC and PAC graphs
were analyzed. The graphs for North Davis are presented in Figure 5 as an example. Since the flow
frequency for North Davis was daily data, resampling for the AC and PAC graphs was not needed. A
differencing value of one was used as both the AC and PAC graphs met all the criteria. They tended to
zero, and most of the correlations remained within the confidence limits, as seen in Figure 5b. However,
when the differencing value was zero (Figure 5a) or two (Figure 5c), the AC and PAC graphs did not
satisfy the two criteria.
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4.2. Prediction Results

The ARIMA model for each WWTP was calibrated using two thirds of the flow data. Based on
the calibration results, a different set of (p, d, q) was selected for each WWTP. Table 2 shows the results
for each error criterion, and Figure 6 shows the model prediction graphs for each plant.

Table 2. Summary of calibration and prediction results.

Station
Calibration Prediction

(p, d,
q)

RMSE (Root
Mean Square
Error) (m3/s)

MAPE (Mean
Absolute

Percentage
Error) (%)

R-Squared RMSE
(m3/s) MAPE (%) R-Squared

Woodward (1,1,2) 0.559 22.512 0.593 0.696 31.080 0.683
Niagara (9,1,2) 0.015 48.959 0.660 0.037 94.297 0.560

North Davis (0,1,4) 0.022 5.371 0.775 0.059 20.123 0.898
Confidential Plant I (0,1,4) 0.057 17.240 0.609 0.150 29.159 0.571
Confidential Plant II (8,1,1) 0.032 9.299 0.757 0.022 5.643 0.579

Overall, three error criterions were used to evaluate the model’s performance: RMSE, MAPE, and
the coefficient of determination. RMSE was only used to calibrate the model, however all three were
used in the validation portion. All three can be used in unison to piece together the quality of the
prediction as each criterion provides different error perspectives—as explained in Section 2.3. Although
RMSE is widely accepted as an effective model evaluation criterion, it has a primary disadvantage
which is that RMSE is a relative error. RMSE depends on both the flow units and the frequency of
which the data was taken. The larger flow units would result in larger RMSE values. This makes it
harder to absolutely define the quality of the predictions. For example, Niagara’s RMSE was roughly
0.01 m3/s, whereas Woodward’s was approximately 0.58 m3/s. As seen in Figure 6b,c, despite the
disadvantage of RMSE being a relative error, the RMSE values can be compared to the standard
deviations at each station, as explained in Section 2.3. The RMSE values for each of the five stations are
at least two times less than the standard deviation, as displayed in Tables 1 and 2. Since the RMSE
for each station is less than its respective standard deviation, it is observed that the ARIMA model
provides good forecasts [14].



Sustainability 2019, 11, 1764 10 of 14

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 14 

 

 
Figure 5. Autocorrelation and partial autocorrelation analysis results for North Davis using original 
data (a), differencing value of one (b), and differencing value of two (c). 

4.2. Prediction Results 

The ARIMA model for each WWTP was calibrated using two thirds of the flow data. Based on 
the calibration results, a different set of (p, d, q) was selected for each WWTP. Table 2 shows the results 
for each error criterion, and Figure 6 shows the model prediction graphs for each plant. 

Table 2. Summary of calibration and prediction results. 

Station 

 Calibration Prediction 

(p, d, 
q) 

RMSE (root 
mean square 
error) (m3/s) 

MAPE (Mean 
Absolute 

Percentage Error) 
(%) 

R-
Squared 

RMSE 
(m3/s) 

MAPE 
(%) R-Squared 

Woodward (1,1,2) 0.559 22.512 0.593 0.696 31.080 0.683 
Niagara (9,1,2) 0.015 48.959 0.660 0.037 94.297 0.560 

North Davis (0,1,4) 0.022 5.371 0.775 0.059 20.123 0.898 
Confidential 

Plant I (0,1,4) 0.057 17.240 0.609 0.150 29.159 0.571 

Confidential 
Plant II 

(8,1,1) 0.032 9.299 0.757 0.022 5.643 0.579 

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 6. ARIMA model predictions for Confidential Plant II (a), Woodward (b), Niagara (c), North 
Davis (d), and Confidential Plant I (e). 
Figure 6. ARIMA model predictions for Confidential Plant II (a), Woodward (b), Niagara (c), North
Davis (d), and Confidential Plant I (e).

