State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Data Acquisition
2.2. Statistical Packages
2.3. Clustering and Word Correlation
2.4. Co-Authorship Links among Countries
2.5. Sentiment Analysis
2.6. Bi-Gram Network and Trends of Selective Words
3. Results and Discussion
3.1. Temporal Trend
3.2. Publication Dynamics
3.3. Clusters and Correlation
3.4. Networks of Co-Authorship Countries
3.5. Sentiment Analysis
3.6. Bigram Network and Specific Terms Trend Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yan, S.; Guo, J.Y. Water Hyacinth: Environmental Challenges, Management and Utilization; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Benton, A.R.; James, W.P.; Rouse, J.W. EVAPOTRANSPIRATION FROM WATER HYACINTH (Eichhomia crassipes (Mart.) Solms) IN TEXAS RESERVOIRS. J. Am. Water Resour. Assoc. 1978, 14, 919–930. [Google Scholar] [CrossRef]
- Gopal, B. Water Hyacinth; Elsevier: Amsterdam, The Netherlands, 1987; 477p. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds, Distribution and Biology; Krieger Publishing Co.: Malabar, FL, USA, 1991. [Google Scholar]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Md Din, M.F.; Taib, S.M.; Sabbagh, F.; Md Sairanab, F. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manag. 2015, 163, 125–133. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Binod, P.; Pandey, A.; Madhavan, A.; Alphonsa, J.A.; Vivek, N.; Gnansounou, E.; Castro, E.; Faraco, V. Water hyacinth a potential source for value addition: An overview. Bioresour. Technol. 2017, 230, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Ponraj, M.; Din, M.F.M.; Songip, A.R.; Sairan, F.M.; Chelliapan, S. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renew. Sustain. Energy. Rev. 2015, 41, 943–954. [Google Scholar] [CrossRef]
- VOSviewer: Visualizing scientific landscapes. Available online: https://www.vosviewer.com (accessed on 4 June 2021).
- Team, R.C. The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 4 June 2021).
- Silge, J.; Robinson, D. Text Mining with R: A Tidy Approach; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Wickham, H. A Layered Grammar of Graphics. J. Comput. Graph. Stat. 2010, 19, 3–28. [Google Scholar] [CrossRef]
- Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. Available online: https://cran.r-project.org/web/packages/ggraph/index.html (accessed on 4 June 2021).
- AFINN Sentiment Lexicon. Available online: http://corpustext.com/reference/sentiment_afinn.html (accessed on 4 June 2021).
- Gautam, P. An overview of the Web of Science record of scientific publications (2004–2013) from Nepal: Focus on disciplinary diversity and international collaboration. Scientometrics 2017, 113, 1245–1267. [Google Scholar] [CrossRef] [Green Version]
- Bickel, M.W. Reflecting trends in the academic landscape of sustainable energy using probabilistic topic modeling. Energy Sustain. Soc. 2019, 9, 1–23. [Google Scholar] [CrossRef]
- Ma, W.; Schraven, D.; de Bruijne, M.; de Jong, M.; Lu, H. Tracing the Origins of Place Branding Research: A Bibliometric Study of Concepts in Use (1980–2018). Sustainability 2019, 11, 2999. [Google Scholar] [CrossRef] [Green Version]
- Monroy, S.E.; Diaz, H. Time series-based bibliometric analysis of the dynamics of scientific production. Scientometrics 2018, 115, 1139–1159. [Google Scholar] [CrossRef]
- Mabe, M.; Amin, M. Growth dynamics of scholarly and scientific journals. Scientometrics 2001, 51, 147–162. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K.; Lee, Y.S.; Melo, J.S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1, 1086–1095. [Google Scholar] [CrossRef]
- Sukumaran, R.K.; Singhania, R.R.; Mathew, G.M.; Pandey, A. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 2009, 34, 421–424. [Google Scholar] [CrossRef]
- Nigam, J.N. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 2002, 97, 107–116. [Google Scholar] [CrossRef]
- Goyal, S.; Dhull, S.; Kapoor, K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 2005, 96, 1584–1591. [Google Scholar] [CrossRef]
- Yin, D.; Wang, X.; Chen, C.; Peng, B.; Tan, C.; Li, H. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 2016, 152, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, X.; Yin, D.; Peng, B.; Tan, C.; Liu, Y.; Tan, X.; Wu, S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J. Environ. Manag. 2015, 153, 68–73. [Google Scholar] [CrossRef]
- Sanmuga Priya, E.; Senthamil Selvan, P. Water hyacinth (Eichhornia crassipes)—An efficient and economic adsorbent for textile effluent treatment—A review. Arab. J. Chem. 2017, 10, S3548–S3558. [Google Scholar] [CrossRef] [Green Version]
- El-Zawahry, M.M.; Abdelghaffar, F.; Abdelghaffar, R.A.; Hassabo, A.G. Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite. Carbohydr. Polym. 2016, 136, 507–515. [Google Scholar] [CrossRef]
- Guerrero-Coronilla, I.; Morales-Barrera, L.; Cristiani-Urbina, E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J. Environ. Manag. 2015, 152, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Balagurumurthy, B.; Prakash, A.; Bhaskar, T. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 2015, 178, 157–165. [Google Scholar] [CrossRef]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process. Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Water quality improvement through macrophytes—A review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef]
- Gupta, G.C. Use of water hyacinths in wastewater treatment. (A brief literature review). J. Environ. Health 1980, 43, 80–82. [Google Scholar]
- Gunnarsson, C.C.; Petersen, C.M. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 2007, 27, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Yadvika; Santosh; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of biogas production from solid substrates using different techniques—A review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar] [CrossRef]
- Ganguly, A.; Chatterjee, P.K.; Dey, A. Studies on ethanol production from water hyacinth—A review. Renew. Sustain. Energy Rev. 2012, 16, 966–972. [Google Scholar] [CrossRef]
- Polprasert, C.; Khatiwada, N.R. An integrated kinetic model for water hyacinth ponds used for wastewater treatment. Water Res. 1998, 32, 179–185. [Google Scholar] [CrossRef]
- Musil, C.F.; Breen, C.M. The application of growth kinetics to the control of Eichhornia crassipes (Mart) solms. Through nutrient removal by mechanical harvesting. Hydrobiologia 1977, 53, 165–171. [Google Scholar] [CrossRef]
- Yusuf, M.O.L.; Ify, N.L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass Bioenergy 2011, 35, 1345–1351. [Google Scholar] [CrossRef]
- UNEP Global Environmental Alert Service (GEAS); Theuri, M. Water Hyacinth: Can its Aggressive Invasion Be Controlled? Environ. Dev. 2013, 7, 139–154. Available online: https://wedocs.unep.org/20.500.11822/8483 (accessed on 4 June 2021).
