Stock Returns’ Co-Movement: A Spatial Model with Convex Combination of Connectivity Matrices
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Underpinning
2.2. Empirical Literature
2.2.1. Country-Level Stock Returns Co-Movements
2.2.2. Company-Level Stock Returns Co-Movements
3. Methodology
3.1. The SAR Convex Combination Model
- Y is an NT × 1 vector of the dependent variable.
- ρ is the spatial autoregressive parameter that measures the intensity of the spatial interdependency.
- X is an NT × K matrix of exogenous explanatory variables.
- β is a K × 1 vector of unknown coefficients to be estimated.
- ε is an NT × 1 vector of disturbance terms, where εi are independently and identically distributed error terms with zero mean and variance σ2.
- W is an NT × NT spatial weights matrix that equals IT ⊗ WN, where ⊗ denotes the Kronecker product. IT is an identity matrix of dimension T, and WN is an N × N spatial weight matrix describing the spatial arrangement of the cross-section units.
3.2. Weight Matrices and Data
3.2.1. Construction of the Weight Matrices
3.2.2. Similarity of the Wm, m = 1, …, M Weight Matrices
3.3. Data
4. Empirical Results
4.1. Spatial Correlation Tests
4.2. Results of the SAR Model with Various Matrices
4.3. Results of the SAR Convex Combination Model
4.4. Robustness Analysis: The SAR Convex Combination BMA Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abate, Girum Dagnachew. 2015. On the Link between Volatility and Growth: A Spatial Econometrics Approach. Spatial Economic Analysis 11: 27–45. [Google Scholar] [CrossRef]
- Abuzayed, Bana, Elie Bouri, Nedal Al-Fayoumi, and Naji Jalkh. 2021. Systemic risk spillover across global and country stock markets during the COVID-19 pandemic. Economic Analysis and Policy 71: 180–97. [Google Scholar] [CrossRef]
- Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic. [Google Scholar] [CrossRef]
- Arbia, Giuseppe. 2016. Spatial econometrics: A rapidly evolving discipline. Econometrics 4: 18. [Google Scholar] [CrossRef]
- Arnold Matthias, Sebastian Stahlberg, and Dominik Wied. 2013. Modeling different kinds of spatial dependence in stock returns. Empirical Economics 44: 761–74. [Google Scholar] [CrossRef]
- Asgharian, Hossein, Wolfgang Hess, and Lu Liu. 2013. A spatial analysis of international stock market linkages. Journal of Banking & Finance 37: 4738–54. [Google Scholar] [CrossRef]
- Bai, Siyu, Wei Cui, and Long Zhang. 2018. The Granger causality analysis of stocks based on clustering. Cluster Computing 22: 14311–16. [Google Scholar] [CrossRef]
- Barberis, Nicholas, Andrei Shleifer, and Jeffrey Wurgler. 2005. Co-movement. Journal of Financial Economics 75: 283–317. [Google Scholar] [CrossRef]
- Bekaert, Geert, Robert J. Hodrick, and Xiaoyan Zhang. 2009. International Stock Return Comovements. The Journal of Finance 64: 2591–626. [Google Scholar] [CrossRef]
- Ben Abdallah, Nadia, Halim Dabbou, and Mohamed Imen Gallali. 2022. The Contribution of Spatial Econometrics in the Field of Empirical Finance. Review of Economics and Finance 20: 17–31. [Google Scholar] [CrossRef]
- Ben Abdallah, Nadia, Halim Dabbou, and Mohamed Imen Gallali. 2023. Contagion in the Euro area sovereign CDS market: A spatial approach. Journal of Risk Finance 24: 614–30. [Google Scholar] [CrossRef]
- Bera, Anil K., Sebnem Er, and Neslihan Fidan-Kececi. 2016. Spatial Dependence in Financial Data: Importance of the Weights Matrix. Arthaniti-Journal of Economic Theory and Practice 15: 29–42. [Google Scholar] [CrossRef]
- Breitenecker, Robert J., and Antje Weyh. 2013. Modelling regional start-up activity in Austria and Germany: A comparison of traditional and spatial econometric methods. International Journal of Entrepreneurial Venturing 5: 195–211. [Google Scholar] [CrossRef]
- Cavaglia, Stefano, Christopher Brightman, and Michael Aked. 2000. The increasing importance of industry factors. Financial Analysts Journal 56: 41–54. [Google Scholar] [CrossRef]