MAPE was another criterion used to measure the quality of the results from the ARIMA model.
As seen by Equation (5) in Section 2.3, the results are considered to be better if the MAPE value is
closer to zero [26]. For example, Confidential Plant II results present low MAPE values for both the
calibration and prediction periods. This means that by the definition of MAPE, Confidential Plant
II’s results are more satisfactory compared to a station such as Niagara. However, a disadvantage of
using MAPE is the fact that the results can be skewed if there are zero values or values close to zero
in the dataset [23]. This is because dividing by such a small value will increase MAPE tremendously,
especially if the value of the numerator is large [26]. A result of this, drawback can be seen in the
result for Niagara WWTP. Referring to Figure 6c at approximately Day 575 on the x-axis (the end of
July 2017), a significant difference can be observed between the actual and the predicted values. At
this time, however, the actual value is relatively small. Thus, dividing a large difference by a small
value will increase and skew the MAPE value. This may be one of the reasons why Niagara’s MAPE
performance was poor.

R-squared was used to determine the performance of the model. As explained in Section 2.3,
the coefficient of determination describes how well the observed values predict the variance of the
forecasted results. A perfect forecast would result in the coefficient of determination being one, while
a value of zero would indicate that there is no correlation between the observed and predicted. As
seen in the results displayed in Section 3.2, Niagara has the worst testing coefficient of 0.557, whereas
North Davis has the best, which is 0.898. Therefore, Niagara’s and North Davis’ observed values can
account for, respectively, 55.7% and 89.8% of the predicted variances. The R-squared results for all the
stations in this study are greater than 0.5, meaning the results are satisfactory [23].

5. Discussion

Despite the few drawbacks that ARIMA possesses, ARIMA has proven to be a reliable model
for hydrological purposes, such as flow forecasting. A Seasonal ARIMA (SARIMA) model combined
with ANN was used to forecast monthly inflow into the Jamishan dam reservoir in West Iran [34]. The
model produced exemplary coefficient of determination results. The SARIMA model chosen had a
testing R-Squared of 0.579, which is greater than 0.5 [34]. Another study in Seoul, South Korea used
ARIMA to predict seasonal urban water consumption based on weather variables such as temperature,
precipitation, wind speed, relative humidity, as well as cloud cover [35]. The average R-squared
value was found to be 0.479 [35]. Comparing to these two examples, this study demonstrates that
ARIMA can be considered a reliable forecasting model, especially with longer temporal resolutions.
An extensive test of ARIMA and 11 other stochastic methods regarding their streamflow forecasting
properties can be found in [13].



Sustainability 2019, 11, 1764 11 of 14

Like all models, the ARIMA model has advantages as well as disadvantages. Some advantages
that ARIMA possess includes the fact that it is a simplistic model which can be interpreted and
calculated fairly easily. Machine learning models like ANN cannot be manually interpreted with
simple calculations as one can do with ARIMA. To continue, while most data-driven models typically
use information from exogenous variables, no weather data is needed for ARIMA to make its
prediction [13,36,37]. This is beneficial as not all historical weather data is accurate or even exists,
especially higher frequency data. High temporal resolution weather data including precipitation
can be extremely hard to obtain. For instance, Environment Canada’s daily historical weather data
consists of many files with plenty of missing data points. ARIMA avoids these issues as it only requires
internal inputs to forecast [17,38]. The abovementioned advantages of ARIMA make it a reliable and
effective tool for WWTPs managers. In this study, ARIMA is successfully applied to the forecasting of
wastewater influent rate at five WWTPs in North America. To the authors’ knowledge, this is the first
time that ARIMA has been tested for wastewater influent forecasting to a large extent.

