1. Introduction
Since the speech of Andrew Bailey, the Chief Executive of the Financial Conduct Authority, in 2017 on the future of the London interbank offered rate (LIBOR) it has steadily become clearer that the LIBOR interest rate benchmarks are no longer going to be supported in several major currency denominations. The change is primarily justified by the observation that unsecured (term-) lending, the cost of which LIBOR is meant to measure, is no longer a significant source of financing for financial institutions. Furthermore, the current LIBOR benchmark has fallen out favour, i.a., due to its survey-based nature prone to manipulation, see e.g.,
Gyntelberg and Wooldridge (
2008).
The move, much advocated by regulators suchlike the Financial Conduct Authority (FCA), has been towards a benchmark detached from the subjective opinions of a panel, such as the LIBOR panel of global banks, and closer to actual financial transactions. It has been decided, see
ISDA (
2019), that reliance on LIBOR and most of the other IBOR benchmarks should end and a transaction-based overnight rate—a so-called risk-free rate (RFR)—introduced as the alternative. In the USA, the Secured Overnight Financing Rate (SOFR)—an overnight rate derived from repurchase agreement transactions—is the chosen RFR. A similar benchmark, the reformed Sterling Overnight Index Average (SONIA), has been chosen in the UK, while in the Eurozone the Euro Short-Term Rate (STR) is the preferred RFR, which is to supersede EURIBOR
1. By construction, IBORs and the RFRs do not capture/reflect the same risks, see
Backwell et al. (
2019) for a discussion of this central discrepancy between overnight and term-based benchmarks. Even if they did, LIBOR is a term rate and therefore cannot be replaced as such by an overnight rate. A transformation of the RFR is thus necessary in order to achieve a certain level of affinity with the current LIBOR benchmark. After consulting a panel of market participants, the International Swaps and Derivatives Association (ISDA) has recently reported, c.f.
ISDA (
2019), that the preferred LIBOR replacement will be based on a discretely compounded average of daily rates, averaged over a period matching the LIBOR tenors, it is to supplant. Such a successor rate is known as a backward-looking benchmark. Furthermore, to account for differences in the risk premia associated with LIBOR and the RFR, respectively, a constant spread will be added to the backward-looking benchmark that will be based on historical data. The details of its determination can be found in
ISDA (
2019).
LIBOR is expected to be fully discontinued by the end of 2021. However, it is still (at the time of writing) the main benchmark newly issued loans and derivatives are linked to. In May 2018, the Chicago Mercantile Exchange (CME) launched SOFR and SONIA futures on their trading platform, and, while trading in these contracts is still sparse, the volume is growing. One would expect other linear and non-linear SOFR derivatives to follow suit as the 2021 deadline nears. Taking the current LIBOR-based derivatives market as an indicator, one would expect RFR linked versions of swaps, caps and swaptions along with the already trading SOFR/SONIA futures to become liquid once LIBOR has been discontinued.
In this paper we develop a class of discounting models that allows for closed-form pricing of derivatives written on a backward-looking benchmark. It is motivated by the recent work of
Mercurio (
2018) and
Lyashenko and Mercurio (
2019). The former presents a short-rate model for SOFR with a view towards the pricing of futures derivatives. The second paper extends the LIBOR Market Model (LMM) of
Miltersen et al. (
1997) to make it compatible with the backward-looking benchmark. Both approaches allow for explicit modelling of the backward-looking benchmark, but both suffer from the the same drawbacks of the short-rate modelling and LMM frameworks, respectively. Neither approach allows for closed-form pricing of swaptions for higher dimensions of the state vector. In particular, even the simplest version of the LMM heavily relies on approximations for the pricing of swaptions and of futures. Our rational savings account models are inspired by the rational term structure models originally proposed in
Flesaker and Hughston (
1996) and more recently further developed in
Akahori and Macrina (
2012),
Akahori et al. (
2014),
Macrina (
2014),
Nguyen and Seifried (
2015),
Crépey et al. (
2016),
Filipović et al. (
2017), and
Macrina and Mahomed (
2018). Most of the rational term structures models allow for closed-form swaption pricing, but—as we will show—these models are not well-suited for modelling a backward-looking benchmark. We develop a different class of models which share similarities with the rational models framework but, instead of modelling the pricing kernel under the real-world measure
, we model the savings account under the risk-neutral measure. Leaning on
Döberlein and Schweizer (
2001), we give conditions under which a rational savings account model may be expressed in terms of a short rate of interest process. As we shall show, rational savings account models are better suited for backward-looking interest rate benchmarks than the classical approach under the real-world probability measure. In particular, our framework allows for closed-form pricing of caplets, swaptions and futures, by which we mean that these prices can be calculated as one-dimensional numerical integrals. Hence, our model structure is tractable at a level comparable to the rational term structure models cited above.
