Health-Related Issues of Immersive Technologies: A Systematic Literature Review
Abstract
:1. Introduction
2. Methodology
2.1. Protocol
2.2. Eligibility Criteria
2.3. Information Sources and Search
“immersive technology” OR “virtual reality” OR “VR” OR “augmented reality” OR “AR” OR “mixed reality” OR “XR” OR “extended reality”) AND (“health implications” OR “health risks” OR “physical health” OR “mental health” OR “psychological health” OR “cognitive effects” OR “psychological effects” OR “physiological health” OR “physiological effects”.
2.4. Inclusion and Exclusion Criteria
2.5. Study Selection
2.6. Data Collection Process and Analysis
2.7. Study Grouping and Thematic Synthesis Approach
3. Results and Discussion
3.1. Benefits of Immersive Technologies in Therapeutic or Medical Contexts
3.2. Health Issues Associated with the Use of Immersive Technologies
3.3. Demographic Groups Susceptible to Health Issues Associated with the Use of Immersive Technologies
3.3.1. Older Adults and Individuals with Disabilities
3.3.2. Individuals with Pre-Existing Health Conditions
3.3.3. Children and Adolescents
3.4. Strategies or Guidelines Proposed to Mitigate the Health Risks Associated with Immersive Technology Use
- Multimodal Fidelity Hypothesis aims to understand the balance between the visual and vestibular systems in VR [30,41,83,84,85]. It suggests that sensory inputs should be synchronized to reduce sensory conflict, improving user experience while maintaining immersion [41]. This initiative will encourage the participation of users.
- In inclusive design, technology’s permanence highlights the need for developers and manufacturers to design inclusive solutions that consider health and accessibility [49,86,87,88]. Svecova et al. [51] and Lanyi and Withers [82] recommended ergonomic VR devices that consider the physiological needs of the elderly and disabled users to minimize discomfort, but also ergonomic devices to make sure that users are comfortable when using immersive technologies. The integration of features like motion sickness mitigation tools, blue light filters, reminders for breaks, posture correction alerts, and better eye tracking systems will encourage healthy usage habits [42,80,89].
4. Conclusions, Recommendation, and Future Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLR | Systematic Literature Review |
VR | Virtual Reality |
AR | Augmented Reality |
HMD | Head-Mounted Display |
References
- Mystakidis, S.; Lympouridis, V. Immersive Learning. Encyclopedia 2023, 3, 396–405. [Google Scholar] [CrossRef]
- Dengel, A.; Mägdefrau, J. Presence Is the Key to Understanding Immersive Learning. In Proceedings of the Immersive Learning Research Network: 5th International Conference, iLRN 2019, London, UK, 23–27 June 2019; pp. 185–198. [Google Scholar]
- Wang, M.; Sun, L.L.; Hou, J.D. How emotional interaction affects purchase intention in social commerce: The role of perceived usefulness and product type. Psychol. Res. Behav. Manag. 2021, 14, 467–481. [Google Scholar] [CrossRef] [PubMed]
- El Kharki, K.; Berrada, K.; Burgos, D.; Kharki, E.; Berrada, K.; Burgos, K.; Design, D. Design and Implementation of a Virtual Laboratory for Physics Subjects in Moroccan Universities. Sustainability 2021, 13, 3711. [Google Scholar] [CrossRef]
- Shirley, H.X.L.; Lee, K.W. Corporate Learners’ Perceptions of Extended Reality Technology as a Learning Aid in the Workplace. Int. J. Comput. Lang. Learn. Teach. 2023, 13, 1–30. [Google Scholar] [CrossRef]
- Kok, Y.-Y.; Er, H.-M.; Nadarajah, V.D. An Analysis of Health Science Students’ Preparedness and Perception of Interactive Virtual Laboratory Simulation. Med. Sci. Educ. 2021, 1, 1919–1929. [Google Scholar] [CrossRef]
- Alvarado, Y.; Guerrero, R.; Serón, F. Inclusive Learning through Immersive Virtual Reality and Semantic Embodied Conversational Agent: A case study in children with autism Aprendizaje Inclusivo mediante Realidad Virtual Inmersiva y Agente Conversacional Semántico Encarnado: Un caso de estudio en niños con autismo. J. Comput. Sci. Technol. 2023, 23, e09. [Google Scholar]
- Almousa, O.; Zhang, R.; Dimma, M.; Yao, J.; Allen, A.; Chen, L.; Heidari, P.; Qayumi, K. Virtual Reality Technology and Remote Digital Application for Tele-Simulation and Global Medical Education: An Innovative Hybrid System for Clinical Training. Simul. Gaming 2021, 52, 614–634. [Google Scholar] [CrossRef]
- Aromataris, E.; Pearson, A. The Systematic Review: An Overview. AJN Am. J. Nurs. 2014, 114, 53–58. [Google Scholar] [CrossRef]
- Mohammadhossein, N.; Richter, A.; Lukosch, S. Benefits of Using Augmented Reality in Learning Settings: A Systematic Literature Review. In Proceedings of the International Conference on Information Systems, ICIS 2022: “Digitization for the Next Generation”, Copenhagen, Denmark, 9–14 December 2022. [Google Scholar]
- LaMotte, S. Virtual Reality Has Some Very Real Health Dangers—CNN. Cable News Network. 2017. Available online: https://edition.cnn.com/2017/12/13/health/virtual-reality-vr-dangers-safety/index.html (accessed on 15 November 2024).
