Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach
Abstract
:1. Introduction
- First, we adopted a financial approach to define business failure. In the Moroccan context, we have retained the official definition of Bank Al-Maghrib that enabled us to build a sample of 90 SMEs located in the Fez-Meknes region, 45 of which are considered to be failing in 2019 and 45 of which are considered healthy, with a Moroccan bank. The data are thus collected in such a way that accounting data are available for three successive years, 2016, 2017, and 2018.
- Second, on these collected data, we used an econometric model of logistic regression that is applied to determine, on the one hand, the determinants of business failure and, on the other hand, the predictors of business failure. The empirical study used has the advantage of incorporating certain variables related to the context of the study. These variables are selected solely on their capacity to explain and predict the financial failure of Moroccan SMEs without depending on a theoretical approach.
2. Literature Review
3. Data and Methodology of the Empirical Study
3.1. Constitution of the Sample
- Pre-doubtful debts: outstanding loans of which maturity is not settled 90 days after its due date;
- Doubtful debts: outstanding loans of which maturity is not settled 180 days after its due date;
- Receivables were: outstanding loans of which maturity is not settled 360 days after its due date.
3.2. Variable Analysis
3.3. Process for Selecting Analysis Variables
3.4. Logit Model
4. Results
4.1. Exploratory Descriptive Analysis
4.2. Econometric Results
4.2.1. Examination of the Correlation Matrix
4.2.2. Logistic Regression Results
- Results of estimation three years before failure (Logit-1)
- Results of estimation two years before failure (Logit-2)
- Results of estimation one year before failure (Logit-3)
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Affes, Zeineb, and Rania Hentati-Kaffel. 2019. Predicting US banks bankruptcy: Logit versus Canonical Discriminant analysis. Computational Economics 54: 199–244. [Google Scholar] [CrossRef] [Green Version]
- Alaka, Hafiz A., Lukumon O. Oyedele, Hakeem A. Owolabi, Vikas Kumar, Saheed O. Ajayi, Olugbenga O. Akinade, and Muhammad Bilal. 2018. Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications 94: 164–84. [Google Scholar] [CrossRef]
- Altman, Edward I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23: 589–609. [Google Scholar] [CrossRef]
- Altman, Edward I. 1984. A Further Empirical Investigation of the Bankruptcy Cost Question. The Journal of Finance 39: 1067–89. [Google Scholar] [CrossRef]
- Altman, Edward I., Małgorzata Iwanicz-Drozdowska, Erkki K. Laitinen, and Arto Suvas. 2020. A race for long horizon bankruptcy prediction. Applied Economics 52: 1–20. [Google Scholar] [CrossRef]
- Amor, S. Ben, Nabil Khoury, and Marko Savor. 2009. Modèle prévisionnel de la défaillance financière des PME québécoises emprunteuses. Journal of Small Business and Entrepreneurship 22: 517–34. [Google Scholar] [CrossRef]
- Argenti, John. 1976. Corporate planning and Corporate Collapse. Long Range Planning 9: 12–17. [Google Scholar] [CrossRef]
