International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods
Abstract
1. Introduction
- How has scientific research output on the integration of AI in education using qualitative methods evolved over the past decade?
- Which journals, authors, and sources are the most influential in research on AI in education linked to qualitative methods?
- Which countries and institutions lead in productivity and collaboration in the study of AI applications in education through qualitative data analysis?
- What are the main thematic trends that have characterized qualitative research on the integration of AI in education in recent years?
2. Theorical Framework
2.1. Foundations and Early Developments in the Use of AI in Qualitative Educational Research (2014–2019)
2.2. AI in Education: Advances, Emerging Applications, and Challenges
2.3. Integrating AI into Qualitative Data Analysis: Current Methodological and Ethical Perspectives
3. Materials and Methods
3.1. Research Design
3.2. Search Strategy and Document Selection
- Not published between 1 January 2014, and 31 December 2024;
- Not written in English;
- Not published in a peer-reviewed academic journal.
3.3. Data Analysis
4. Results
4.1. Evolution of Scientific Research Output on the Integration of AI in Education from a Qualitative Approach (RQ1)
4.2. Authors, Journals, and Reference Documents in Qualitative Research on AI in Education (RQ2)
Title | Author(s) | Source | Year | Citations | |
---|---|---|---|---|---|
1 | Artificial Intelligence in Education: A Review | Chen, L., Chen, P., and Lin, Z. [78] | IEEE Access | 2020 | 1268 |
2 | The Diversity-Innovation Paradox in Science | Hofstra, B., Kulkarni, V. V., Sebastian Munoz-Najar. S., He, B., Jurafsky, D., and McFarland, D. A. [83] | Proceedings of the National Academy of Sciences of the United States of America | 2020 | 614 |
3 | A comprehensive AI policy education framework for university teaching and learning | Chan, C.K.Y. [79] | International Journal of Educational Technology in Higher Education | 2023 | 400 |
4 | Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT | Jeon, J. and Lee, S. [80] | Education and Information Technologies | 2023 | 242 |
5 | A comprehensive review on deep learning-based methods for video anomaly detection | Nayak, R., Pati, U. C., and Das, S. K. [84] | Image and Vision Computing | 2021 | 196 |
6 | Examining thematic similarity, difference, and membership in three online mental health communities from reddit: A text mining and visualization approach | Park, A., Conway, M., and Chen, A. T. [85] | Computers in Human Behavior | 2018 | 161 |
7 | Sentiment analysis and topic modeling on tweets about online education during COVID-19 | Mujahid, M., Lee, E., Rustam, F., Washington, P. B., Ullah, S., Reshi, A. A., and Ashraf, I. [82] | Applied Sciences | 2021 | 158 |
8 | Creation and Evaluation of a Pretertiary Artificial Intelligence (AI) Curriculum | Chiu, T. K. F., Meng, H., Chai, C. S., King, I., Wong, S., and Yam, Y. [86] | IEEE Transactions on Education | 2022 | 155 |
9 | A systematic review on trends in using Moodle for teaching and learning | Gamage, S. H. P. W., Ayres, J. R., and Behrend, M. B. [81] | International Journal of STEM Education | 2022 | 140 |
10 | The use of ChatGPT in the digital era: Perspectives on chatbot implementation | Limna, P., Kraiwanit, T., Jangjarat, K., Klayklung, P., and Chocksathaporn, P. [87] | Journal of Applied Learning and Teaching | 2023 | 130 |