- Huygelier, H.; Schraepen, B.; van Ee, R.; Vanden Abeele, V.; Gillebert, C.R. Acceptance of immersive head-mounted virtual reality in older adults. Sci. Rep. 2019, 9, 4519. [Google Scholar] [CrossRef]
- Sari, R.C.; Pranesti, A.; Solikhatun, I.; Nurbaiti, N.; Yuniarti, N. Cognitive overload in immersive virtual reality in education: More presence but less learnt? Educ. Inf. Technol. 2023, 29, 12887–12909. [Google Scholar] [CrossRef]
- Jelonek, M. VRtoER: When Virtual Reality leads to Accidents: A Community on Reddit as Lens to Insights about VR Safety. Conf. Hum. Factors Comput. Syst. Proc. 2023, 1–6. [Google Scholar] [CrossRef]
- Szpak, A.; Michalski, S.C.; Saredakis, D.; Chen, C.S.; Loetscher, T. Beyond Feeling Sick: The Visual and Cognitive Aftereffects of Virtual Reality. IEEE Access 2019, 7, 130883–130892. [Google Scholar] [CrossRef]
- Chattha, U.A.; Janjua, U.I.; Anwar, F.; Madni, T.M.; Cheema, M.F.; Janjua, S.I. Motion Sickness in Virtual Reality: An Empirical Evaluation. IEEE Access 2020, 8, 130486–130499. [Google Scholar] [CrossRef]
- Siddaway, A.P.; Wood, A.M.; Hedges, L. V How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Yoon, U.; Vogt, P.M. Preferred reporting items for systematic reviews and meta-analyses ( PRISMA ) statement and publication bias. J. Cranio-Maxillofacial Surg. 2011, 39, 91–92. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- Chicchi Giglioli, I.A.; Pallavicini, F.; Pedroli, E.; Serino, S.; Riva, G. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders. Comput. Math. Methods Med. 2015, 2015, 862942. [Google Scholar] [CrossRef]
- Dubey, R.K.; Sohn, S.S.; Thrash, T.; Holscher, C.; Borrmann, A.; Kapadia, M. Cognitive Path Planning With Spatial Memory Distortion. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3535–3549. [Google Scholar] [CrossRef]
- Dunn, J.; Yeo, E.; Moghaddampour, P.; Chau, B.; Humbert, S. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation 2017, 40, 595–601. [Google Scholar] [CrossRef]
- Power, M.; Kennedy, S.; Cleary, F.; Mills, I.; Kinsella, S.; Celdran, A.H. A Systematic Literature Review of XR Interventions to Improve Motor Skills Development Among Autistic Children. IEEE Access 2024, 12, 108953–108974. [Google Scholar] [CrossRef]
- Sideraki, A.; Drigas, A. Development of social skills for people with ASD through intervention with digital technologies and virtual reality (VR) tools. Res. Soc. Dev. 2023, 12, e11512541407. [Google Scholar] [CrossRef]
- Ullah, H.; Manickam, S.; Obaidat, M.; Laghari, S.U.A.; Uddin, M. Exploring the Potential of Metaverse Technology in Healthcare: Applications, Challenges, and Future Directions. IEEE Access 2023, 11, 69686–69707. [Google Scholar] [CrossRef]
- Quintana, D.; Rodriguez, A.; Boada, I. Authoring Tools for Procedural Modeling of Virtual Reality-Based Rehabilitation Exercises. IEEE Access 2022, 10, 131567–131578. [Google Scholar] [CrossRef]
- Pittara, M.; Matsangidou, M.; Stylianides, K.; Petkov, N.; Pattichis, C.S. Virtual Reality for Pain Management in Cancer: A Comprehensive Review. IEEE Access 2020, 8, 225475–225489. [Google Scholar] [CrossRef]
- Huang, L. and Musah, A.A. The influence of augmented reality on creativity, student behavior, and pedagogical strategies in technology-infused education management. J. Pedagog. Res. 2024, 8, 260–275. [Google Scholar] [CrossRef]
- Yeh, S.C.; Li, Y.Y.; Zhou, C.; Chiu, P.H.; Chen, J.W. Effects of Virtual Reality and Augmented Reality on Induced Anxiety. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Pons, P.; Navas-Medrano, S.; Soler-Dominguez, J.L. Extended reality for mental health: Current trends and future challenges. Front. Comput. Sci. 2022, 4, 1034307. [Google Scholar] [CrossRef]
- Lee, J.; Jung, T.; de La Rioja, U.; Chang-Sik Kim, S. Affordance, digital media literacy, and emotions in virtual cultural heritage tourism experiences Alba García-Milon. J. Vacat. Mark. 2024, 1, 18. [Google Scholar] [CrossRef]
- Mokmin, N.A.M.; Ridzuan, N.N.I.B. Immersive Technologies in Physical Education in Malaysia for Students with Learning Disabilities. IAFOR J. Educ. 2022, 10, 91–110. [Google Scholar] [CrossRef]
- Dollinger, N.; Beck, M.; Wolf, E.; Mal, D.; Botsch, M.; Latoschik, M.E.; Wienrich, C. If It’s Not Me It Doesn’t Make a Difference”—The Impact of Avatar Personalization on user Experience and Body Awareness in Virtual Reality. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Sydney, Australia, 16–20 October 2023; pp. 483–492. [Google Scholar]