- Azayite, Fatima Zahra, and Said Achchab. 2017. The impact of payment delays on bankruptcy prediction: A comparative analysis of variables selection models and neural networks. Paper presented at 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), Rabat, Morocco, October 24–26; pp. 1–7. [Google Scholar]
- Back, Barbro, Teija Laitinen, Kaisa Sere, and Michiel van Wezel. 1996. Choosing bankruptcy predictors using discriminant analysis, logit analysis, and genetic algorithms. Turku Centre for Computer Science Technical Report 40: 1–18. [Google Scholar]
- Bae, Jae Kwon. 2012. Predicting financial distress of the South Korean manufacturing industries. Expert Systems with Applications 39: 9159–65. [Google Scholar] [CrossRef]
- Bank Al-Maghrib. 2002. Circulaire du Gouverneur de Bank Al-Maghrib n°19/G/2002 du 23 décembre 2002 (18 chaoual 1423) Relative à la Classification des Créances et à leur Couverture par les Provisions. Rabat: Bank Al-Maghrib. [Google Scholar]
- Beaver, William H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research, 71–111. [Google Scholar] [CrossRef]
- Ben Jabeur, Sami. 2017. Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services 36: 197–202. [Google Scholar] [CrossRef]
- Bisogno, Marco, and Roberto De Luca. 2015. Financial distress and earnings manipulation: Evidence from Italian SMEs. Journal of Accounting and Finance 4: 42–51. [Google Scholar]
- Blazy, Régis, Patricia Charlety, and Jérôme Combier. 1993. Les défaillances d’entreprises: Des difficultés visibles plusieurs années à l’avance. Economie et Statistique 268: 101–11. [Google Scholar] [CrossRef]
- Bunn, Philip, and Victoria Redwood. 2003. Company Accounts-Based Modelling of Business Failures and the Implications for Financial Stability. Bank of England Working Paper No. 210. London: Bank of England. [Google Scholar] [CrossRef] [Green Version]
- Casta, Jean-François, and J. P. Zerbib. 1979. Prévoir la défaillance des entreprises? Revue Française de Comptabilité 97: 506–26. [Google Scholar]
- Cayssials, Jean-Luc, Elisabeth Kremp, and Christophe Peter. 2007. Dix années de dynamique financière des PME en France. Bulletin de La Banque de France 165: 31–48. [Google Scholar]
- Charalambakis, Evangelos C., and Ian Garrett. 2018. On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece. Review of Quantitative Finance and Accounting. [Google Scholar] [CrossRef] [Green Version]
- Charalambous, Chris, Andreas Charitou, and Froso Kaourou. 2000. Comparative analysis of artificial neural network models: Application in bankruptcy prediction. Annals of Operations Research 99: 403–25. [Google Scholar] [CrossRef]
- Crutzen, Nathalie, and Didier Van Caillie. 2007. The Business Failure Process: Towards an Integrative Model of the Literature. Paper presented at International Workshop on Default Risk and Financial Distress, Rennes, France, September; Available online: https://orbi.uliege.be/handle/2268/31504 (accessed on 10 October 2020).
- Crutzen, Nathalie, and Didier Van Caillie. 2010. Towards a taxonomy of explanatory failure patterns for small firms: A quantitative research analysis. Review of Business and Economic Literature 55: 438–63. [Google Scholar]
- Deakin, Edward B. 1972. A discriminant analysis of predictors of business failure. Journal of Accounting Research, 167–79. [Google Scholar] [CrossRef]
- Du Jardin, Philippe. 2009. Bankruptcy prediction models: How to choose the most relevant variables? Bankers, Markets & Investors 98: 39–46. [Google Scholar]