We begin with a general description of the model, and then we present the pricing formulas in a model driven by affine processes. We wrap up with concluding remarks and an outlook on future investigations.
2. Derivatives on Backward-Looking Rates
Let
be a filtered probability space with
. The bank account numeraire process
is associated with the risk-neutral measure denoted by
. It is customary to model the bank account numeraire by
where
is a specified instantaneous short rate. Instead, we shall work with a generalised notion of the bank account referred to as an implied savings account in
Döberlein and Schweizer (
2001). Thus we assume that
is a strictly positive process of finite variation, which generalises (
1).
With LIBOR discontinued and superseded by an RFR benchmark, the rate-fixing and discounting are applied by using the same numeraire process
. Hence no features typical of multi-curve interest rate systems emerge, and one is effectively back in a single-curve setting. The standard zero-coupon bond (ZCB) has a price process
given by
A European-style derivative with random payoff
at time
T has at time
a price given by
Letting
denote the day-count fraction of an overnight loan, it follows from standard interest rate theory that the discrete overnight rate is
This is what ISDA refers to as the Risk-Free Rate (RFR), a benchmark rate that may correspond to SOFR, SONIA, STR etc., in their respective currencies. The proposed LIBOR replacement is the following rate referred to as the backward-looking benchmark:
where
. A standard approximation applied in the literature, and in particular in
Lyashenko and Mercurio (
2019), is to replace discrete by continuous compounding and hence use
We will use this approximation throughout the paper.
2We can compare this rate to a classical discrete forward-looking term rate
again with tenor
, i.e., the rate on a loan that starts at time
T and has to be repaid at time
U. The term rate
is based on the same curve as the backward-looking benchmark and can be thought of as LIBOR without the risk premia for credit and liquidity mentioned in the introduction.
In order to account for the risk premia, the actual LIBOR fallback used when converting existing LIBOR contracts will be
, where
c is determined by the historical relationship between LIBOR and
, see
ISDA (
2019). For ease of presentation, we shall ignore the spread, and we focus on the implications of changing to a backward-looking benchmark from a classical forward-looking rate. The first thing to notice is that
is
-measurable while
is
-measurable, where
. This change, while subtle, has substantial implications for the pricing of interest rate derivatives as we show in the next section.
2.1. Swaplet
Let us first consider the expectation of the discounted rate or what could be called a zero-strike swaplet, or one element in the floating leg of a swap. For
, we have
The latter equality reveals that, for
, backward-looking rates are priced in the same way as the forward-looking equivalent, and by implication it follows that the valuation of linear derivatives remains essentially unaffected by the backward-looking nature of
. However, for
, one has instead
Thus when one moves to pricing the derivative after its initiation at
the payoff is still undetermined as
is only measurable at time
U. Relation (
2) thus becomes explicitly dependent on the value of the bank account
, which is not the case in a classic forward-looking setting as given in the Expression (3).
2.2. Forward Rate Agreement
The forward rate agreement (FRA) based on a forward-looking benchmark rate, generates a cash flow
at time
T. In a single-curve setting, this can be considered a linear derivative by noting that for
The price of the FRA thus becomes equivalent to the value of a contract with a cash flow
at time
U. It is not possible to readily substitute
with
in Equation (
4), because the latter is not measurable at time
T (aka ‘measurability problem’). This is likely to make transitioning FRA contracts from the forward- to the backward-looking benchmarks challenging as discussed in
Henrard (
2019). The closest backward-looking counterpart to the FRA is a swaplet paying
at time
U. This would be congruent with the standard FRA for
, since
However, for
we have
The fact that the payoff is random beyond the initiation point
T may appear inconsequential, but in practice it matters a great deal, for many risk management systems now have to be reconfigured to address correctly the randomness within the interval
. See again
Henrard (
2019) for further discussion.