11 | Evaluating performance of biomedical image retrieval systems-An overview of the medical image retrieval task at ImageCLEF 2004–2013 | Kalpathy-Cramer, J., de Herrera, A. G. S., Demner-Fushman, D., Antani, S., Bedrick, S., and Müller, H. [88] | Computerized Medical Imaging and Graphics | 2015 | 126 |
12 | Socio-technical imaginary of the fourth industrial revolution and its implications for vocational education and training: a literature review | Avis, J. [89] | Journal of Vocational Education and Training | 2018 | 94 |
4.3. Leadership and International Collaboration in the Study of AI in Education with Qualitative Methods (RQ3)
4.4. Keywords and Thematic Trends in Qualitative Research on AI in Education (RQ4)
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
NLP | natural language processing |
TOEFL | Test of English as a Foreign Language |
RNN | recurrent neural network |
LMS | learning management system |
GDPR | general data protection regulation |
FERPA | Family Educational Rights and Privacy Act |
GenAI | Generative Artificial Intelligence |
SLR | Systematic Literature Review |
SPs | searched publications |
TPs | total publications |
TCs | total citations |
CD | citations to date (2024) |
SJR | Scimago journal rank |
BQ | Best SRJ 2023 quartile |
LCS | local citation score |
GCS | global citation score |
LDA | Latent Dirichlet allocation |
References
- García-Peñalvo, F.J. Inteligencia artificial generativa y educación: Un análisis desde múltiples perspectivas. Educ. Knowl. Soc. EKS 2024, 25, e31942. [Google Scholar] [CrossRef]
- Silver, C.; Lewins, A. Using Software in Qualitative Research: A Step-by-Step Guide; Sage Publishing: Thousand Oaks, CA, USA, 2014; pp. 1–384. [Google Scholar]
- Nguyen, A.; Ngo, H.N.; Hong, Y.; Dang, B.; Nguyen, B.-P.T. Ethical Principles for Artificial Intelligence in Education. Educ. Inf. Technol. 2023, 28, 4221–4241. [Google Scholar] [CrossRef] [PubMed]
- Hitch, D. Artificial Intelligence Augmented Qualitative Analysis: The Way of the Future? Qual. Health Res. 2024, 34, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, F.; Hamfors, O.; Karlgren, J.; Olsson, F.; Persson, P.; Hamberg, L.; Sahlgren, M. Analysis of Open Answers to Survey Questions through Interactive Clustering and Theme Extraction. In CHIIR ‘18: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, New Brunswick, NJ, USA, 11–15 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 317–320. [Google Scholar]
- Wijngaards, I.; Burger, M.; van Exel, J. The Promise of Open Survey Questions—The Validation of Text-Based Job Satisfaction Measures. PLoS ONE 2019, 14, e0226408. [Google Scholar] [CrossRef]
- Karamshuk, D.; Shaw, F.; Brownlie, J.; Sastry, N. Bridging Big Data and Qualitative Methods in the Social Sciences: A Case Study of Twitter Responses to High Profile Deaths by Suicide. Online Soc. Netw. Media 2017, 1, 33–43. [Google Scholar] [CrossRef]
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Bhatt, I.; de Roock, R.; Adams, J. Diving Deep into Digital Literacy: Emerging Methods for Research. Lang. Educ. 2015, 29, 477–492. [Google Scholar] [CrossRef]
- Castleberry, A.; Nolen, A. Thematic Analysis of Qualitative Research Data: Is It as Easy as It Sounds? Curr. Pharm. Teach. Learn. 2018, 10, 807–815. [Google Scholar] [CrossRef]
- Timotheou, S.; Miliou, O.; Dimitriadis, Y.; Sobrino, S.V.; Giannoutsou, N.; Cachia, R.; Monés, A.M.; Ioannou, A. Impacts of Digital Technologies on Education and Factors Influencing Schools’ Digital Capacity and Transformation: A Literature Review. Educ. Inf. Technol. 2023, 28, 6695–6726. [Google Scholar] [CrossRef]
- Manda, V.K.; Bezawada, K.; Bhukya, M. Applications of Artificial Intelligence in Education: Implications for Pedagogy, Learning Outcomes, and Policy Development; Deep Science Publishing: London, UK, 2025. [Google Scholar]
