Computer Vision and Machine Learning for Tuna and Salmon Meat Classification
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Samples Preparation
2.2. Computer Vision System
2.3. Preprocessing of Images
2.4. Color Space Parameters
3. Color Features and AutoML
3.1. Color Features
3.2. AutoML
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.-W. Computer Vision Technology for Food Quality Evaluation; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Olafsdottir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I.M.; Henehan, G.; Nielsen, J.; Nilsen, H. Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8, 258–265. [Google Scholar] [CrossRef]
- Dutta, M.K.; Issac, A.; Minhas, N.; Sarkar, B. Image processing based method to assess fish quality and freshness. J. Food Eng. 2016, 177, 50–58. [Google Scholar] [CrossRef]
- Bremner, H.A.; Sakaguchi, M. A critical look at whether freshness can be determined. J. Aquat. Food Prod. Technol. 2000, 9, 5–25. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Brosnan, T.; Sun, D.-W. Inspection and grading of agricultural and food products by computer vision systems—A review. Comput. Electron. Agric. 2002, 36, 193–213. [Google Scholar] [CrossRef]
- Gümüş, B.; Balaban, M.Ö.; Ünlüsayin, M. Machine vision applications to aquatic foods: A review. Turk. J. Fish. Aquat. Sci. 2011, 11, 167–176. [Google Scholar] [CrossRef]
- Hanson, A. Computer Vision Systems; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Süsstrunk, S.; Buckley, R.; Swen, S. Standard RGB color spaces. In Color and Imaging Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 1999; Volume 1999, pp. 127–134. [Google Scholar]
- Milligan, P.R.; Morse, M.P.; Rajagopalan, S. Pixel map preparation using the HSV color model. Explor. Geophys. 1992, 23, 219–223. [Google Scholar] [CrossRef]
- Welch, E.; Moorhead, R.; Owens, J.K. Image processing using the HSI color space. In Proceedings of the IEEE Proceedings of the SOUTHEASTCON91, Williamsburg, VA, USA, 7–10 April 1991; pp. 722–725. [Google Scholar] [CrossRef]
- Connolly, C.; Fleiss, T. A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans. Image Process. 1997, 6, 1046–1048. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 106622. [Google Scholar] [CrossRef]
- Trientin, D.; Hidayat, B.; Darana, S. Beef freshness classification by using color analysis, multi-wavelet transformation, and artificial neural network. In Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung, Indonesia, 29–30 March 2015; pp. 181–185. [Google Scholar] [CrossRef]
- Kramer, O. K-nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. [Google Scholar] [CrossRef]
- Hopfield, J.J. Artificial neural networks. IEEE Circuits Devices Mag. 1988, 4, 3–10. [Google Scholar] [CrossRef]
- Jang, E.; Cho, H.; Kim, E.K.; Kim, S. Grade Prediction of Meat Quality in Korean Native Cattle Using Neural Network. In Proceedings of the 2015 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Yilan, Taiwan, 18–20 November 2015; pp. 28–33. [Google Scholar] [CrossRef]
- Adi, K.; Pujiyanto, S.; Nurhayati, O.D.; Pamungkas, A. Beef Quality Identification Using Color Analysis and K-Nearest Neighbor Classification. In Proceedings of the 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 2–3 November 2015; pp. 180–184. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R.; Eddins, S. Digital Image Processing Using MATLAB, 3rd ed.; Gatesmark: Knoxville, TN, USA, 2020. [Google Scholar]
- Winiarti, S.; Azhari, A.; Agusta, K.M. Determining feasibility level of beef quality based on histogram and k-means clustering. In Proceedings of the 2018 International Symposium on Advanced Intelligent Informatics (SAIN), Yogyakarta, Indonesia, 29–30 August 2018; pp. 195–198. [Google Scholar] [CrossRef] [Green Version]
- Altini, N.; De Giosa, G.; Fragasso, N.; Coscia, C.; Sibilano, E.; Prencipe, B.; Hussain, S.M.; Brunetti, A.; Buongiorno, D.; Guerriero, A.; et al. Segmentation and identification of vertebrae in CT scans using CNN, k-means clustering and k-NN. Informatics 2021, 8, 40. [Google Scholar] [CrossRef]