2.3. Caplet
Similarly, a caplet written on the backward-looking rate would presumably pay
at time
U. We can similarly price it for
. Let
, and we have
which we can compare with the price of a standard caplet with payoff
at time
U. For
we have
While the linear derivatives are priced the same in the backward- and forward-looking setting, at least for
, it is clear from the above equation that the caplets are not. In fact, as also shown in
Lyashenko and Mercurio (
2019) an application of Jensen’s inequality to Equation (
33) reveals that
In other words a caplet written on the backward-looking benchmark is always worth more than or equal to its forward-looking counterpart.
2.4. Swaps and Swaptions
An RFR swap can be defined as a contract that has a floating leg paying
at times
and a fixed leg paying
K at the same dates. We can value the swap at time
as
We notice that, for
,
is in fact equivalent to the value of a classical swap paying the discrete forward-looking rate
at time
instead of
at time
. This is not the case for
for some
where the value of future payments becomes
It again demonstrates that the underlying challenge with the backward-looking regime is that one gets explicit dependence on the savings account process once the valuation continues beyond the initiation date of the contract.
A swaption is an option to enter into a swap at time
, and we can of course price it for
as
Since the valuation of the swap is unaffected by whether or not the underlying rate is backward- or forward-looking if priced before the starting time , it follows that swaption pricing is unaffected by the shift from forward to backward-looking rates.
2.5. Considerations
These preliminary examples illustrate that changing the benchmark from forward-looking to backward-looking rates will alter the pricing and risk management of linear and nonlinear derivatives. In particular (
2) and (
9) suggest that a modelling paradigm that provides an explicit expression for the bank account
or more precisely its reciprocal
is advantageous. This is possible by using an affine short-rate model, via the relation
, but, as is well-known, this choice does not in general lead to a closed-form solution for swaptions—approximations such as the one in
Singleton and Umantsev (
2002) have to be applied.
Lyashenko and Mercurio (
2019) extend the LMM framework to include explicit expressions for the bank account in the time interval
, but the framework suffers from the general tractability issues in the standard LMM, which involve non-trivial issues with Monte-Carlo simulation, and a lack of closed-form pricing for swaptions as well as futures.
A framework that prices swaptions in closed-form is one that results in discounted ZCB prices being linear in the spacial variable. The pricing kernel models by
Flesaker and Hughston (
1996) and
Rutkowski (
1997) are established examples thereof. This approach has been further studied and extended in
Filipović et al. (
2017), who demonstrate that it has excellent empirical properties. Its calibration properties in a multi-curve context are studied in
Crépey et al. (
2016). Such models of rational form could naturally be applied also to price swaptions on backward-looking rates. However, in the case of derivatives with payoffs requiring direct modelling of the savings account, it turns out that it is not as straightforward as that. Consider the well-known relation
where
is the risk-neutral measure associated with the savings account (numeraire) process
. If the aim is to obtain a rational form for the savings account process
, see Assumption 1 below, then modelling the pricing kernel
directly may be a tedious path to take, which not necessarily will lead to the desired goal. What we are really interested in is an explicit expression for the process
. Thus, we propose that the savings account process be of rational form, as postulated in Assumption 1 below. We will show that this allows for closed-form pricing under a risk-neutral measure of all derivatives written on a backward-looking interest rate benchmark studied in this section. For the theory underpinning the distinction between an (implied) savings account and a so-called classical savings account (one that may be written in terms of a short rate process), we refer to
Döberlein and Schweizer (
2001).