- Angeletti, V.C.G. Análisis Diseños Curriculares de Inteligencia Artificial en Educación Media. Rev. Iberoam. Tecnol. Educ. Educ. Tecnol. 2024, e19. [Google Scholar] [CrossRef]
- Aparicio-Gómez, O.-Y.; Aparicio-Gómez, W.-O. Innovación educativa con sistemas de aprendizaje adaptativo impulsados por Inteligencia Artificial. Rev. Int. Pedagog. Innovación Educ. 2024, 4, 343–363. [Google Scholar] [CrossRef]
- Claudia, L.-C.; Laudyt, L.P.; Namuel, S.P.; María, G.M.; David, A.M. Inteligencia Artificial y la Gestión de Requerimientos de Software Educativo: SGR; Revista Ibérica de Sistemas e Tecnologias de Informação: Porto, Portugal, 2024. [Google Scholar]
- Montiel-Ruiz, F.J.; Ruiz, M.L. Inteligencia artificial como recurso docente en un colegio rural agrupado. RiiTE Rev. Interuniv. Investig. Tecnol. Educ. 2023, 28–40. [Google Scholar] [CrossRef]
- Vera, F. Integración de la Inteligencia Artificial en la Educación superior: Desafíos y oportunidades. Transformar 2023, 4, 17–34. [Google Scholar]
- Lillo-Fuentes, F.; Venegas, R.; Lobos, I.; Lillo-Fuentes, F.; Venegas, R.; Lobos, I. Evaluación Automatizada y Semiautomatizada de La Calidad de Textos Escritos: Una Revisión Sistemática. Perspect. Educ. 2023, 62, 5–36. [Google Scholar] [CrossRef]
- Palermo, C.; Thomson, M.M. Teacher Implementation of Self-Regulated Strategy Development with an Automated Writing Evaluation System: Effects on the Argumentative Writing Performance of Middle School Students. Contemp. Educ. Psychol. 2018, 54, 255–270. [Google Scholar] [CrossRef]
- Shermis, M.D. State-of-the-Art Automated Essay Scoring: Competition, Results, and Future Directions from a United States Demonstration. Assess. Writ. 2014, 20, 53–76. [Google Scholar] [CrossRef]
- Álvarez-Yaulema, M.; Ponce-Valle, M.; Alban-Alcivar, J.; Zambrano-Salazar, L. Revisión de modelos estadísticos para pronosticar el desempeño académico en estudiantes universitarios. MQRInvestigar 2024, 8, 3806–3823. [Google Scholar] [CrossRef]
- Márquez, M.P.A.; Velasco, M.A.; Ochoa, R.M.; Pozos, F.L.D. Inteligencia artificial en el sector público en México: Actos de fiscalización. Newman Bus. Rev. 2024, 10, 124–147. [Google Scholar] [CrossRef]
- Miao, F.; Holmes, W. Guía para el Uso de IA Generativa En Educación e Investigación; UNESCO Biblioteca Digital; UNESCO: Paris, France, 2024. [Google Scholar]
- Anders, B.A. Is Using ChatGPT Cheating, Plagiarism, Both, Neither, or Forward Thinking? Patterns 2023, 4, 100694. [Google Scholar] [CrossRef]
- Ghazvini, A.; Mohd Sharef, N.; Sidi, F.B. Prediction of Course Grades in Computer Science Higher Education Program via a Combination of Loss Functions in LSTM Model. IEEE Access 2024, 12, 30220–30241. [Google Scholar] [CrossRef]
- Vera, J.P.D.; Cajamarca, J.J.P.; Llaguno, P.S.N. Herramientas de Inteligencia Artificial en el Apoyo Educativo para Estudiantes con Necesidades Educativas Especiales (NEE) en Diferentes Discapacidades. Rev. Univ. Guayaquil 2025, 139, 10–30. [Google Scholar] [CrossRef]
- Gutiérrez, F.L.G.; Gutiérrez, S.G.G. Transformación de la Formación Docente: Inteligencia Artificial, Realidad Virtual y Gamificación en la Educación del Futuro en México. SAGA Rev. Científica Multidiscip. 2025, 2, 416–429. [Google Scholar] [CrossRef]
- Sereño Ahumada, F. La formación docente en la era digital: Práctica reflexiva, aprendizaje situado e inteligencia artificial. Ens. Pedagógicos 2024, 19, 4. [Google Scholar] [CrossRef]