- Eisenbeis, Robert A. 1977. Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance 32: 875–900. [Google Scholar] [CrossRef]
- Euler Hermes. 2019. L’Indice Globale des Défaillances 2019. Paris: Euler Hermes. [Google Scholar]
- Fitzpatrick, Paul Joseph. 1932. A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies. Lanzhou: The Certified Public Account. [Google Scholar]
- Gebhardt, G. 1980. Insolvency prediction based on annual financial statements according to the company law. An assessment of the reform of annual statements by the law of 1965 from the view of external addresses. Bochumer Beitrage Zur Untennehmungs Und Unternehmens-Forschung 22. [Google Scholar]
- Geng, Ruibin, Indranil Bose, and Xi Chen. 2015. Prediction of financial distress: An empirical study of listed chinese companies using data mining. In European Journal of Operational Research 241: 236–47. [Google Scholar] [CrossRef]
- Gilbert, Lisa R., Krishnagopal Menon, and Kenneth B. Schwartz. 1990. Predicting bankruptcy for firms in financial distress. Journal of Business Finance & Accounting 17: 161–71. [Google Scholar]
- Gregova, Elena, Katarina Valaskova, Peter Adamko, Milos Tumpach, and Jaroslav Jaros. 2020. Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability 12: 3954. [Google Scholar] [CrossRef]
- Gupta, Jairaj, Andros Gregoriou, and Jerome Healy. 2015. Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter? Review of Quantitative Finance and Accounting 45: 845–69. [Google Scholar] [CrossRef]
- Haut-Commissariat au Plan. 2018. Note D’information Relative aux Comptes Régionaux de L’année 2018. Casablanca: Haut-Commissariat au Plan. [Google Scholar]
- Haut-Commissariat au Plan. 2019. Enquête Nationale Auprès des Entreprises, Premiers Résultats 2019. Casablanca: Haut-Commissariat au Plan. [Google Scholar]
- Hosmer, David W., Stanley Lemeshow, and Rod X. Sturdivant. 1989. The multiple logistic regression model. Applied Logistic Regression 1: 25–37. [Google Scholar]
- Hsiao-Fen Hsiao, Szu-Hsien Lin, and Ai-Chi Hsu. 2010. Earnings management, corporate governance, and auditor’s opinions: A financial distress prediction model. Investment Management and Financial Innovations 7: 29–40. [Google Scholar]
- Inforisk. 2020. Étude Inforisk, Défaillances Maroc 2019. Casablanca: Inforisk. [Google Scholar]
- Jamel, Lamia, and Abdelkader Derbali. 2019. Modeling and Analysis of Business Failures: Application to Moroccan SMEs. Journal of Economic and Business Studies 2: 131. [Google Scholar]
- Kamaluddin, Amrizah, Norhafizah Ishak, and Nor Farizal Mohammed. 2019. Financial distress prediction through cash flow ratios analysis. International Journal of Financial Research 10: 63–76. [Google Scholar] [CrossRef]
- Karlson, Kristian Bernt. 2015. Another look at the method of y-standardization in logit and probit models. The Journal of Mathematical Sociology 39: 29–38. [Google Scholar] [CrossRef] [Green Version]
- Kherrazi, Soufiane, and Khalifa Ahsina. 2016. Défaillance et politique d’entreprises: Modélisation financière déployée sous un modèle logistique appliqué aux PME marocaines. La Revue Gestion et Organisation 8: 53–64. [Google Scholar] [CrossRef] [Green Version]