- Kleinbeck, C.; Schieber, H.; Kreimeier, J.; Martin-Gomez, A.; Unberath, M.; Roth, D. Injured Avatars: The Impact of Embodied Anatomies and Virtual Injuries on Well-Being and Performance. IEEE Trans. Vis. Comput. Graph. 2023, 29, 4503–4513. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, S.; Khan, H.U.; Rehman, I.U. Digital-Twins-Based Internet of Robotic Things for Remote Health Monitoring of COVID-19 Patients. IEEE Internet Things J. 2023, 10, 16087–16098. [Google Scholar] [CrossRef]
- Lin, J.; Cronje, J.; Kathner, I.; Pauli, P.; Latoschik, M.E. Measuring Interpersonal Trust towards Virtual Humans with a Virtual Maze Paradigm. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2401–2411. [Google Scholar] [CrossRef]
- Thohir, M.A.; Ahdhianto, E.; Mas’ula, S.; Yanti, F.A.; Sukarelawan, M.I. The effects of TPACK and facility condition on preservice teachers’ acceptance of virtual reality in science education course. Contemp. Educ. Technol. 2023, 15, ep407. [Google Scholar] [CrossRef]
- Zsigmond, I.; Buhai, A. Augmented Reality in Medical Education, an Empirical Study. In Proceedings of the Computational Science and Its Applications—ICCSA 2021. ICCSA 2021, Cagliari, Italy, 13–16 September 2021. [Google Scholar] [CrossRef]
- Di Pietro, R.; Cresci, S. Metaverse: Security and Privacy Issues. In Proceedings of the 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 13–15 December 2021; pp. 281–288. [Google Scholar] [CrossRef]
- Torous, J.; Bucci, S.; Bell, I.H.; Kessing, L.V.; Faurholt-Jepsen, M.; Whelan, P.; Carvalho, A.F.; Keshavan, M.; Linardon, J.; Firth, J. The growing field of digital psychiatry: Current evidence and the future of apps, social media, chatbots, and virtual reality. Wiley Online Libr. 2021, 20, 318–335. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Hum. Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Grassini, S.; Laumann, K. Immersive visual technologies and human health. In Proceedings of the 32nd European Conference on Cognitive Ergonomics, Siena, Italy, 6–29 April 2021. [Google Scholar] [CrossRef]
- Rauschenberger, R.; Barakat, B. Health and Safety of VR Use by Children in an Educational Use Case. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR) Health, Atlanta, GA, USA, 22–26 March 2020; pp. 878–884. [Google Scholar]
- Kim, C.; Yoon, H.C.; Kim, D.H.; Do, Y.R. Spectroscopic Influence of Virtual Reality and Augmented Reality Display Devices on the Human Nonvisual Characteristics and Melatonin Suppression Response. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Palomino-Roldan, G.; Rojas-Cessa, R.; Suaste-Gomez, E. Eye Movements and Vestibulo-Ocular Reflex as User Response in Virtual Reality. IEEE Access 2023, 11, 36856–36864. [Google Scholar] [CrossRef]
- Ning, H.; Li, R.; Ye, X.; Zhang, Y.; Liu, L. A Review on Serious Games for Dementia Care in Ageing Societies. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, J.; Lee, B.; Jo, Y.; Jang, C.; Kim, D.; Lee, B. Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays. IEEE Access 2017, 6, 2170–2180. [Google Scholar] [CrossRef]
- Nalivaiko, E.; Davis, S.L.; Blackmore, K.L.; Vakulin, A.; Nesbitt, K.V. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Behav. 2015, 151, 583–590. [Google Scholar] [CrossRef]
- Koohestani, A.; Nahavandi, D.; Asadi, H.; Kebria, P.M.; Khosravi, A.; Alizadehsani, R.; Nahavandi, S. A Knowledge Discovery in Motion Sickness: A Comprehensive Literature Review. IEEE Access 2019, 7, 85755–85770. [Google Scholar] [CrossRef]
- Baldini, A.; Frumento, S.; Menicucci, D.; Gemignani, A.; Scilingo, E.P.; Greco, A. Subjective Fear in Virtual Reality: A Linear Mixed-Effects Analysis of Skin Conductance. IEEE Trans. Affect. Comput. 2022, 13, 2047–2057. [Google Scholar] [CrossRef]
- Svecova, M.; Predmerska, A.K.; Kanukova, N. Digital Skills And The Awareness Of Seniors About Virtual Reality. Media Lit. Acad. Res. 2021, 4, 119–131. [Google Scholar]
- Ciocca, G.; Tschan, H. The Enjoyability of Physical Exercise: Exergames and Virtual Reality as New Ways to Boost Psychological and Psychosocial Health in Astronauts. A Prospective and Perspective View. IEEE Open J. Eng. Med. Biol. 2023, 4, 173–179. [Google Scholar] [CrossRef]
- Ishaque, S.; Rueda, A.; Nguyen, B.; Khan, N.; Krishnan, S. Physiological Signal Analysis and Classification of Stress from Virtual Reality Video Game. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 867–870. [Google Scholar] [CrossRef]