- Modi, T.B. Artificial Intelligence Ethics and Fairness: A Study to Address Bias and Fairness Issues in AI Systems, and the Ethical Implications of AI Applications. Rev. Rev. Index J. Multidiscip. 2023, 3, 24–35. [Google Scholar] [CrossRef]
- Cornelio, O.M.; Rodríguez, A.R.; Álava, W.L.S.; Mora, P.G.A.; Mera, L.M.S.; Bravo, B.J.P. La Inteligencia Artificial: Desafíos para la Educación; Editorial Internacional Alema: Jipijapa, Ecuador, 2024. [Google Scholar]
- Farahani, M.S.; Ghasemi, G. Artificial Intelligence and Inequality: Challenges and Opportunities. Qeios 2024, 9, 78–99. [Google Scholar] [CrossRef]
- Mohr, N.P.; McNeill, L. Designing AI Ethics Education: A Comparative Analysis of Online Implementation Models; Association for the Advancement of Computing in Education (AACE): Asheville, NC, USA, 2024; pp. 347–361. [Google Scholar]
- Daepp, M.I.G.; Counts, S. The Emerging Generative Artificial Intelligence Divide in the United States. In Proceedings of the International AAAI Conference on Web and Social Media, Copenhagen, Denmark, 23–26 June 2025. [Google Scholar]
- Torres, C.G.; González, A.Z.; Hernando, J.L.O. El impacto de la inteligencia artificial generativa en educación superior: Una mirada desde la ética y la integridad académica. RELIEVE—Rev. Electrónica Investig. Evaluación Educ. 2023, 29, 1–21. [Google Scholar] [CrossRef]
- Ángeles, J.C. Las transferencias de datos a través del Metaverso a la luz de los últimos acuerdos (UE—EE.UU.). El fenómeno “tú a Londres y yo a California”. Cuad. Derecho Transnacional 2023, 15, 251–292. [Google Scholar] [CrossRef]
- Alcántara, F.C. IA en la Educación: Desafíos de Implementación y Oportunidades de Transformación, Regional de Educación 08, Santiago. Cienc. Lat. Rev. Científica Multidiscip. 2024, 8, 5337–5358. [Google Scholar] [CrossRef]
- Cabanillas-García, J.L. The Application of Active Methodologies in Spain: An Investigation of Teachers’ Use, Perceived Student Acceptance, Attitude, and Training Needs Across Various Educational Levels. Educ. Sci. 2025, 15, 210. [Google Scholar] [CrossRef]
- Delgado, N.; Carrasco, L.C.; de la Maza, M.S.; Etxabe-Urbieta, J.M. Aplicación de la Inteligencia Artificial (IA) en Educación: Los beneficios y limitaciones de la IA percibidos por el profesorado de educación primaria, educación secundaria y educación superior. Rev. Electrónica Interuniv. Form. Profr. 2024, 27, 207–224. [Google Scholar] [CrossRef]
- Pacheco, R.A.U.; Colmenárez, M.J.R. Inteligencia artificial para la educación: Formar en tiempos de incertidumbre para adelantar el futuro. Areté Rev. Digit. Dr. Educ. 2024, 10, 1–21. [Google Scholar]
- Iyamuremye, A.; Niyonzima, F.N.; Mukiza, J.; Twagilimana, I.; Nyirahabimana, P.; Nsengimana, T.; Habiyaremye, J.D.; Habimana, O.; Nsabayezu, E. Utilization of Artificial Intelligence and Machine Learning in Chemistry Education: A Critical Review. Discov. Educ. 2024, 3, 95. [Google Scholar] [CrossRef]
- Erazo-Luzuriaga, A.F.; Ramos-Secaira, F.M.; Galarza-Sánchez, P.C.; Boné-Andrade, M.F. La inteligencia artificial aplicada a la optimización de programas informáticos. J. Econ. Soc. Sci. Res. 2023, 3, 48–63. [Google Scholar] [CrossRef]
- Balseca, C.L.I. Inteligencia artificial para el aprendizaje de matemáticas en educación superior. Polo Conoc. 2024, 9, 2351–2372. [Google Scholar] [CrossRef]
- Sayari, K.T. Infrastructure and Investment Needs for AI Implementation in Education. In Teachers’ Roles and Perspectives on AI Integration in Schools; IGI Global: Hershey, PA, USA, 2024; Available online: https://www.igi-global.com/chapter/infrastructure-and-investment-needs-for-ai-implementation-in-education/365588 (accessed on 16 June 2025).