The discontinuation of interbank offered rate benchmarks has been described by some as the biggest experiment ever in financial markets. These are momentous times while market participants scramble to prepare for the transition to RFR benchmarks. The discontinuation of term-based benchmarks, such as LIBOR, reduces a multiple-curve interest rate system to a single-curve one, akin to the ones in place before the great financial crisis more than a decade ago. As discussed in
Backwell et al. (
2019), the lack of a term-rate system produces increased exposure to roll-over risk. As a consequence, one can expect a refinancing strategy to become costlier due to the increased roll-over frequency of debt that is rolled-over on an overnight basis. One ought to expect such effects to also impact any so-called ‘LIBOR fallback’ provisions and in particular the calculation of any adjustment (spread) to legacy contracts written on term-rates, see
Mercurio (
2018) and
Henrard (
2019) for example. The adoption of a consistent pricing and hedging approach that models and explains the nature of term rates and the impact of roll-over risk on borrowing strategies appears the right way forward. This would allow for a transparent treatment of term rates and overnight interest rate benchmarks so that a proposed transition to the latter has a chance to be appreciated in its entirety. A lack of term-based benchmark rates may produce a level of opacity in lending markets. Market makers may offer rates, which cannot be ‘independently assessed’ in the sense that a mark-to-market comparison to a FRA market is not going to be available. For first advancements on consistent approaches to term- and overnight interest rate benchmarks, we here refer to
Alfeus et al. (
2018),
Backwell et al. (
2019), and to an article by Macrina & Mahomed (in preparation) with a focus on term risk in interest rate markets. We conclude our reflections by noting that, at the time of writing, there is no global consensus regarding the transition to RFRs. Depending on the jurisdiction, term-based benchmarks are to be superseded by RFRs (e.g., UK), term-based and RFR benchmarks shall coexist until both are accepted as market representatives (e.g., USA, Eurozone). Such ambiguities are perhaps a reflection of the differences between market structures, but also derive from the different natures of the benchmarks themselves that are being used.
3. Rational Savings Account Models
In the case where one deals with backward-looking rates, we have now shown instances where the payoff itself will explicitly depend on the savings account. It is therefore a clear advantage to directly model the process
. Building on
Döberlein and Schweizer (
2001), we make the following assumption throughout this paper:
Assumption 1. The savings account model is given byfor all , and where is a stochastic, nonnegative process of finite variation. The function is deterministic, strictly positive, of bounded variation while is deterministic, nonnegative and of bounded variation. It is assumed they satisfy the initial condition, The financial or economic interpretation of the savings account is no different from that of a classical bank account. The savings account
discounts/accrues cash flows, and, as the name suggests, quantifies the savings made over a period of time. It is also the numeraire associated with an equivalent risk-neutral measure. The difference here is that the savings account model, given by Definition (
16), is more general than bank account processes defined in terms of a short-rate model. The rational form of Relation (
16) allows for an increased level of tractability, as we will see next, when deriving the price dynamics of interest rate derivatives under a risk-neutral measure
.
Lemma 1. The savings account , defined by Equation (16), is a strictly positive and finite-variation process. Proof. Let the sample path for a given
be
and define the mapping
. The functions
a,
b and
h have bounded variation. It follows from the chain rule of bounded variation, see
Ambrosio and Dal Masio (
1990), that the product (and trivially the sum) of two functions of bounded variation are of bounded variation. Hence, the mapping
g has bounded variation. Let
. Then the savings account is given by the composite function
. The function
f is Lipschitz-continuous and strictly positive on
. By another application of the chain rule result, it turns out that the composite function
is of bounded variation for all
and thus that the stochastic process
is strictly positive and has finite variation for all
. □
Lemma 1 establishes that the specification in Equation (
16) is a savings account in the sense of
Döberlein and Schweizer (
2001). The probability measure
, associated with the numeraire process (
, is hence a risk-neutral measure.
Remark 1. If any of the conditions underpinning Lemma 1 are relaxed, resulting in being a positive semi-martingale that is not of finite variation, then is no longer a savings account. It would however still qualify as a numeraire and its associated measure would still be a martingale measure, though not a risk-neutral measure. This means that the true savings account process would no longer be directly specified, thus making the modelling advantage of our approach void.