- Moraes, A.N.; Flynn, R.; Hines, A.; Murray, N. The Role of Physiological Responses in a VR-Based Sound Localization Task. IEEE Access 2021, 9, 122082–122091. [Google Scholar] [CrossRef]
- Kazimoglu, C.; Bacon, L. An Analysis of a Video Game on Cognitive Abilities: A Study to Enhance Psychomotor Skills via Game-Play. IEEE Access 2020, 8, 110495–110510. [Google Scholar] [CrossRef]
- Berengueres, J.; Alkuwaiti, M.; Abduljabbar, M.; Taher, F. Adding Sound Transparency to a Spacesuit: Effect on Cognitive Performance in Females. IEEE Open J. Eng. Med. Biol. 2023, 4, 190–194. [Google Scholar] [CrossRef]
- Wan, B.; Wang, Q.; Su, K.; Dong, C.; Song, W.; Pang, M. Measuring the Impacts of Virtual Reality Games on Cognitive Ability Using EEG Signals and Game Performance Data. IEEE Access 2021, 9, 18326–18344. [Google Scholar] [CrossRef]
- Strle, G.; Kosir, A.; Sodnik, J.; Pececnik, K.S. Physiological Signals as Predictors of Cognitive Load Induced by the Type of Automotive Head-Up Display. IEEE Access 2023, 11, 87835–87848. [Google Scholar] [CrossRef]
- Martyn, N.; Palumbo, O.; Zhang, J.; Morris, A.; Zaccolo, S. Emissary Educator Playmate Oracle (EEPO): A Human-Technology Framework and XR to Support Child Well-Being. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Sydney, Australia, 16–20 October 2023; pp. 328–334. [Google Scholar] [CrossRef]
- Wilczyńska, D.; Walczak-Kozłowska, T.; Alarcón, D.; Arenilla, M.J.; Jaenes, J.C.; Hejła, M.; Lipowski, M.; Nestorowicz, J.; Olszewski, H. The Role of Immersive Experience in Anxiety Reduction: Evidence from Virtual Reality Sessions. Brain Sci. 2024, 15, 14. [Google Scholar] [CrossRef]
- Ferrarotti, A.; Baldoni, S.; Carli, M.; Battisti, F. Stress Assessment for Augmented Reality Applications Based on Head Movement Features. IEEE Trans. Vis. Comput. Graph. 2024, 30, 6970–6983. [Google Scholar] [CrossRef]
- Khowaja, K.; Banire, B.; Al-Thani, D.; Sqalli, M.T.; Aqle, A.; Shah, A.; Salim, S.S. Augmented reality for learning of children and adolescents with autism spectrum disorder (ASD): A systematic review. IEEE Access 2020, 8, 78779–78807. [Google Scholar] [CrossRef]
- Ramalho, D.; Constantino, P.; Da Silva, H.P.; Constante, M.; Sanches, J. An Augmented Teleconsultation Platform for Depressive Disorders. IEEE Access 2022, 10, 130563–130571. [Google Scholar] [CrossRef]
- Alalwan, N.; Cheng, L.; Al-Samarraie, H.; Yousef, R.; Ibrahim Alzahrani, A.; Sarsam, S.M. Challenges and Prospects of Virtual Reality and Augmented Reality Utilization among Primary School Teachers: A Developing Country Perspective. Stud. Educ. Eval. 2020, 66, 100876. [Google Scholar] [CrossRef]
- Piqueras-Sola, B.; Cortés-Martín, J.; Rodríguez-Blanque, R.; Menor-Rodríguez, M.J.; Mellado-García, E.; Merino Lobato, C.; Sánchez-García, J.C. Systematic Review on the Impact of Mobile Applications with Augmented Reality to Improve Health. Bioengineering 2024, 11, 622. [Google Scholar] [CrossRef]
- Zehra, S.R.; Mu, J.; Syiem, B.V.; Burkitt, A.N.; Grayden, D.B. Evaluation of Optimal Stimuli for SSVEP-Based Augmented Reality Brain-Computer Interfaces. IEEE Access 2023, 11, 87305–87315. [Google Scholar] [CrossRef]
- Dick, E. The promise of immersive learning: Augmented and virtual reality’s potential in education. Inf. Technol. Innov. Found. 2021, 1, 1–10. [Google Scholar]
- Plechatá, A.; Sahula, V.; Fayette, D.; Fajnerová, I. Age-related differences with immersive and non-immersive virtual reality in memory assessment. Front. Psychol. 2019, 10, 1330. [Google Scholar] [CrossRef]
- Luijkx, K.; Peek, S.; Wouters, E. “Grandma, You Should Do It—It’s Cool” Older Adults and the Role of Family Members in Their Acceptance of Technology. Int. J. Environ. Res. Public Health 2015, 12, 15470–15485. [Google Scholar] [CrossRef]
- Robles, M.; Namdarian, N.; Otto, J.; Wassiljew, E.; Navab, N.; Falter-Wagner, C.; Roth, D. A Virtual Reality Based System for the Screening and Classification of Autism. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2168–2178. [Google Scholar] [CrossRef]
- Doré, B.; Gaudreault, A.; Everard, G.; Ayena, J.C.; Abboud, A.; Robitaille, N.; Batcho, C.S. Acceptability, Feasibility, and Effectiveness of Immersive Virtual Technologies to Promote Exercise in Older Adults: A Systematic Review and Meta-Analysis. Sensors 2023, 23, 2506. [Google Scholar] [CrossRef]
- Kupczik, L.; Farrelly, W.; Wilson, S. Appraising Virtual Technologies’ Impact on Older Citizens. Int. J. Environ. Res. Public Health Artic. 2022, 19, 11250. [Google Scholar] [CrossRef]