- Hongli, Z.; Leong, W.Y. AI Solutions for Accessible Education in Underserved Communities. J. Innov. Technol. 2024, 2024. [Google Scholar] [CrossRef]
- Cajamarca-Correa, M.A.; Cangas-Cadena, A.L.; Sánchez-Simbaña, S.E.; Pérez-Guillermo, A.G. Nuevas tendencias en el uso de recursos y herramientas de la Tecnología Educativa para la Educación Universitaria. J. Econ. Soc. Sci. Res. 2024, 4, 127–150. [Google Scholar] [CrossRef]
- Dovgyi, S.; Babiichuk, S.; Davybida, L.; Biletska, M. Teachers’ and Students’ Attitudes Towards the Use of Artificial Intelligence: All-Ukrainian Research. Inf. Technol. Learn. Tools 2024, 104, 197–215. [Google Scholar] [CrossRef]
- Buyakova, K.I.; Dmitriev, Y.A.; Ivanova, A.S.; Feshchenko, A.V.; Yakovleva, K.I. Students’ and teachers’ attitudes towards the use of tools with generative artificial intelligence at the university. Educ. Sci. J. 2024, 26, 160–193. [Google Scholar] [CrossRef]
- García, J.L.C.; González, R.L.; Carvalho, J.L.T. La búsqueda de información, la selección y creación de contenidos y la comunicación docente. RIED—Rev. Iberoam. Educ. Distancia 2020, 23, 241–267. [Google Scholar] [CrossRef]
- Yasmeen, M.; Arshad, D.M.; Jamil, A.; Akhtar, N. Generative AI in Secondary Educators’ Perspectives on Academic Learning and Integrity. Al-Aijaz Res. J. Islam. Stud. Humanit. 2024, 8, 119–128. [Google Scholar]
- del Carmen Salazar, M. A Humanizing Pedagogy: Reinventing the Principles and Practice of Education as a Journey Toward Liberation. Rev. Res. Educ. 2013, 37, 121–148. [Google Scholar] [CrossRef]
- García, J.L.C.; Sánchez-Gómez, M.C.; Chávez, E.P.G.; Hurtado-Mazeyra, A. Percepción docente sobre la aplicación de metodologías activas en la Educación Superior: Un estudio en una universidad pública peruana [Teacher perceptions on the application of active methodologies in Higher Education: A study in a Peruvian public university]. Pixel-Bit. Rev. Medios Educ. 2025, 73, 201–222. [Google Scholar]
- Viberg, O.; Cukurova, M.; Feldman-Maggor, Y.; Alexandron, G.; Shirai, S.; Kanemune, S.; Wasson, B.; Tømte, C.; Spikol, D.; Milrad, M.; et al. What Explains Teachers’ Trust of AI in Education across Six Countries? Int. J. Artif. Intell. Educ. 2024. [Google Scholar] [CrossRef]
- Yépez-Reyes, V.; Cruz-Silva, J. Inteligencia artificial en la transcripción de entrevistas. Contratexto 2024, 183–202. [Google Scholar] [CrossRef]
- Cárdenas, J. Inteligencia artificial, investigación y revisión por pares: Escenarios futuros y estrategias de acción. Rev. Española Sociol. 2023, 32, a184. [Google Scholar] [CrossRef]
- Tai, R.H.; Bentley, L.R.; Xia, X.; Sitt, J.M.; Fankhauser, S.C.; Chicas-Mosier, A.M.; Monteith, B.G. An Examination of the Use of Large Language Models to Aid Analysis of Textual Data. Int. J. Qual. Methods 2024, 23, 16094069241231168. [Google Scholar] [CrossRef]
- dos Anjos, J.R.; de Souza, M.G.; de Andrade Neto, A.S.; de Souza, B.C. An Analysis of the Generative AI Use as Analyst in Qualitative Research in Science Education. Rev. Pesqui. Qual. 2024, 12, 1–29. [Google Scholar] [CrossRef]
- Hamilton, L.; Elliott, D.; Quick, A.; Smith, S.; Choplin, V. Exploring the Use of AI in Qualitative Analysis: A Comparative Study of Guaranteed Income Data. Int. J. Qual. Methods 2023, 22, 16094069231201504. [Google Scholar] [CrossRef]
- Talamadupula, K. Applied AI Matters: AI4Code: Applying Artificial Intelligence to Source Code. AI Matters 2021, 7, 18–20. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, L.; Chen, Z.; Lin, P.; Cheng, S.; Wu, Z. Smartphone Based Outdoor Navigation and Obstacle Avoidance System for the Visually Impaired. In Multi-Disciplinary Trends in Artificial Intelligence, Proceedings of the 13th International Conference, MIWAI 2019, Kuala Lumpur, Malaysia, 17–19 November 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 26–37. [Google Scholar]
- Rahman, M.M.; Watanobe, Y.; Szmeja, P.; Sowiński, P.; Paprzycki, M.; Ganzha, M. Code Semantics Learning with Deep Neural Networks: An AI-Based Approach for Programming Education. In Proceedings of the 23rd International Conference on Computational Science, Prague, Czech Republic, 3–5 July 2023. [Google Scholar]
- Bulla, L.; Midolo, A.; Mongiovì, M.; Tramontana, E. EX-CODE: A Robust and Explainable Model to Detect AI-Generated Code. Information 2024, 15, 819. [Google Scholar] [CrossRef]
- Sampaio, R.C.; Chagas, V.; Sanchez, C.S.; Gonçalves, J.; Borges, T.; Alison, M.B.; Tigrinho, C.S.; de Souza, J.R.; Paz, F.S. Uma revisão de escopo assistida por inteligência artificial (IA) sobre usos emergentes de ia na pesquisa qualitativa e suas considerações éticas. Rev. Pesqui. Qual. 2024, 12, 1–28. [Google Scholar] [CrossRef]
- Pattyn, F. The Value of Generative AI for Qualitative Research: A Pilot Study. J. DATA Sci. Intell. Syst. 2024. [Google Scholar] [CrossRef]
- Costa, A.P. Qualitative Research Methods: Do Digital Tools Open Promising Trends? Rev. Lusófona De Educ. 2023, 59. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://revistas.ulusofona.pt/index.php/rleducacao/article/view/8823/5229&ved=2ahUKEwiO3c2lqaKOAxWtna8BHeJfFfkQFnoECAkQAQ&usg=AOvVaw1SCT7OmmWGrCYIyNnnHsVN (accessed on 16 June 2025). [CrossRef]
- Marshall, D.T.; Naff, D.B. The Ethics of Using Artificial Intelligence in Qualitative Research. Res. Hum. Res. Ethics 2024, 19, 92–102. [Google Scholar]
- Using AI for Qualitative Research—Live-Streaming. Available online: https://instats.org/seminar/using-ai-for-qualitative-research2 (accessed on 16 June 2025).