Although the ARIMA model has many advantages, it also has some drawbacks. To begin, ARIMA
does not use information from exogenous variables, which leads to a limit of predictability. Including
relevant data as model input, such as precipitation and snowmelt, could sometimes help address this
problem [39]. When weather forecasts are used as model input for wastewater influent forecasting,
it is important to ensure the accuracy/quality of the weather forecasts. Meanwhile, ARIMA can
only run a continuous time series, meaning the missing values in the dataset must be filled in. It
can be a long process to find and calculate all the absent values, meaning it will require more time
to prepare the data to run the model. Also, filling in missing values using linear interpretation can
decrease the model performance as the variations in the data may be incorrectly represented [7]. It
is recommended that users carefully process wastewater data and ensure data quality when using
ARIMA for influent forecasting. However, it should be noted that the presence of missing values
will influence the performance of many other forecasting methods, not just ARIMA. Moreover, one
of ARIMA’s assumptions is that there is no periodicity in the data. The model accuracy may be
affected when this assumption is not satisfied, which is not unusual in flow forecasting problems.
Additionally, since the random shocks at each point of the time series are assumed to come from
the same distribution, typically a normal distribution, ARIMA is not designed to predict extreme
values [17]. WWTPs are suggested to closely monitor extreme weather conditions so that they can be
prepared for extreme influent flows. Finally, running the model itself can be time consuming. There are
existing procedures for fast parameter estimation for the ARIMA(p, d, q) [23,40]. In future applications,
the practitioners are recommended to use such techniques to improve the efficiency of this model and
to save computational time.

6. Conclusions

In this study, a daily influent flow forecasting model was proposed based on ARIMA. The
performance and reliability of the ARIMA model was tested at five WWTPs across North America,
including Niagara, Woodward, North Davis, and two confidential plants. The data used for each
station varied in flow frequency, where some stations gathered data daily, while others measured in
5- or 15-min intervals. Each model was calibrated using RMSE as the error criterion to find the best
combination of (p, d, q). Once the best combination was found, the prediction portion of the data
was used to validate the model. The results for the calibration and validation set were each analyzed
through the calculation of RMSE, MAPE, and R-squared. The R-squared values at all five station are
higher than 0.55 during the validation period, and the RMSE for each station is less than its respective
standard deviation. The results demonstrated that ARIMA can be used by WWTPs to forecast influent
flow rate.

This study can provide valuable technical support for the prediction of influent characteristics
at WWTPs, helping wastewater engineers to make the maximum use of the existing and future
wastewater treatment facilities. ARIMA relies only on historical data and no external data to provide
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forecasts. Our results show that time series analysis based on ARIMA can be extremely advantageous
for the plant operators to manage the plant economically, as well as for the local society and the
surrounding environment.

A limitation of this study was the fact that only one error criterion was used to calibrate the
model [41]. To improve the forecasting results for future research, an integrated function can be
built to incorporate multiple error criterions such as RMSE, R-squared, MAPE, MAE, NSE, and many
more. Meanwhile, the proposed ARIMA model is prone to overfitting as no penalizations were set in
order to avoid high order of parameters during calibration. Additionally, as daily flow data may be
characterized by occasional extreme values or intermittency, it is possible that nonlinear models rather
than ARIMA, such as neural networks, could work better for forecasting purposes; however, studies
show that stochastic methods like ARIMA and nonlinear machine learning methods may produce
equally useful forecasts for geophysical processes [13]. In future studies, the ARIMA model can be
combined with other methods to improve the accuracy of the forecasts, such as the ensemble empirical
mode decomposition (EEMD) [42]; although, it is worth mentioning that some researchers are skeptical
about hybrid techniques and believe a universally best techniques simply does not exist [43]. Results
can also be improved by ensuring quality data is provided for the ARIMA model [2,44]. Finally,
although ARIMA has been tested for five WWTPs in this study, more testing is still expected to further
demonstrate the reliability of this approach.
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