- Murala, D.K.; Panda, S.K.; Dash, S.P. MedMetaverse: Medical Care of Chronic Disease Patients and Managing Data Using Artificial Intelligence, Blockchain, and Wearable Devices State-of-the-Art Methodology. IEEE Access 2023, 11, 138954–138985. [Google Scholar] [CrossRef]
- Rahimzadeh, G.; Pławiak, P.; Mohamed, S.; Lacy, K.; Nahavndi, D.; Tadeusiewicz, R.; Asadi, H. Significance of Physiological Signal Thresholds in the Early Diagnosis of Simulator Sickness. IEEE Access 2024, 12, 141685–141704. [Google Scholar] [CrossRef]
- Chen, C.C.; Wu, E.H.K.; Chen, Y.Q.; Tsai, H.J.; Chung, C.R.; Yeh, S.C. Neuronal Correlates of Task Irrelevant Distractions Enhance the Detection of Attention Deficit/Hyperactivity Disorder. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1302–1310. [Google Scholar] [CrossRef]
- Oh, S.H.; Park, J.W.; Cho, S.J. Effectiveness of the VR Cognitive Training for Symptom Relief in Patients with ADHD. J. Web Eng. 2022, 21, 767–788. [Google Scholar] [CrossRef]
- Bloom, J.; Dorsett, P.; Mclennan, V. Integrated services and early intervention in the vocational rehabilitation of people with spinal cord injuries. Spinal Cord Ser. Cases 2017, 3, 16042. [Google Scholar] [CrossRef]
- Thabrew, H.; Chubb, L.A.; Kumar, H.; Fouché, C. Immersive Reality Experience Technology for Reducing Social Isolation and Improving Social Connectedness and Well-being of Children and Young People Who Are Hospitalized: Open Trial. JMIR Pediatr. Parent. 2022, 5, e29164. [Google Scholar] [CrossRef]
- Li, J.; Van Der Spek, E.; Hu, J.; Feijs, L. Extracting Design Guidelines for Augmented Reality Serious Games for Children. IEEE Access 2022, 10, 66660–66671. [Google Scholar] [CrossRef]
- Zallio, M.; Clarkson, P.J. Designing the metaverse: A study on inclusion, diversity, equity, accessibility and safety for digital immersive environments. Telemat. Inform. 2022, 75, 101909. [Google Scholar] [CrossRef]
- Chang, C.W.; Li, M.; Yeh, S.C.; Chen, Y.; Rizzo, A. Examining the Effects of HMDs/FSDs and Gender Differences on Cognitive Processing Ability and User Experience of the Stroop Task-Embedded Virtual Reality Driving System (STEVRDS). IEEE Access 2020, 8, 69566–69578. [Google Scholar] [CrossRef]
- Lanyi, C.S.; Withers, J.D.A. Striving for a Safer and More Ergonomic Workplace: Acceptability and Human Factors Related to the Adoption of AR/VR Glasses in Industry 4.0. Smart Cities 2020, 3, 289–307. [Google Scholar] [CrossRef]
- Noccaro, A.; Pinardi, M.; Formica, D.; Pino, G. Di A virtual reality platform for multisensory integration studies. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3244–3247. [Google Scholar] [CrossRef]
- Qu, J.; Cui, L.; Guo, W.; Ren, X.; Bu, L. The Effects of a Virtual Reality Rehabilitation Task on Elderly Subjects: An Experimental Study Using Multimodal Data. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1684–1692. [Google Scholar] [CrossRef]
- De-Pra, Y.; Catrambone, V.; Van-Wassenhove, V.; Moscatelli, A.; Valenza, G.; Bianchi, M. Altering Time Perception in Virtual Reality Through Multimodal Visual-Tactile Kappa Effect. IEEE Trans. Haptics 2023, 16, 518–523. [Google Scholar] [CrossRef]
- Szczurek, K.A.; Cittadini, R.; Prades, R.M.; Matheson, E.; Di Castro, M. Enhanced Human-Robot Interface With Operator Physiological Parameters Monitoring and 3D Mixed Reality. IEEE Access 2023, 11, 39555–39576. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, S.H.; Yang, H.J.; Lee, G.A.; Kim, S. GazeHand: A Gaze-Driven Virtual Hand Interface. IEEE Access 2023, 11, 133703–133716. [Google Scholar] [CrossRef]
- Losanno, E.; Ceradini, M.; Agnesi, F.; Righi, G.; Del Popolo, G.; Shokur, S.; Micera, S. A Virtual Reality-Based Protocol to Determine the Preferred Control Strategy for Hand Neuroprostheses in People with Paralysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2261–2269. [Google Scholar] [CrossRef]
- Leite, S.; Dias, M.S.; Eloy, S.; Freitas, J.; Marques, S.; Pedro, T.; Ourique, L. Physiological arousal quantifying perception of safe and unsafe virtual environments by older and younger adults. Sensors 2019, 19, 2447. [Google Scholar] [CrossRef]
- Jung, S.; Li, R.; McKee, R.; Whitton, M.C.; Lindeman, R.W. Floor-vibration VR: Mitigating Cybersickness Using Whole-body Tactile Stimuli in Highly Realistic Vehicle Driving Experiences. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2669–2680. [Google Scholar] [CrossRef]