- Chen, Honghui, Vijay Singal, and Robert Frederick Whitelaw. 2016. Comovement Revisited. Journal of Financial Economics 121: 624–44. [Google Scholar] [CrossRef]
- Chulia, Helena, Montserrat Guillén, and Jorge M. Uribe. 2017. Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile. Emerging Markets Review 31: 32–46. [Google Scholar] [CrossRef]
- Chuluun, Tuugi. 2017. Global Portfolio Investment Network and Stock Market Comovement. Global Finance Journal 33: 51–68. [Google Scholar] [CrossRef]
- Czapkiewicz, Anna, Paweł Jamer, and Joanna Landmesser. 2018. Effects of Macroeconomic Indicators on the Financial Markets Interrelations. Finance a Uver: Czech Journal of Economics & Finance 68: 267. [Google Scholar]
- Dajčman, Silvo, and Mejra Festić. 2012. Interdependence between the Slovenian and European stock markets–A DCC-GARCH Analysis. Economic Research-Ekonomska Istraživanja 25: 379–95. [Google Scholar] [CrossRef]
- Das, Debojyoti, Puja Bhowmik, and Rabin Kumar Jana. 2018. A multiscale analysis of stock return co-movements and spillovers: Evidence from Pacific developed markets. Physica A: Statistical Mechanics and Its Applications 502: 379–93. [Google Scholar] [CrossRef]
- Debarsy, Nicolas, and James Paul LeSage. 2018. Flexible dependence modeling using convex combinations of different types of connectivity structures. Regional Science and Urban Economics 69: 48–68. [Google Scholar] [CrossRef]
- Debarsy, Nicolas, and James Paul LeSage. 2021. Using convex combinations of spatial weights in spatial autoregressive models. In Handbook of Regional Science. Berlin and Heidelberg: Springer, pp. 2267–82. [Google Scholar] [CrossRef]
- Debarsy, Nicolas, and James Paul LeSage. 2022. Bayesian Model Averaging for Spatial Autoregressive Models Based on Convex Combinations of Different Types of Connectivity Matrices. Journal of Business and Economic Statistics 40: 547–58. [Google Scholar] [CrossRef]
- Eckel, Stefanie, Gunter Löffler, Alina Maurer, and Volker Schmidt. 2011. Measuring the Effects of Geographical Distance on Stock Market Correlation. Journal of Empirical Finance 18: 237–47. [Google Scholar] [CrossRef]
- Elhorst, J. Paul. 2010. Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis. Taylor & Francis Journals 5: 9–28. [Google Scholar] [CrossRef]
- Endri, Endri, Firman Fauzi, and Maya Syafriana Effendi. 2024. Integration of the Indonesian Stock Market with Eight Major Trading Partners’ Stock Markets. Economies 12: 350. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth Ronald French. 1992. The Cross-Section of Expected Stock Returns. The Journal of Finance 47: 427–65. [Google Scholar] [CrossRef]
- Fernandez, Viviana. 2011. Spatial linkages in international financial markets. Quantitative Finance 11: 237–45. [Google Scholar] [CrossRef]
- Fernández-Avilés, Gema, José Maria Montero, and Alexei G. Orlov. 2012. Spatial modeling of stock market comovements. Finance Research Letters 9: 202–12. [Google Scholar] [CrossRef]
- Forbes, Kristin, and Roberto Rigobon. 2002. No contagion, only interdependence: Measuring stock-market comovements. Journal of Finance 57: 2223–61. [Google Scholar] [CrossRef]
- Frijns, Bas, Willem F. C. Verschoor, and Remco C. J. Zwinkels. 2017. Excess Stock Return Comovements and the Role of Investor Sentiment. Journal of International Financial Markets, Institutions and Money 49: 74–87. [Google Scholar] [CrossRef]
- Gong, Ping, and Yong Weng. 2016. Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market. Physica A: Statistical Mechanics and Its Applications 441: 173–91. [Google Scholar] [CrossRef]
- Grubel, Herbert G. 1968. Internationally Diversified Portfolios: Welfare Gains and Capital Flows. The American Economic Review 58: 1299–314. [Google Scholar]
- Gu, Yajun. 2020. Spatial Measurement of Regional Capacity in China Based on Static and Dynamic Spatial Panel Econometric Model. Journal of Physics: Conference Series 1533: 22068. [Google Scholar] [CrossRef]