- Kliestik, Tomas, Maria Misankova, Katarina Valaskova, and Lucia Svabova. 2018. Bankruptcy Prevention: New Effort to Reflect on Legal and Social Changes. Science and Engineering Ethics 24: 791–803. [Google Scholar] [CrossRef]
- Kovacova, Maria, Tomas Kliestik, Katarina Valaskova, Pavol Durana, and Zuzana Juhaszova. 2019. Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana 10: 743–72. [Google Scholar] [CrossRef] [Green Version]
- Kristóf, Tamás, and Miklós Virág. 2020. A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary. Journal of Risk and Financial Management 13: 35. [Google Scholar] [CrossRef] [Green Version]
- Lin, Simon M., Jake Ansell, and Galina Andreeva. 2012. Predicting default of a small business using different definitions of financial distress. Journal of the Operational Research Society 63: 539–48. [Google Scholar] [CrossRef]
- Long, J. Scott, and Jeremy Freese. 2006. Regression Models for Categorical Dependent Variables Using Stata. College Station: Stata Press. [Google Scholar]
- Matoussi, Hamadi, Rim Mouelhi, and Sayah Salah. 1999. La Prédiction de Faillite des Entreprises Tunisiennes par la Régression Logistique. Paper presented at 20ÈME CONGRES DE L’AFC, Paris, France, May 21–22; pp. 1–23. [Google Scholar]
- Merwin, Charles L. 1942. Financing Small Corporations in Five Manufacturing Industries 1926–1936. New York: National Bureau of Economic Research. [Google Scholar]
- Mselmi, Nada, Amine Lahiani, and Taher Hamza. 2017. Financial distress prediction: The case of French small and medium-sized firms. International Review of Financial Analysis 50: 67–80. [Google Scholar] [CrossRef]
- Nokairi, Wafia. 2018. Financial characteristics of companies in failure situation in Morocco Les déterminants financiers des entreprises en situation de défaut de paiement au Maroc. Revue du Contrôle de la Comptabilité et de l’Audit 2: 564–91. [Google Scholar]
- Ohlson, James A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109–31. [Google Scholar] [CrossRef] [Green Version]
- Pindado, Julio, and Luis F. Rodrigues. 2004. Parsimonious models of financial insolvency in small companies. Small Business Economics 22: 51–66. [Google Scholar] [CrossRef]
- Pompe, Paul PM, and Jan Bilderbeek. 2005. The prediction of bankruptcy of small-and medium-sized industrial firms. Journal of Business Venturing 20: 847–68. [Google Scholar] [CrossRef]
- Ramezani Sharifabadi, M., M. Mirhaj, and Naser Izadinia. 2017. The impact of financial ratios on the prediction of bankruptcy of small and medium companies. QUID: Investigación, Ciencia y Tecnología 1: 164–73. [Google Scholar]
- Refait-Alexandre, Catherine. 2004. La prévision de la faillite fondée sur l’analyse financière de l’entreprise: Un état des lieux. Economie Prevision 1: 129–47. [Google Scholar] [CrossRef]
- Selma, Haj Khlifa. 2017. Predicting default risk of SMEs in developing economies: Evidence from Morocco. Journal of WEI Business and Economics-December 6: 3. [Google Scholar]
- Shi, Yin, and Xiaoni Li. 2019. An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital 15: 114–27. [Google Scholar] [CrossRef] [Green Version]
- Stefko, Robert, Beata Gavurova, Martin Rigelsky, and Viera Ivankova. 2019. Evaluation of selected indicators of patient satisfaction and economic indices in OECD country. Economics & Sociology 12: 149–332. [Google Scholar]