- Liang, H.W.; Chi, S.Y.; Chen, B.Y.; Li, Y.H.; Tai, T.L.; Hwang, Y.H. The Effects of Visual Backgrounds in the Virtual Environments on the Postural Stability of Standing. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1129–1137. [Google Scholar] [CrossRef]
- Wimmer, M.; Weidinger, N.; Elsayed, N.; Muller-Putz, G.R.; Veas, E. EEG-Based Error Detection Can Challenge Human Reaction Time in a VR Navigation Task. In Proceedings of the 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Sydney, Australia, 16–20 October 2023; pp. 970–979. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Hieu, N.Q.; Hoang, D.T.; Nguyen, D.N.; Lin, C.T. A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey. IEEE Commun. Surv. Tutorials 2024, 26, 2120–2145. [Google Scholar] [CrossRef]
- Yasuda, K.; Takazawa, S.; Muroi, D.; Fujimoto, Y.; Hirano, M.; Koshino, A.; Iwata, H. Unilateral spatial neglect affected by right-sided stimuli in a three-dimensional virtual environment: A preliminary proof-of-concept study. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023. [Google Scholar] [CrossRef]
- Chen, C.C.; Chung, C.R.; Tsai, M.C.; Wu, E.H.K.; Chiu, P.R.; Tsai, P.Y.; Yeh, S.C. Impaired Brain-Heart Relation in Patients With Methamphetamine Use Disorder During VR Induction of Drug Cue Reactivity. IEEE J. Transl. Eng. Health Med. 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Ban, Y.; Yoshida, T.; Ujitoko, Y. Impact of Synchronizing Visual Cues With Switch of Foot Contact State on the Presence of Virtual Flight While Seated. IEEE Access 2023, 11, 44531–44543. [Google Scholar] [CrossRef]
- Wu, M.; Teng, W.; Fan, C.; Pei, S.; Li, P.; Pei, G.; Li, T.; Liang, W.; Lv, Z. Multimodal Emotion Recognition based on EEG and EOG Signals evoked by the Video-odor Stimuli. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3496–3505. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, J.H.; Choi, Y.; Kang, Y.S.; Li, H.; Kim, K. Eye-contact game using mixed reality for the treatment of children with attention deficit hyperactivity disorder. IEEE Access 2020, 8, 45996–46006. [Google Scholar] [CrossRef]
- Iskander, J.; Hossny, M.; Nahavandi, S. A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality. IEEE Access 2018, 6, 19345–19361. [Google Scholar] [CrossRef]
- Elor, A.; Powell, M.; Mahmoodi, E.; Teodorescu, M.; Kurniawan, S. Gaming beyond the Novelty Effect of Immersive Virtual Reality for Physical Rehabilitation. IEEE Trans. Games 2022, 14, 107–115. [Google Scholar] [CrossRef]
- Pervez, F.; Shoukat, M.; Usama, M.; Sandhu, M.; Latif, S.; Qadir, J. Affective Computing and the Road to an Emotionally Intelligent Metaverse. IEEE Open J. Comput. Soc. 2024, 5, 195–214. [Google Scholar] [CrossRef]
- Ogihara, H.; Funato, Y.; Oku, H. Proposal for a Distraction Technique Using Two-Screen Projection for Stress Relief in Children With Medical Complexity. IEEE Access 2023, 11, 105749–105760. [Google Scholar] [CrossRef]
- Lin, J.; Cronje, J.; Wienrich, C.; Pauli, P.; Latoschik, M.E. Visual Indicators Representing Avatars’ Authenticity in Social Virtual Reality and Their Impacts on Perceived Trustworthiness. IEEE Trans. Vis. Comput. Graph. 2023, 29, 4589–4599. [Google Scholar] [CrossRef]
- Adams, R.J.; Lichter, M.D.; Ellington, A.; White, M.; Armstead, K.; Patrie, J.T.; Diamond, P.T. Virtual Activities of Daily Living for Recovery of Upper Extremity Motor Function. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 252–260. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Q.; Ma, D. User Experience of a Serious Game for Physical Rehabilitation Using Wearable Motion Capture Technology. IEEE Access 2023, 11, 108407–108417. [Google Scholar] [CrossRef]
- Amat, A.Z.; Zhao, H.; Swanson, A.; Weitlauf, A.S.; Warren, Z.; Sarkar, N. Design of an Interactive Virtual Reality System, InViRS, for Joint Attention Practice in Autistic Children. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Z.; Li, X.; Xue, X.; Hung, P.C.K.; Yangui, S. Metaverse for Healthcare: Technologies, Challenges, and Vision. Int. J. Crowd Sci. 2023, 7, 190–199. [Google Scholar] [CrossRef]
- Uchiyama, E.; Suzuki, H.; Ikegami, Y.; Nakamura, Y.; Taketomi, S.; Kawaguchi, K. Muscles Cooperation Analysis Using Akaike Information Criteria for Anterior Cruciate Ligament Injury Prevention. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; Available online: https://ieeexplore.ieee.org/abstract/document/9175811/ (accessed on 21 April 2025).