We are now in the position to write down the price process of a discount bond:
where we recall that the conditional expectation is taken with respect to the risk-neutral measure
. Assuming that the bond price function
is differentiable in
T, the instantaneous bond return process
has the form
where the dot-notation stands for differentiation with respect to
t. It is worth emphasising that the instantaneous bond return may not be given by a short rate, as used in Equation (
1), in general. While
is of finite variation,
is not of finite variation, in general. It follows that the ZCB price process and the instantaneous bond return process may also be of infinite variation. The above expression also reveals that, even in the case of a strictly increasing process
, the support of
is not limited to a positive domain. Its sign is controlled by the time-derivatives
and
, which may have either sign, and the model can produce positive as well as negative rates. Furthermore, the Form (
17) of the discount bond allows for the calibration of the price model to the discount bond initial term-structure
. We have
where
. Solving for
and inserting the result into Equation (
17), one obtains
Similar to an HJM-style model, the deterministic function may be automatically calibrated to the initial term structure while and the specific parameters related to the process can be used to calibrate to non-linear derivatives.
Assumption 2. The stochastic process is taken to bewhere and is an affine process, as characterised in the appendix, defined on and such that . Remark 2. In line with Proposition 12 in Döberlein and Schweizer (2001), for a process of the form (21)—not necessarily defined in terms of an affine process—such that for all , it follows that the dynamics of the savings account, given by Relation (16), may be written as , whereis the short rate of interest. This is obtained by applying Ito’s quotient rule. It then also follows that the instantaneous return, with Form (18), on the discount bond satisfies , . It follows from standard theory that
is strictly positive and of finite variation. Theorem 4.1 in
Keller-Ressel (
2008) states that if one defines
then
is affine in
. By definition of an affine process, there exist functions
and
such that
for all
. Here,
where
and where
is the the strip of existence. We assume that
where
denotes the interior of the set
. Furthermore, we will often need the derivatives with respect to the vector
, and so
Next, we derive the pricing formulas of the main fixed-income derivative instruments under Assumptions 1 and 2.
3.1. Linear Derivatives
We next make use of the savings account process introduced in Assumption 1, and in particular consider the setting in Assumption 2, to derive the no-arbitrage price process of linear derivatives written on a backward-looking benchmark. In the following proposition, we begin with a discount bond.
Proposition 1. The discount bond price process is given bywhere and . Proof. We apply Lemma A4 to obtain
where
is a
d-dimensional unit-vector with one in the first entry and zero elsewhere. Inserting the above in Equation (
17) yields the Equality (
27). □
3.2. Caplets and Swaptions
Proposition 2. The price of a caplet paying at time U for any is,where , , , andfor any such that and where R is any real constant such that . Proof. Relation (
30) follows by direct insertion of the definition of
and
and from rewriting the expression as a function of
and
. Result (31) follows directly from Theorem 4 in
Filipović et al. (
2017), and Equation (
33) follows from Lemma A5 in
Appendix B. □
The following proposition shows that a closed-form formula for swaptions similar to those derived in, e.g.,
Flesaker and Hughston (
1996) and other works on rational models, can be derived in our setup.
Proposition 3. The price of a swaption is given aswhere and and we haveFor all such that . is any real constant such that . Proof. Relation (
34) follows by direct insertion of Expression (
27) into Relation (
13) and from rewriting the expression as a function of
. Equation (35) follows by an application of Theorem 4 in
Filipović et al. (
2017). □
3.3. Futures
Finally, we consider the contract of a future. A standard result, presented in, e.g.,
Hunt and Kennedy (
2004), is that the price of a future contract with a random payoff
X, measurable at time
U, is priced as the risk-neutral expectation thereof, without discounting, that is,
. The convention for three-month SOFR/SONIA futures is that their payoff is given by the difference between a notional and the discretely compounded backward-looking rate. Assuming a unit notional, the payoff is
, where
three months. As in
Mercurio (
2018), we use
and define the futures rate for a three-month contract by
In a LIBOR market model, this expectation cannot be solved in closed-form; an approximation is developed in
Lyashenko and Mercurio (
2019). In the following proposition, we show that in our setting no approximation is needed.