- Sung, Tae Kyung, Namsik Chang, and Gunhee Lee. 1999. Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems 16: 63–85. [Google Scholar] [CrossRef]
- Tian, Shaonan, Yan Yu, and Hui Guo. 2015. Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance 52: 89–100. [Google Scholar]
- Valaskova, Katarina, Tomas Kliestik, Lucia Svabova, and Peter Adamko. 2018. Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability 10: 2144. [Google Scholar] [CrossRef] [Green Version]
- Waqas, Hamid, and Rohani Md-Rus. 2018. Predicting financial distress: Applicability of O-score and logit model for Pakistani firms. Business and Economic Horizons (BEH) 14: 389–401. [Google Scholar] [CrossRef]
1 | According to Moroccan-SME agency (2018), SMEs are companies with a turnover of less than or equal to 200 million dirhams. |
2 | An independent governmental statistical institution established in 2003. It represents the main source of economic, demographic and social statistical data in Morocco. |
3 | Normality tests on the study variables showed negative results at the 5% significance level. |
Ratio | Definition | Formula |
---|---|---|
Liquidity Ratios | ||
R1 | Current Ratio | Current Assets/Current Liabilities |
R2 | Reduced Liquidity | Liquid Assets/Current Liabilities |
R3 | Quick Ratio | Cash/Current Liabilities |
Solvency and Capital Structure Ratios | ||
R4 | Net Debt Ratio | Debt Net of Cash and Cash Equivalents/Shareholders’ Equity |
R5 | Financial Equilibrium | Working Capital/Total Liabilities |
R6 | Cost of Debt | Net Interest/Net Indebtedness |
R7 | Interest Coverage | Net Interest/Gross Operating Income |
R8 | Autonomy Ratio | Financial Debts/Total Liabilities |
R9 | Repayment Capacity | Financial Debt/Self-Financing Capacity |
R10 | Tax and Social Security Liabilities | Tax, Social Security and Payroll Liabilities/Total liabilities |
R11 | Trade Payables | Suppliers’ Net/Total Liabilities |
R12 | Bank Loans | Short-Term Financial Debt/Net Debt |
Profitability Ratios | ||
R13 | External Consumption to Sales | External Consumption/Sales |
R14 | Gross Operating Profit to Sales | Gross Operating Profit (GOP) /Sales |
R15 | Personnel Expenses to Sales | Personnel Expenses/Sales |
R16 | Operating Income to Sales | Earnings Before Interest and Taxes (EBIT)/Sales |
R17 | Interest to Sales | Interest/Sales |
R18 | Current Income to Sales | Current Income/Sales |
R19 | Added value to Sales | Added Value/Sales |
R20 | Return On Assets (ROA1) | Net income/Total Assets |
R21 | Return On Assets (ROA2) | Gross Operating Profit (GOP)/Total Assets |
R22 | Asset Turnover | Turnover/Total Assets |
R23 | Return On Capital Employed (ROCE) | Operating Result after Tax/Economic Assets |
R24 | Return On Equity (ROE) | Net income/Average Shareholders’ Equity |
R25 | Profit Margin | Net income/Sales |
Management Ratios | ||
R26 | Inventory Turnover | Cost of Sales/Average Inventory |
R27 | Days in Accounts Receivable | (Average Accounts Receivable/Net Sales)*360 |
R28 | Duration of Trade Payables | (Trade payables/(Purchases + Other External Charges Including Tax))*360 |
R29 | Working Capital Requirement Management | Working Capital Requirement/Sales |
Value Added Ratios | ||
R30 | Share of Employees | Personnel Costs /Added Value |
R31 | Share of Fixed Assets | Depreciation and Amortization/Added Value |