- Rane, D.; Sharma, P.; Singh, M.; Lahiri, U. Virtual reality based gaze-sensitive aiming task platform: Role of attention allocation in task performance for individuals with autism and typically developing individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1492–1501. Available online: https://ieeexplore.ieee.org/abstract/document/10050552/ (accessed on 21 April 2025). [CrossRef] [PubMed]
- Mamone, V.; Di Fonzo, M.; Esposito, N.; Ferrari, M.; Ferrari, V. Monitoring Wound Healing with Contactless Measurements and Augmented Reality. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2007, 24, 45–77. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Lan, J. Feature Evaluation of Upper Limb Exercise Rehabilitation Interactive System Based on Kinect. IEEE Access 2019, 7, 165985–165996. [Google Scholar] [CrossRef]
- Snoswell, A.; Snoswell, C. Immersive Virtual Reality in Health Care: Systematic Review of Technology and Disease States. JMIR Biomed Eng. 2019, 4, e15025. [Google Scholar] [CrossRef]
- Mitsea, E.; Drigas, A.; Skianis, C. Artificial Intelligence, Immersive Technologies, and Neurotechnologies in Breathing Interventions for Mental and Emotional Health: A Systematic Review. Electron. 2024, 13, 2253. [Google Scholar] [CrossRef]
- Sekhon, H.; Dickinson, R.A.; Kimball, J.E.; Cray, H.V.; Alkhatib, F.; Preston, A.; Moore, I.; Trueba-Yepez, A.F.; Fahed, M.; Vahia, I.V. Safety Considerations in the Use of Extended Reality Technologies for Mental Health with Older Adults. Am. J. Geriatr. Psychiatry 2024, 32, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Lutz, R.R. Safe-AR: Reducing risk while augmenting reality. In Proceedings of the IEEE 29th International Symposium on Software Reliability Engineering, Memphis, TN, USA, 15–18 October 2018; pp. 70–75. Available online: https://ieeexplore.ieee.org/abstract/document/8539070/?casa_token=a-X_QkTr0HYAAAAA:-4zTDMarL5mxVTmDGDO5BlvmNzexKA6bEujfmlDWaRc5mLAv7u1KofJZKOprLrmIM7ewC-DStPU (accessed on 21 April 2025).
- Ai, X.; Santamaria, V.; Agrawal, S.K. Characterizing the effects of adding virtual and augmented reality in robot-assisted training. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2709–2718. Available online: https://ieeexplore.ieee.org/abstract/document/10606509/ (accessed on 21 April 2025). [CrossRef] [PubMed]
- Döllinger, N.; Wolf, E.; Mal, D.; Wenninger, S.; Botsch, M.; Latoschik, M.E.; Wienrich, C. Resize Me! Exploring the user experience of embodied realistic modulatable avatars for body image intervention in virtual reality. Front. Virtual Real. 2022, 3, 935449. [Google Scholar] [CrossRef]
- Waltemate, T.; Gall, D.; Roth, D.; Botsch, M.; Latoschik, M.E. The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1643–1652. [Google Scholar] [CrossRef]
- Kaminska, D.; Zwolinski, G.; Merecz-Kot, D. How Virtual Reality Therapy Affects Refugees from Ukraine—Acute stress reduction pilot study. IEEE Trans. Affect. Comput. 2024, 15, 1475–1489. [Google Scholar] [CrossRef]
- Kini, V.G.; Ganeshrao, S.B.; Siddalingaswamy, P.C. Realization of game mechanics in Virtual Reality for amblyopia treatment. IEEE Access 2024, 12, 145018–145037. [Google Scholar] [CrossRef]
- Lin, C.W.; Kuo, L.C.; Lin, Y.C.; Su, F.C.; Lin, Y.A.; Hsu, H.Y. Development and Testing of a Virtual Reality Mirror Therapy System for the Sensorimotor Performance of Upper Extremity: A Pilot Randomized Controlled Trial. IEEE Access 2021, 9, 14725–14734. [Google Scholar] [CrossRef]
- Kammler-Sücker, K.I.; Löffler, A.; Kleinböhl, D.; Flor, H. Exploring Virtual Doppelgangers as Movement Models to Enhance Voluntary Imitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2173–2182. [Google Scholar] [CrossRef]
- Kim, S.; Jing, A.; Park, H.; Lee, G.A.; Huang, W.; Billinghurst, M. Hand-in-Air (HiA) and Hand-on-Target (HoT) Style Gesture Cues for Mixed Reality Collaboration. IEEE Access 2020, 8, 224145–224161. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Lee, J. The Effect of Multisensory Pseudo-Haptic Feedback on Perception of Virtual Weight. IEEE Access 2022, 10, 5129–5140. [Google Scholar] [CrossRef]
- Liang, Z.; Zhou, K.; Gao, K. Development of Virtual Reality Serious Game for Underground Rock-Related Hazards Safety Training. IEEE Access 2019, 7, 118639–118649. [Google Scholar] [CrossRef]
- Liang, H.W.; Chi, S.Y.; Chen, B.Y.; Hwang, Y.H. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Unruh, F.; Vogel, D.; Landeck, M.; Lugrin, J.-L.; Latoschik, M.E. Body and time: Virtual embodiment and its effect on time perception. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2626–2636. Available online: https://ieeexplore.ieee.org/abstract/document/10049718/ (accessed on 21 April 2025). [CrossRef] [PubMed]
- Chung, C.R.; Su, M.C.; Lee, S.H.; Wu, E.H.K.; Tang, L.H.; Yeh, S.C. An Intelligent Motor Assessment Method Utilizing a Bi-Lateral Virtual-Reality Task for Stroke Rehabilitation on Upper Extremity. IEEE J. Transl. Eng. Health Med. 2022, 10, 1–11. [Google Scholar] [CrossRef]