- Eid, E.M.; Shaltout, K.H. Growth dynamics of water hyacinth (Eichhornia crassipes): A modeling approach. Rend. Lincei 2017, 28, 169–181. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Sohaili, J.; Chelliapan, S.; Kamyab, H.; Baran Saha, B. Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. Int. J. Hydrogen Energy 2017, 42, 20955–20969. [Google Scholar] [CrossRef]
- Mathew, A.K.; Bhui, I.; Banerjee, S.N.; Goswami, R.; Chakraborty, A.K.; Shome, A.; Balachandran, S.; Chaudhury, S. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Policy 2015, 17, 1681–1688. [Google Scholar] [CrossRef]
- Thiripura Sundari, M.; Ramesh, A. Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth —Eichhornia crassipes. Carbohydr. Polym. 2012, 87, 1701–1705. [Google Scholar] [CrossRef]
- Kelley, C.; Mielke, R.E.; Dimaquibo, D.; Curtis, A.J.; Dewitt, J.G. Adsorption of Eu (III) onto roots of water hyacinth. Environ. Sci. Technol. 1999, 33, 1439–1443. [Google Scholar] [CrossRef]
- Shanab, S.M.M.; Shalaby, E.A.; Lightfoot, D.A.; El-Shemy, H.A. Allelopathic Effects of Water Hyacinth [Eichhornia crassipes]. PLoS ONE 2010, 5, e13200. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharya, A.; Haldar, S.; Ganguly, A.; Gu, S.; Ting, Y.P.; Chatterjee, P.K. Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 2015, 3, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Thamaga, K.H.; Dube, T. Remote sensing of invasive water hyacinth (Eichhornia crassipes): A review on applications and challenges. Remote Sens. Appl. Soc. Environ. 2018, 10, 36–46. [Google Scholar] [CrossRef]
- Biswas, B.; Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour. Technol. 2017, 242, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Munjeri, K.; Ziuku, S.; Maganga, H.; Siachingoma, B.; Ndlovu, S. On the potential of water hyacinth as a biomass briquette for heating applications. Int. J. Energy Environ. Eng. 2016, 7, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.M.; Davies, O.A. Physical and Combustion Characteristics of Briquettes Made from Water Hyacinth and Phytoplankton Scum as Binder. J. Combust. 2013, 2013, 549894. [Google Scholar] [CrossRef] [Green Version]
- Pimchuai, A.; Dutta, A.; Basu, P. Torrefaction of agriculture residue to enhance combustible properties. In Energy and Fuels, Volume 24; American Chemical Society: Washington, DC, USA, 2010; pp. 4638–4645. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
coefficient a | 6.84 |
coefficient b | 0.07 |
p-value t-test for a | 0.00 |
p-value t-test for b | 0.00 |
r-squared | 0.85 |
Cluster | Word | Occurrences | Links | Link Strength |
---|---|---|---|---|
Cluster 1 (red) | Species | 276 | 255 | 2439 |
Cluster 2 (green) | Removal | 344 | 268 | 3353 |
Cluster 3 (blue) | Production | 358 | 270 | 3069 |
Cluster 4 (yellow) | Model | 194 | 251 | 1654 |
Countries | Documents | Link | Link Strength | Average Citation per Document |
---|---|---|---|---|
India | 492 | 27 | 57 | 19.59 |
China | 292 | 20 | 73 | 13.47 |
United States | 224 | 26 | 78 | 27.08 |
Brazil | 107 | 15 | 35 | 16.19 |
Indonesia | 95 | 7 | 95 | 3.51 |
South Africa | 84 | 18 | 35 | 13.37 |
Egypt | 75 | 16 | 27 | 17.19 |
Thailand | 74 | 11 | 19 | 11.05 |
Nigeria | 70 | 6 | 13 | 5.61 |
Malaysia | 56 | 18 | 33 | 17.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, A.; Hazra, A.K.; Chaudhury, S.; Ross, A.B.; Balachandran, S. State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis. Informatics 2021, 8, 38. https://doi.org/10.3390/informatics8020038
Basu A, Hazra AK, Chaudhury S, Ross AB, Balachandran S. State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis. Informatics. 2021; 8(2):38. https://doi.org/10.3390/informatics8020038
Chicago/Turabian StyleBasu, Aman, Amit Kumar Hazra, Shibani Chaudhury, Andrew B. Ross, and Srinivasan Balachandran. 2021. "State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis" Informatics 8, no. 2: 38. https://doi.org/10.3390/informatics8020038
APA StyleBasu, A., Hazra, A. K., Chaudhury, S., Ross, A. B., & Balachandran, S. (2021). State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis. Informatics, 8(2), 38. https://doi.org/10.3390/informatics8020038