R32 | Share of Financial Expenses | Financial Expenses/Added Value |
R33 | State Share | Burden of Taxation/Added Value |
R34 | Share of Self-Financing | Self-Financing/Added Value |
T = 2016 | T = 2017 | T =2018 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | |Z| (p) | Decision | |Z| (p) | Decision | |Z| (p) | Decision | |||
R1 | 0.132 | 1.40 (0.161) | AH0 | 0.148 | 1.553 (0.120) | AH0 | 0.1626 | 1.126 (0.260) | AH0 |
R2 | 0.071 | 0.520 (0.603) | AH0 | −0.0122 | 0.077 (0.939) | AH0 | 0.0742 | 0.617 (0.537) | AH0 |
R3 | 0.0083 | 1.166 (0.244) | AH0 | 0.008 | 1.279 (0.201) | AH0 | 0.0078 | 1.634 (0.102) | AH0 |
R4 | −0.0051 | 0.549 (0.583) | AH0 | −0.0090 | 0.303 (0.762) | AH0 | −0.0436 | 1.578 (0.115) | AH0 |
R5 | 0.0318 | 0.706 (0.480) | AH0 | 0.0237 | 0.577 (0.564) | AH0 | −0.0185 | 0.391 (0.696) | AH0 |
R6 | 0.0938 | 1.114 (0.265) | AH0 | 0.0680 | 1.232 (0.218) | AH0 | 0.0159 | 0.376 (0.707) | AH0 |
R7 | 0.000 | 0.077 (0.939) | AH0 | −0.0625 | 0.966 (0.334) | AH0 | −0.0436 | 0.796 (0.426) | AH0 |
R8 | −0.0717 | 2.528 (0.011) | RH0 ** | −0.0617 | 2.198 (0.028) | RH0 ** | −0.0830 | 3.087 (0.002) | RH0*** |
R9 | −2.537 | 2.454 (0.014) | RH0 ** | 0.147 | 0.449 (0.653) | AH0 | 0.0311 | 0.488 (0.625) | AH0 |
R10 | 0.0144 | 1.457 (0.145) | AH0 | 0.0040 | 0.432 (0.666) | AH0 | 0.0040 | 0.488 (0.625) | AH0 |
R11 | −0.0184 | 0.577 (0.564) | AH0 | 0.0008 | 0.052 (0.958) | AH0 | 0.0340 | 1.158 (0.247) | AH0 |
R12 | 3.016 | 1.923 (0.055) | RH0 * | 0.559 | 1.095 (0.274) | AH0 | 1.525 | 1.281 (0.200) | AH0 |
R13 | −0.0167 | 1.739 (0.082) | RH0 * | −0.0262 | 2.304 (0.021) | RH0 ** | −0.0244 | 1.957 (0.050) | RH0 ** |
R14 | 0.0057 | 0.383 (0.701) | AH0 | 0.0255 | 1.771 (0.077) | RH0 * | 0.0263 | 1.440 (0.150) | AH0 |
R15 | −0.0011 | 0.061 (0.952) | AH0 | −0.0314 | 1.327 (0.184) | AH0 | −0.0506 | 2.199 (0.028) | RH0 *** |
R16 | 0.0036 | 0.335 (0.738) | AH0 | 0.0088 | 0.948 (0.343) | AH0 | 0.0152 | 1.368 (0.171) | AH0 |
R17 | −0.0072 | 3.321 (0.001) | RH0 *** | −0.0088 | 4.305 (0.000) | RH0 *** | −0.0142 | 5.015 (0.000) | RH0 *** |
R18 | 0.0136 | 1.279 (0.201) | AH0 | 0.0153 | 1.610 (0.107) | AH0 | 0.0263 | 2.602 (0.009) | RH0 *** |
R19 | 0.0153 | 0.617 (0.537) | AH0 | 0.007 | 0.230 (0.818) | AH0 | 0.0130 | 0.311 (0.756) | AH0 |
R20 | 0.011 | 1.392 (0.164) | AH0 | 0.0236 | 3.522 (0.000) | RH0 *** | 0.0322 | 4.120 (0.000) | RH0 *** |
R21 | 0.0133 | 1.190 (0.234) | AH0 | 0.0342 | 3.353 (0.001) | RH0 *** | 0.047 | 3.652 (0.000) | RH0 *** |
R22 | 0.160 | 1.428 (0.153) | AH0 | 0.288 | 2.877 (0.004) | RH0 *** | 0.399 | 3.821 (0.000) | RH0 *** |
R23 | 0.0475 | 1.085 (0.278) | AH0 | 0.0315 | 0.658 (0.511) | AH0 | 0.0535 | 1.561 (0.118) | AH0 |
R24 | 0.0254 | 0.803 (0.422) | AH0 | 0.0659 | 2.885 (0.004) | RH0 *** | 0.0861 | 3.498 (0.000) | RH0 *** |
R25 | 0.0087 | 0.867 (0.386) | AH0 | 0.0215 | 2.336 (0.019) | RH0 *** | 0.0186 | 2.207 (0.027) | RH0 ** |
R26 | −0.725 | 1.200 (0.230) | AH0 | −0.946 | 1.515 (0.130) | AH0 | 0.530 | 0.626 (0.532) | AH0 |
R27 | −74.34 | 2.772 (0.006) | RH0 *** | −95.73 | 3.127 (0.002) | RH0 *** | −98.97 | 3.079 (0.002) | RH0 *** |
R28 | −46.1 | 6.112 (0.000) | RH0 *** | −46.1 | 4.918 (0.000) | RH0 *** | −46.1 | 4.607 (0.000) | RH0 *** |
R29 | 0.0965 | 1.561 (0.118) | AH0 | 0.0801 | 1.126 (0.260) | AH0 | 0.112 | 1.110 (0.267) | AH0 |