ID | Research Question | Motivation |
---|---|---|
RQ1 | What are the potential benefits of immersive technologies in medical contexts? | This question is motivated by the growing interest in utilizing immersive technologies (like VR and AR) in healthcare, especially as these technologies evolve and become more accessible. |
RQ2 | What are the most common health issues associated with the use of immersive technologies (e.g., VR, AR)? | Knowing common health issues may inform the design and use of immersive technologies. |
RQ3 | Which demographic groups are most susceptible to health issues associated with the use of immersive technologies? | Understanding the likely demographic that could be influenced by the immersive technologies could assist in customizing the interventions, creating user-friendly interfaces, and developing appropriate procedures considering various groups, such as the older population or people with existing health issues. |
RQ4 | What strategies or guidelines have been proposed to mitigate the health risks associated with immersive technology use? | A practical question that looks at existing solutions, including best practices, ergonomic design, or user recommendations to reduce health risks. |
Inclusion | Exclusion | Quality |
---|---|---|
Articles published between 2014 and 2024 | Publications outside the range specified | Reputable sources such as accredited and peer-reviewed publications (to avoid predatory outlets) |
Peer-reviewed articles | Studies not related to immersive technologies and health issues | |
Studies in English | Studies that focus on training or teaching using VR or AR | |
Full-text articles and open access | Articles not published in conference proceedings and journals | |
Reviews, editorials, and non-empirical studies |
Health Concern | Explanation | Sample Sources |
---|---|---|
Physical Health Concerns | ||
Eye-related issues (such as eye strain) | Human eyes are prone to experiencing eye strain when viewing displays that deliver 3D images, often leading to discomfort and fatigue. | [42,43,44,45,46,47] |
Cybersickness (also known as motion sickness) | Motion sickness can be associated with headache, nausea, vomiting, dizziness, and cold sweats. Users have reported that VR headsets make them feel dizzy when watching 3D movies. | [16,20,42,48,49] |
Skin irritation and skin conductance | Prolonged or improper use of VR and AR devices can cause skin-related issues like irritation, rashes, or allergic reactions. | [48,50] |
Musculoskeletal disorders | Musculoskeletal disorders include conditions affecting the muscles and joints, and they are often associated with prolonged periods of improper posture, repetitive motions, and stress on the body. Immersive technologies are reported to have the potential to cause and alleviate musculoskeletal discomfort, depending on how they are used. | [42,51] |
Physical injuries | Lack of spatial awareness and an unsuitable environment can significantly increase the risk of accidents and injuries when using VR or AR technologies. Immersive experiences often limit users’ awareness of their real-world surroundings, leading to collisions, trips, or falls. | [14,34,52,53,54] |
Mental health concerns | ||
Cognitive overload | There are reported cases of cognitive effects that negatively affect individuals’ alertness and attention after using VR technologies. | [21,31,55,56,57,58,59] |
Anxiety | The intense sensory stimulation and highly realistic experiences can overwhelm users, especially those prone to anxiety or those who are unfamiliar with such environments. Additionally, some VR scenarios may deliberately simulate stressful situations, such as heights or confined spaces, which can trigger fear or panic responses, leading to anxiety. | [13,14,15,16,17,36,37] |
Addiction | There has been a misconception that immersive technologies are designed particularly for gaming and entertainment and that they can provide an escape from the stresses and challenges of real life. If applied in a learning environment, individuals may highly depend on them. | [51,60,61,62,63,64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msweli, N.T.; Phahlane, M. Health-Related Issues of Immersive Technologies: A Systematic Literature Review. Informatics 2025, 12, 47. https://doi.org/10.3390/informatics12020047
Msweli NT, Phahlane M. Health-Related Issues of Immersive Technologies: A Systematic Literature Review. Informatics. 2025; 12(2):47. https://doi.org/10.3390/informatics12020047
Chicago/Turabian StyleMsweli, Nkosikhona Theoren, and Mampilo Phahlane. 2025. "Health-Related Issues of Immersive Technologies: A Systematic Literature Review" Informatics 12, no. 2: 47. https://doi.org/10.3390/informatics12020047
APA StyleMsweli, N. T., & Phahlane, M. (2025). Health-Related Issues of Immersive Technologies: A Systematic Literature Review. Informatics, 12(2), 47. https://doi.org/10.3390/informatics12020047