Proposition 4. The futures rate for a three-month SOFR futures contract expiring at time U with three months is given bywhere and . Moreover, Proof. Then,
from which Equation (
38) follows. In the third equality, Fubini’s theorem is applied. This is valid subject to
for all
. This condition holds because
for all
. □
The convention for one-month SOFR futures is that their payoff is an arithmetic average rate instead of a geometric compounded rate. Following
Mercurio (
2018), we define the rate of one-month futures expiring at time
U, where
, by
where
is the arithmetic average of the overnight rate over one month. Then,
Here,
spans the course of one month. This case is not covered in the LMM context of
Lyashenko and Mercurio (
2019), and it is not clear how one would proceed without further approximations. It is investigated in a short rate model in
Mercurio (
2018), where the arithmetic average is approximated by an integral over the short rate of interest. This approximation simplifies the expression for Solution (
46) in an affine short rate model, but it is in fact not necessary—even for the short rate model they present. As shown below, tractability depends on obtaining an analytical result for the expression
, which exists by definition in an exponential affine short rate model. In our savings account setting the resulting expression for the conditional expectation is a little more involved, but nevertheless it only amounts to performing a one-dimensional integration.
Lemma 2. For all we havewhere Proof. Applying Lemma A2 to the first term yields
Similarly, by applying Lemmas A3 and A4 to the second term gives
□
With this result at hand, we can now express the one-month futures rate:
Proof. A direct application of Lemma 2 in Relation (
46) confirms the result. □
Example: Multidimensional CIR Process
We conclude with a sketch of an example. Assume
where
and where
is given by
and
and
is standard Brownian motion independent of
for
. The conditional moment generating function
for
defined above is found by first noticing that
Using the independence property of the processes
and applying Lemma A6 gives
It follows from Lemma A6 that the result holds for the set
. The derivatives needed in the pricing equations can be calculated as follows:
The explicit expressions are lengthy and tedious to calculate by hand, but can be obtained with ease by using a software such as Mathematica offering symbolic calculations. In
Appendix A and
Appendix B, we include some results that assist with the mathematical developments in this section.
4. Conclusions and Outlook
In this paper we develop a new class of rational term structure models that is tailored to the new backward-looking interest rate benchmarks, which are meant to supersede the forward-looking LIBOR. Currently, only the three-month SOFR and SONIA futures can be said to be traded on the new overnight benchmarks, and trading volumes are still rather limited, but nevertheless growing as the LIBOR discontinuation deadline nears. As trade volumes in SOFR/SONIA-based contracts rise, we expect that swaps, caps and swaptions enter the market in a fashion similar to what is described in this paper. A maturing market will generate the needed data also to perform empirical investigations on the validity of the proposed models. At present, not even linear derivatives are traded liquidly, meaning that an initial term structure
cannot be implied in a straightforward way. An implied initial term structure would allow for the construction of market-implied, forward-looking term rates via the formula
; an important benchmark, much coveted by market participants. The most liquid market instrument referencing RFR rates are the one-month and three-month SOFR futures contracts trading on the Chicago Mercantile Exchange. The non-linearity of the futures contract implies that futures prices do not determine the initial curve
in a unique fashion and vice versa, of course. However, model-free attempts to use futures prices to infer the SOFR-curve have been pursued by applying an approximation in
Heitfield and Park (
2019). The authors envisage to work on a similar procedure, but performed in an arbitrage- and approximation-free manner using the model structure presented in this paper.
A much easier and model-free approach to infer the initial curve would be possible should a liquid market for truly linear derivatives, such as swaps, arise. In this case the initial curve could be constructed using standard single-curve bootstrapping techniques.
It is unclear whether cash market participants will be satisfied with solely using a benchmark free of credit and liquidity risk premia such as SOFR. Alternative indices, such as the ICE Bank Yield Index or AMERIBOR, which include credit risk premia, might soon become increasingly relevant as an alternative to SOFR once LIBOR is discontinued. If this is what the future will bring, then the single-curve framework of this paper would need to be extended to a multi-curve setting in order to price the differences in risk premia across indices. This could be done along the lines of
Crépey et al. (
2016) and
Macrina and Mahomed (
2018), properly adjusting for the difference in model structure.