- Hamerly, G.; Elkan, C. Learning the k in k-means. Adv. Neural Inf. Process. Syst. 2004, 16, 281–288. [Google Scholar]
- Arsalane, A.; El Barbri, N.; Tabyaoui, A.; Klilou, A.; Rhofir, K.; Halimi, A. An embedded system based on DSP platform and PCA-SVM algorithms for rapid beef meat freshness prediction and identification. Comput. Electron. Agric. 2018, 152, 385–392. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.V.D. Advanced support vector machines and kernel methods. Neurocomputing 2003, 55, 5–20. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Ilkhchi, A.H.; Aghbashlo, M. An intelligent machine vision-based smartphone app for beef quality evaluation. J. Food Eng. 2019, 248, 9–22. [Google Scholar] [CrossRef]
- Tan, W.K.; Husin, Z.; Ismail, M.A.H. Feasibility study of beef quality assessment using computer vision and Deep Neural Network (DNN) algorithm. In Proceedings of the 2020 8th International Conference on Information Technology and Multimedia (ICIMU), Selangor, Malaysia, 24–26 August 2020; pp. 243–246. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Wang, Y.; Friderikos, V. A survey of deep learning for data caching in edge network. Informatics 2020, 7, 43. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Fatahi, S.; Shahbazi, F.; de la Guardia, M. A nondestructive intelligent approach to real-time evaluation of chicken meat freshness based on computer vision technique. J. Food Process. Eng. 2019, 42, e13039. [Google Scholar] [CrossRef]
- Wirsansky, E. Hands-on Genetic Algorithms with Python: Applying Genetic Algorithms to Solve Real-World Deep Learning and Artificial Intelligence Problems; Packt Publishing Ltd.: Birmingham, UK, 2020. [Google Scholar] [CrossRef]
- Sun, X.; Young, J.; Liu, J.H.; Chen, Q.; Newman, D. Predicting pork color scores using computer vision and support vector machine technology. Meat Muscle Biol. 2018. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Fatahi, S.; Banan, A.; Makino, Y. Real-time nondestructive monitoring of common carp fish freshness using robust vision-based intelligent modeling approaches. Comput. Electron. Agric. 2019, 159, 16–27. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Lugatiman, K.; Fabiana, C.; Echavia, J.; Adtoon, J.J. Tuna meat freshness classification through computer vision. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Moon, E.J.; Kim, Y.; Xu, Y.; Na, Y.; Giaccia, A.J.; Lee, J.H. Evaluation of salmon, tuna, and beef freshness using a portable spectrometer. Sensors 2020, 20, 4299. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Howse, J. OpenCV Computer Vision with Python; Packt Publishing Ltd.: Birmingham, UK, 2013. [Google Scholar]
- Jain, A.; Gupta, R. Gaussian Filter Threshold Modulation for Filtering Flat and Texture Area of an Image. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications, Ghaziabad, India, 19–20 March 2015; pp. 760–763. [Google Scholar] [CrossRef]
- Jameson, D.; Hurvich, L.M. Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation. JOSA 1955, 45, 546–552. [Google Scholar] [CrossRef]
- Melgosa, M. Testing CIELAB based Color difference Formulas. Color Res. Appl. 2000, 25, 49–55. [Google Scholar] [CrossRef]
- Li, X.W. Research on color space conversion model between XYZ and RGB. In Key Engineering Materials; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2010; Volume 428, pp. 466–469. [Google Scholar] [CrossRef]
- Allaoui, M.; Kherfi, M.L.; Cheriet, A. Considerably improving clustering algorithms using UMAP dimensionality reduction technique: A comparative study. In International Conference on Image and Signal Processing; Springer: Cham, Switzerland, 2020; pp. 317–325. [Google Scholar] [CrossRef]
- Brownlee, J. Auto-Sklearn for Automated Machine Learning in Python. Available online: https://machinelearningmastery.com/auto-sklearn-for-automated-machine-learning-in-python/ (accessed on 4 March 2021).