- Nguyen-Trung, K.; Saeri, A.K.; Kaufman, S. Applying ChatGPT and AI-Powered Tools to Accelerate Evidence Reviews. Hum. Behav. Emerg. Technol. 2024, 2024, 8815424. [Google Scholar] [CrossRef]
- Tsou, A.Y.; Treadwell, J.R.; Erinoff, E.; Schoelles, K. Machine Learning for Screening Prioritization in Systematic Reviews: Comparative Performance of Abstrackr and EPPI-Reviewer. Syst. Rev. 2020, 9, 73. [Google Scholar] [CrossRef]
- Lennon, R.; Calo, W.; Miller, E.; Zgierska, A.; Scoy, L.V.; Fraleigh, R. Using Artificial Intelligence to Support Rapid, Mixed-Methods Analysis: Developing an Automated Qualitative Assistant (AQUA). Ann. Fam. Med. 2022, 20, 2893. [Google Scholar] [CrossRef]
- Huarong, W.; Surif, J. Global Trends and Influences in Green Chemistry Education: A Comprehensive Review of Contributions (2014–2024). Int. J. Acad. Res. Progress. Educ. Dev. 2024, 13, 2281–2291. [Google Scholar] [CrossRef]
- Samsul, S.A.; Yahaya, N.; Abuhassna, H. Education Big Data and Learning Analytics: A Bibliometric Analysis. Humanit. Soc. Sci. Commun. 2023, 10, 709. [Google Scholar] [CrossRef]
- Gómez, M.C.S.; García, J.L.C.; del Brio Alonso, I.; Castro, S.V. Métodos de investigación en el área educativa. Análisis bibliométrico: Estudio comparativo entre Scopus y WoS. Rev. Española Educ. Comp. 2025, 141–172. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Kahrass, H.; Borry, P.; Gastmans, C.; Ives, J.; van der Graaf, R.; Strech, D.; Mertz, M. PRISMA-Ethics—Reporting Guideline for Systematic Reviews on Ethics Literature: Development, Explanations and Examples. Bioeth. Open Res. 2023, 1, 4. [Google Scholar]
- Boom Cárcamo, E.; Garcia Payares, F.; Vergel Castro, C.M.; Boom Cárcamo, D. Educación virtual durante la pandemia del Covid-19. Una revisión bibliometrica. Boletín Redipe 2022, 11, 131–143. [Google Scholar] [CrossRef]
- Tao, J.; Qiu, D.; Yang, F.; Duan, Z. A Bibliometric Analysis of Human Reliability Research. J. Clean. Prod. 2020, 260, 121041. [Google Scholar] [CrossRef]
- Briceño, J.C.P.; Sarango, A.F.H.; Fiallos, M.F.N.; Jiménez, A.G.M.; Molina, P.G.R. Un estudio teórico y bibliométrico sobre la gestión del talento humano en el ámbito empresarial: Tendencias, desafíos y perspectivas actuales: A Theoretical and Bibliometric Study on Human Talent Management in Business: Trends, Challenges and Current Perspectives. LATAM Rev. Latinoam. Cienc. Soc. Humanidades 2023, 4, 1059–1075. [Google Scholar] [CrossRef]
- Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Chan, C.K.Y. A Comprehensive AI Policy Education Framework for University Teaching and Learning. Int. J. Educ. Technol. High. Educ. 2023, 20, 38. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, S. Large Language Models in Education: A Focus on the Complementary Relationship between Human Teachers and ChatGPT. Educ. Inf. Technol. 2023, 28, 15873–15892. [Google Scholar] [CrossRef]
- Gamage, S.H.P.W.; Ayres, J.R.; Behrend, M.B. A Systematic Review on Trends in Using Moodle for Teaching and Learning. Int. J. STEM Educ. 2022, 9, 9. [Google Scholar] [CrossRef]
- Mujahid, M.; Lee, E.; Rustam, F.; Washington, P.B.; Ullah, S.; Reshi, A.A.; Ashraf, I. Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID-19. Appl. Sci. 2021, 11, 8438. [Google Scholar] [CrossRef]