R30 | 0.0561 | 0.835 (0.404) | AH0 | −0.105 | 1.529 (0.126) | AH0 | −0.0024 | 0.044 (0.965) | AH0 |
R31 | 0.0835 | 0.520 (0.603) | AH0 | −0.228 | 1.223 (0.221) | AH0 | 0.0054 | 0.028 (0.977) | AH0 |
R32 | −0.0164 | 1.242 (0.214) | AH0 | −0.0282 | 2.569 (0.010) | RH0 *** | −0.0278 | 1.790 (0.074) | RH0 * |
R33 | −0.0052 | 0.972 (0.331) | AH0 | −0.0019 | 0.343 (0.732) | AH0 | 0.0000 | 0.173 (0.862) | AH0 |
R34 | 0.0710 | 0.964 (0.335) | AH0 | 0.088 | 1.368 (0.171) | AH0 | −0.0020 | 0.061 (0.952) | AH0 |
Variables | R8 | R9 | R12 | R13 | R14 | R15 | R17 | R18 | R20 | R21 | R22 | R24 | R25 | R27 | R28 | R32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Healthy firms | ||||||||||||||||
Mean | 0.109 | 3.184 | −19.199 | 0.078 | 0.084 | 0.136 | 0.008 | 0.038 | 0.027 | 0.072 | 1.041 | 0.262 | 0.025 | 137.371 | 91.070 | 0.030 |
St.d | 0.126 | 9.805 | 58.052 | 0.080 | 0.110 | 0.155 | 0.008 | 0.091 | 0.081 | 0.100 | 0.687 | 2.965 | 0.080 | 104.061 | 27.850 | 0.136 |
Int rang | 0.156 | 2.592 | 7.375 | 0.060 | 0.064 | 0.082 | 0.010 | 0.052 | 0.037 | 0.058 | 0.692 | 0.136 | 0.038 | 132.606 | 0.000 | 0.050 |
Failing firms | ||||||||||||||||
Mean | 0.219 | 7.049 | −74.501 | 0.129 | 0.013 | 0.187 | 0.030 | −0.056 | −0.029 | 0.013 | 0.797 | −0.045 | −0.060 | 342.408 | 146.526 | −0.053 |
St.d | 0.235 | 71.226 | 283.560 | 0.186 | 0.339 | 0.183 | 0.040 | 0.346 | 0.238 | 0.219 | 0.838 | 0.400 | 0.330 | 412.249 | 112.667 | 1.059 |
Int rang | 0.275 | 6.903 | 27,942 | 0.098 | 0.087 | 0.198 | 0.026 | 0.073 | 0.041 | 0.059 | 0.717 | 0.149 | 0.079 | 346.307 | 0.000 | 0.145 |
Healthy and failing firms | ||||||||||||||||
Mean | 0.164 | 5.117 | −46.850 | 0.103 | 0.048 | 0.162 | 0.019 | −0.009 | −0.001 | 0.042 | 0.919 | 0.108 | −0.017 | 239.889 | 118.798 | −0.012 |
St.d | 0.196 | 50.782 | 206.155 | 0.145 | 0.254 | 0.171 | 0.031 | 0.257 | 0.179 | 0.172 | 0.775 | 2.117 | 0.243 | 317.178 | 86.495 | 0.755 |
Int rang | 0.227 | 5.008 | 16.286 | 0.087 | 0.074 | 0.149 | 0.017 | 0.045 | 0.036 | 0.063 | 0.713 | 0.116 | 0.041 | 178.447 | 46.100 | 0.090 |
R8 | R9 | R12 | R13 | R14 | R15 | R17 | R18 | R20 | R21 | R22 | R24 | R25 | R27 | R28 | |
R9 | 0.233 ** | 1 | |||||||||||||
R12 | −0.055 | −0.004 | 1 | ||||||||||||
R13 | 0.038 | −0.022 | 0.031 | 1 | |||||||||||
R14 | −0.294 ** | 0.027 | −0.012 | −0.394 ** | 1 | ||||||||||
R15 | 0.240 ** | −0.026 | −0.046 | 0.322 ** | −0.188 ** | 1 | |||||||||
R17 | 0.414 ** | 0.081 | −0.008 | 0.166 ** | −0.063 | 0.283 ** | 1 | ||||||||
R18 | −0.395 ** | 0.021 | −0.009 | −0.417 ** | 0.922 ** | −0.284* * | −0.267 ** | 1 | |||||||
R20 | −0.469 ** | 0.010 | 0.006 | −0.119 | 0.715 ** | −0.179 ** | −0.162 ** | 0.804 ** | 1 | ||||||
R21 | −0.433 ** | 0.014 | 0.009 | −0.122 * | 0.778 ** | −0.144 * | −0.146 * | 0.812 ** | 0.952 ** | 1 | |||||
R22 | −0.042 | −0.050 | 0.032 | −0.209 ** | −0.006 | −0.140 * | −0.288 ** | 0.080 | 0.054 | 0.087 | 1 | ||||
R24 | 0.012 | −0.002 | 0.014 | −0.039 | 0.149 * | 0.054 | −0.040 | 0.161 ** | 0.228 ** | 0.245 ** | 0.049 | 1 | |||
R25 | −0.397 ** | 0.024 | −0.006 | −0.430 ** | 0.921 ** | −0.282 ** | −0.262 ** | 0.979 ** | 0.812 ** | 0.800 ** | 0.084 | 0.163 ** | 1 | ||
R27 | 0.053 | 0.052 | −0.060 | 0.437 ** | −0.079 | 0.118 | 0.203 ** | −0.132 * | −0.032 | −0.029 | −0.304 ** | −0.048 | −0.134 * | 1 | |