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and robust automated machine learning. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 113–134. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Ono, J.P.; Castelo, S.; Lopez, R.; Bertini, E.; Freire, J.; Silva, C. Pipelineprofiler: A visual analytics tool for the exploration of automl pipelines. IEEE Trans. Vis. Comput. Graph. 2020, 27, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Marzban, C. The ROC curve and the area under it as performance measures. Weather Forecast. 2004, 19, 1106–1114. [Google Scholar] [CrossRef]
- Bonnin, R. Machine Learning for Developers: Uplift Your Regular Applications with the Power of Statistics, Analytics, and Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Weiming, J.M. Mastering Python for Finance: Implement. Advanced State-of-the-Art Financial Statistical Applications Using Python; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Susmaga, R. Confusion matrix visualization. In Intelligent Information Processing and Web Mining; Springer: Berlin/Heidelberg, Germany, 2004; pp. 107–116. [Google Scholar] [CrossRef]
- Zdravevski, E.; Lameski, P.; Kulakov, A. Advanced transformations for nominal and categorical data into numeric data in supervised learning problems. In Proceedings of the 10th Conference for Informatics and Information Technology (CIIT), Bitola, North Macedonia, 18–21 April 2013. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lee, Y.-J.; Pao, H.-K. A Passive-aggressive algorithm for semi-supervised learning. In Proceedings of the 2010 International Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, 18–20 November 2010; pp. 335–341. [Google Scholar] [CrossRef]
- Brownlee, J. Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models, and Work Projects End-to-End; Machine Learning Mastery: San Francisco, CA, USA, 2016. [Google Scholar]
- Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 1998, 18, 1–8. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Taud, H.; Mas, J.F. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018; pp. 451–455. [Google Scholar] [CrossRef]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar] [CrossRef] [Green Version]
- Tharwat, A. Linear vs. quadratic discriminant analysis classifier: A tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–34. [Google Scholar] [CrossRef]
- Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [Google Scholar] [CrossRef]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. A J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar] [CrossRef]
Authors | Type of Sample | Number of Samples | Color Spaces | Classifiers | Accuracy |
---|---|---|---|---|---|
Trientin, Hidayat, and Darana [15] | Beef | Uninformed | RGB, HSV | KNN | 75% |
ANN | 71.4286% | ||||
Jang, Cho, Kim, and Kim [18] | Beef | Uninformed | Ultrasound image | ANN | 83.33% |
Adi, Pujiyanto, and Nurhayati [19] | Beef | Uninformed | RGB, HSV | KNN | It only mentions the adequacy of the method |
Winiarti, Azhari, and Agusta [21] | Beef | 40 | RGB, HSI | K-means | Grouping freshness levels into clusters |
Arsalane, Barbri, Tabyaoui, Klilou, Rhofir, and Halimi [24] | Beef | 81 | HSI | SVM | 100% |
Hosseinpour, Ilkhchi, and Aghbashlo [27] | Beef | 167 | RGB, Grayscale | ANN | 99% |
Tan, Husin and Ismail [28] | Sirloin steaks | 400 | Color scoring | DL | 90% |
Taheri-Garavand, Fatahi, Shahbazi, and de la Guardia [31] | Chicken | 3000 | RGB, HSI, L*a*b* | ANN | 98% |
Sun, Young, Liu, Chen, and Newman [33] | Pork | 100 | RGB, HSI, L*a*b*, Minolta CR-400 colorimeter | Linear Regression | 83% |
Stepwise Regression | 70% | ||||
Taheri-Garavand, Fatahi, Banan, and Makino [34] | Carp | 1344 | RGB, HSI, L*a*b* | SVM | 91.52% |
KNN | 90.48% | ||||
ANN | 93.01% | ||||
Lugatiman, Fabiana, Echavia, and Adtoon [36] | Tuna | 60 | RGB | KNN | 86.6% |
Moon, Kim, Xu, Na, Giaccia, and Lee [36] | Beef | 5042 | VIS/NIR spectrometer | CNN | 92% |
Atlantic Salmon | 3020 | 84% | |||
Pacific Salmon | 3601 | 85% | |||
Tuna | 2863 | 88% |
Class | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
0 | 1.0 | 1.0 | 1.0 | 7 |
1 | 1.0 | 1.0 | 1.0 | 5 |
2 | 1.0 | 1.0 | 1.0 | 3 |
3 | 1.0 | 1.0 | 1.0 | 4 |
accuracy | 1.0 | 1.0 | 1.0 | 19 |
macro avg | 1.0 | 1.0 | 1.0 | 19 |
weight avg | 1.0 | 1.0 | 1.0 | 19 |
Class | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
0 | 1.0 | 1.0 | 1.0 | 6 |
1 | 1.0 | 1.0 | 1.0 | 9 |
2 | 1.0 | 1.0 | 1.0 | 6 |
accuracy | 1.0 | 1.0 | 1.0 | 21 |
macro avg | 1.0 | 1.0 | 1.0 | 21 |
weight avg | 1.0 | 1.0 | 1.0 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, E.C.; Almeida, L.M.; Filho, J.G.d.A.T. Computer Vision and Machine Learning for Tuna and Salmon Meat Classification. Informatics 2021, 8, 70. https://doi.org/10.3390/informatics8040070
Medeiros EC, Almeida LM, Filho JGdAT. Computer Vision and Machine Learning for Tuna and Salmon Meat Classification. Informatics. 2021; 8(4):70. https://doi.org/10.3390/informatics8040070
Chicago/Turabian StyleMedeiros, Erika Carlos, Leandro Maciel Almeida, and José Gilson de Almeida Teixeira Filho. 2021. "Computer Vision and Machine Learning for Tuna and Salmon Meat Classification" Informatics 8, no. 4: 70. https://doi.org/10.3390/informatics8040070
APA StyleMedeiros, E. C., Almeida, L. M., & Filho, J. G. d. A. T. (2021). Computer Vision and Machine Learning for Tuna and Salmon Meat Classification. Informatics, 8(4), 70. https://doi.org/10.3390/informatics8040070