- Hofstra, B.; Kulkarni, V.V.; Galvez, S.M.-N.; He, B.; Jurafsky, D.; McFarland, D.A. The Diversity–Innovation Paradox in Science. Proc. Natl. Acad. Sci. USA 2020, 117, 9284–9291. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Pati, U.C.; Das, S.K. A Comprehensive Review on Deep Learning-Based Methods for Video Anomaly Detection. Image Vis. Comput. 2021, 106, 104078. [Google Scholar] [CrossRef]
- Park, A.; Conway, M.; Chen, A.T. Examining Thematic Similarity, Difference, and Membership in Three Online Mental Health Communities from Reddit: A Text Mining and Visualization Approach. Comput. Hum. Behav. 2018, 78, 98–112. [Google Scholar] [CrossRef]
- Chiu, T.K.F.; Meng, H.; Chai, C.-S.; King, I.; Wong, S.; Yam, Y. Creation and Evaluation of a Pretertiary Artificial Intelligence (AI) Curriculum. IEEE Trans. Educ. 2022, 65, 30–39. [Google Scholar] [CrossRef]
- Limna, P.; Kraiwanit, T.; Jangjarat, K.; Klayklung, P.; Chocksathaporn, P. The Use of ChatGPT in the Digital Era: Perspectives on Chatbot Implementation. J. Appl. Learn. Teach. 2023, 6, 64–74. [Google Scholar] [CrossRef]
- Kalpathy-Cramer, J.; de Herrera, A.G.S.; Demner-Fushman, D.; Antani, S.; Bedrick, S.; Müller, H. Evaluating Performance of Biomedical Image Retrieval Systems—An Overview of the Medical Image Retrieval Task at ImageCLEF 2004–2013. Comput. Med. Imaging Graph. 2015, 39, 55–61. [Google Scholar] [CrossRef]
- Avis, J. Socio-Technical Imaginary of the Fourth Industrial Revolution and Its Implications for Vocational Education and Training: A Literature Review. J. Vocat. Educ. Train. 2018, 70, 337–363. [Google Scholar] [CrossRef]
- Sung, S.H.; Li, C.; Chen, G.; Huang, X.; Xie, C.; Massicotte, J.; Shen, J. How Does Augmented Observation Facilitate Multimodal Representational Thinking? Applying Deep Learning to Decode Complex Student Construct. J. Sci. Educ. Technol. 2021, 30, 210–226. [Google Scholar] [CrossRef]
- Zhai, X.; He, P.; Krajcik, J. Applying Machine Learning to Automatically Assess Scientific Models. J. Res. Sci. Teach. 2022, 59, 1765–1794. [Google Scholar] [CrossRef]
- Nanda, G.; Douglas, K.A.; Waller, D.R.; Merzdorf, H.E.; Goldwasser, D. Analyzing Large Collections of Open-Ended Feedback From MOOC Learners Using LDA Topic Modeling and Qualitative Analysis. IEEE Trans. Learn. Technol. 2021, 14, 146–160. [Google Scholar] [CrossRef]
- Sharadgah, T.A.; Sa’di, R.A. Systematic Review of Research on the Use of Artificial Intelligence in English Language Teaching and Learning (2015–2021): What Are the Current Effects? J. Inf. Technol. Educ. Res. 2022, 21, 337–377. [Google Scholar]
- Chen, Y.; Lin, Q.; Chen, X.; Liu, T.; Ke, Q.; Yang, Q.; Guan, B.; Ming, W. Need Assessment for History-Taking Instruction Program Using Chatbot for Nursing Students: A Qualitative Study Using Focus Group Interviews. Digit. Health 2023, 9, 20552076231185435. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.P.; Zapata, A.F.R.; Arteaga, I.H. Investigación Cualitativa: Una Reflexión Desde la Educación como Hecho Social. Univ. Docencia Investig. Innovación 2014, 3, 86–100. [Google Scholar]
- Gallardo Sánchez, Y.; Espinosa Guerra, A.I.; Gallardo Arzuaga, R.L. Producción Científica Sobre La COVID-19 y Medicina Familiar En DIMENSIONS. Multimed 2021, 25. [Google Scholar]