R28 | 0.074 | 0.031 | −0.066 | 0.091 | −0.131* | 0.173 ** | 0.407 ** | −0.176 ** | −0.025 | −0.049 | −0.191 ** | −0.031 | −0.183 ** | 0.301 ** | 1 |
R32 | 0.008 | 0.062 | 0.008 | −0.006 | 0.072 | 0.020 | −0.018 | 0.064 | 0.067 | 0.070 | 0.046 | 0.067 | 0.066 | −0.049 | −0.109 |
Forecasts | Total | |||
---|---|---|---|---|
Observed | FF | HF | Number | Overall correct % |
HF | 42 | 3 | 45 | 93.3 (Specificity) |
FF | 5 | 40 | 45 | 88.9 (Sensibility) |
Number | 47 | 43 | 90 | 91.11% |
Coef. | Std. Err. | Z | P > |z| | (95% Conf. Interval) | ||
---|---|---|---|---|---|---|
R8 | 7.853663 | 3.384399 | 2.32 | 0.020 | 1.220363 | 14.48696 |
R9 | −0.0103403 | 0.0052636 | −1.96 | 0.049 | −0.0206568 | −0.0000238 |
R28 | 0.0526873 | 0.0137111 | 3.84 | 0.000 | 0.0258141 | 0.0795604 |
R17 | 97.76766 | 39.92304 | 2.45 | 0.014 | 19.51994 | 176.0154 |
R27 | 0.0104574 | 0.0044045 | 2.37 | 0.018 | 0.0018248 | 0.0190899 |
R21 | −17.94024 | 8.102113 | −2.21 | 0.027 | −33.82009 | −2.060395 |
R22 | 1.538356 | 0.7835943 | 1.96 | 0.050 | 0.0025392 | 3.074172 |
R24 | 2.217799 | 1.484134 | 1.49 | 0.135 | −0.6910496 | 5.126648 |
_cons | −10.71715 | 2.644346 | −4.05 | 0.000 | −15.89997 | −5.534331 |
Forecasts | Total | |||
---|---|---|---|---|
Observed | FF | HF | Number | Overall correct % |
HF | 40 | 5 | 45 | 88.89 (Specificity) |
FF | 9 | 36 | 45 | 80 (Sensitivity) |
Number | 49 | 41 | 90 | 84.44% |
Coef. | Std. Err. | z | P > |z| | (95% Conf. Interval) | ||
---|---|---|---|---|---|---|
R22 | 1.209856 | 0.5768244 | 2.10 | 0.036 | 0.0793012 | 2.340411 |
R27 | 0.0071661 | 0.0027158 | 2.64 | 0.008 | 0.0018433 | 0.012889 |
R28 | 0.0271729 | 0.0089364 | 3.04 | 0.002 | 0.009658 | 0.0446878 |
R17 | 76.71633 | 30.52944 | 2.51 | 0.012 | 16.87973 | 136.5529 |
R21 | −11.62971 | 5.219803 | −2.23 | 0.026 | −21.86034 | −1.399087 |
_cons | −5.729099 | 1.596219 | −3.59 | 0.000 | −8.857631 | −2.600566 |
Forecasts | Total | |||
---|---|---|---|---|
Observed | FF | HF | Number | Overall Correct % |
HF | 40 | 5 | 45 | 88.89 (Specificity) |
FF | 9 | 36 | 45 | 80 (Sensitivity) |
Number | 49 | 41 | 90 | 84.44% |
Coef. | Std. Err. | Z | P > |z| | (95% Conf. Interval) | ||
---|---|---|---|---|---|---|
R27 | 0.0038788 | 0.0018731 | 2.07 | 0.038 | 0.000207 | 0.0075506 |
R28 | 0.0205185 | 0.0084456 | 2.43 | 0.015 | 0.0039655 | 0.0370715 |
R22 | 0.9904179 | 0.5458068 | 1.81 | 0.070 | −0.0793438 | 2.06018 |
R17 | 111.5012 | 33.45605 | 3.33 | 0.001 | 45.92857 | 177.0739 |
R20 | −26.58118 | 10.76134 | −2.47 | 0.014 | −47.67303 | −5.489336 |
_cons | −5.215248 | 1.429241 | −3.65 | 0.000 | −8.016509 | −2.413988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zizi, Y.; Oudgou, M.; El Moudden, A. Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. Risks 2020, 8, 107. https://doi.org/10.3390/risks8040107
Zizi Y, Oudgou M, El Moudden A. Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. Risks. 2020; 8(4):107. https://doi.org/10.3390/risks8040107
Chicago/Turabian StyleZizi, Youssef, Mohamed Oudgou, and Abdeslam El Moudden. 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach" Risks 8, no. 4: 107. https://doi.org/10.3390/risks8040107
APA StyleZizi, Y., Oudgou, M., & El Moudden, A. (2020). Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. Risks, 8(4), 107. https://doi.org/10.3390/risks8040107