- Aftab, S. Privacy Protection in ECHR Member States: Germany and the United Kingdom. In Comparative Perspectives on the Right to Privacy: Pakistani and European Experiences; Aftab, S., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 171–255. ISBN 978-3-031-45575-9. [Google Scholar]
- Wagner, C.S.; Whetsell, T.; Baas, J.; Jonkers, K. Openness and Impact of Leading Scientific Countries. Front. Res. Metr. Anal. 2018, 3, 10. [Google Scholar] [CrossRef]
Author | SPs | TPs | h-Index | TCs | Current Affiliation | Country | |
---|---|---|---|---|---|---|---|
1 | Magana, Alejandra J. | 4 | 214 | 26 | 2161 | Purdue University | United States |
2 | Bannister, Peter | 3 | 7 | 7 | 36 | International University of La Rioja | Spain |
3 | Kantor, Jonathan | 3 | 167 | 23 | 2833 | University of Oxford | United States |
4 | Nanda, Gaurav | 3 | 39 | 8 | 256 | Purdue University | United States |
5 | Abisado, Mideth B. | 2 | 100 | 9 | 268 | National University | Philippines |
6 | Zou, Di | 2 | 193 | 35 | 5254 | Lingnan University | Hong Kong |
7 | Zheng, Lanqin | 2 | 78 | 20 | 1213 | Beijing Normal University | China |
8 | Zhai, Xiaoming | 2 | 71 | 21 | 1632 | University of Georgia | United States |
9 | Wulff, Peter | 2 | 18 | 12 | 255 | Pädagogische Hochschule Heidelberg | Germany |
10 | Williamson, Victoria | 2 | 79 | 21 | 1896 | King’s College London | United Kingdom |
Journal | SPs | CDs | CiteScore 2023 | SJR 2023 | BQ | Publisher | |
---|---|---|---|---|---|---|---|
1 | PLOS One | 13 | 337.945 | 6.2 | 0.839 | Q1 | Public Library of Science |
2 | Computers and Education: Artificial Intelligence | 11 | 8.810 | 18.8 | 3.227 | Q1 | Elsevier |
3 | Journal of Medical Internet Research | 11 | 45.742 | 14.4 | 2.020 | Q1 | JMIR Publications Inc. |
4 | Education and Information Technologies | 10 | 28.189 | 10 | 1.301 | Q1 | Springer Nature |
5 | BMC Medical Education | 9 | 17.254 | 4.9 | 0.935 | Q1 | Springer Nature |
6 | International Journal of Environmental Research and Public Health | 8 | 328.899 | 7.3 | 0.808 | Q2 | MDPI |
7 | Nurse Education in Practice | 7 | 5.352 | 5.4 | 0.869 | Q1 | Elsevier |
8 | Education Sciences | 6 | 23.307 | 4.8 | 0.669 | Q2 | MDPI |
9 | Frontiers in Education | 6 | 13.136 | 2.9 | 0.627 | Q2 | Frontiers Media S.A. |
10 | Frontiers in Psychology | 6 | 135.179 | 5.3 | 0.800 | Q2 | Frontiers Media S.A. |
11 | International Journal of Learning, Teaching and Educational Research | 6 | 2.564 | 2.1 | 0.287 | Q3 | Society for Research and Knowledge Management |
12 | BMJ Open | 6 | 78.823 | 3.9 | 0.559 | Q1 | BMJ Publishing Group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabanillas-García, J.L. International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods. Informatics 2025, 12, 61. https://doi.org/10.3390/informatics12030061
Cabanillas-García JL. International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods. Informatics. 2025; 12(3):61. https://doi.org/10.3390/informatics12030061
Chicago/Turabian StyleCabanillas-García, Juan Luis. 2025. "International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods" Informatics 12, no. 3: 61. https://doi.org/10.3390/informatics12030061
APA StyleCabanillas-García, J. L. (2025). International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods. Informatics, 12(3), 61. https://doi.org/10.3390/informatics12030061