- Hazır, Cilem Selin, James Paul LeSage, and Corinne Autant-Bernard. 2017. The role of R&D collaboration networks on regional knowledge creation: Evidence from information and communication technologies. Paper in Regional Science 97: 549–67. [Google Scholar] [CrossRef]
- International Monetary Fund. 2021. World Economic Outlook: Recovery During a Pandemic. Chapter 4, Trade and Global Value Chains. Washington, DC: IMF. [Google Scholar]
- Just, Małgorzata, and Krzysztof Echaust. 2020. Stock market returns, volatility, correlation, and liquidity during the COVID-19 crisis: Evidence from the Markov switching approach. Finance Research Letters 37: 101775. [Google Scholar] [CrossRef]
- Kaffel, Bilel, and Fathi Abid. 2020. Time-Frequency Wavelet Analysis of Stock-Market Co-Movement Between and Within Geographic Trading Blocs.World Scientific Book Chapters. In Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning. Edited by Cheng Few Lee and John C. Lee. Chapter 36. Singapore: World Scientific Publishing Co. Pte. Ltd., pp. 1399–437. [Google Scholar]
- Keiler, Sebastian, and Armin Eder. 2013. CDS Spreads and Systemic Risk—A Spatial Econometric Approach. Deutsche Bundesbank No 01/2013. Available online: https://ssrn.com/abstract=2207625 (accessed on 2 June 2025).
- Kelejian, Harry H., and Gianfranco Piras. 2011. An extension of Kelejian’s J-test for non-nested spatial models. Regional Science and Urban Economics 41: 281–92. [Google Scholar] [CrossRef]
- Kirikkaleli, Dervis, and Hasan Güngör. 2021. Co-movement of commodity price indexes and energy price index: A wavelet coherence approach. Financial Innovation 7: 15. [Google Scholar] [CrossRef]
- Kutzker, Tim, and Dominic Wied. 2024. Testing the Correct Specification of a Spatial Dependence Panel Model for Stock Returns. Empirical Economics 66: 2083–103. [Google Scholar] [CrossRef]
- LeSage, James Paul. 2008. An Introduction to Spatial Econometrics. Revue d’Economie Industrielle 123: 19–44. [Google Scholar] [CrossRef]
- LeSage, James Paul. 2014. Spatial econometric panel data model specification: A Bayesian approach. Spatial Statistics 9: 122–45. [Google Scholar] [CrossRef]
- LeSage, James Paul. 2021. A panel data toolbox for MATLAB. Journal of Statistical Software 76: 1–36. [Google Scholar]
- LeSage, James Paul, and R. Kelly Pace. 2009. Introduction to Spatial Econometrics. Boca Raton: CRC Press Taylor & Francis Group. [Google Scholar]
- LeSage, James Paul, and R. Kelly Pace. 2014. The biggest myth in spatial econometrics. Econometrics 2: 217–49. [Google Scholar] [CrossRef]
- Letteri, Ivan. 2024. Stock Market Forecasting Using Machine Learning Models Through Volatility-Driven Trading Strategies. Paper presented at the 6th International Conference on Finance, Economics, Management and IT Business (FEMIB 2024), Angers, France, April 28–29; pp. 96–103. [Google Scholar]
- López-García, María Nieves, Miguel Ángel Sánchez-Granero, Juan Evangelista Trinidad-Segovia, Antonio Manuel Puertas, and Francisco Javier De las Nieves. 2020. A New Look on Financial Markets Co-Movement through Cooperative Dynamics in Many-Body Physics. Entropy 22: 954. [Google Scholar] [CrossRef] [PubMed]
- Mugerman, Yevgeny, Orr Yidov, and Zvi Wiener. 2020. By the light of day: The effect of the switch to winter time on stock markets. Journal of International Financial Markets, Institutions and Money 65: 101197. [Google Scholar] [CrossRef]
- Ozdemir, Zeynel Abidin. 2009. Linkages between international stock markets, A multivariate long-memory approach. Physica A 388: 2461–68. [Google Scholar] [CrossRef]
- Paelinck, Jean Henri Paul, and Leo Hendrik Klaassen. 1979. Spatial Econometrics. Farnborough: Saxon House. [Google Scholar]
- Paramati, Sudharshan Reddy, Eduardo Roca, and Rakesh Gupta. 2016. Economic integration and stock market dynamic linkages: Evidence in the context of Australia and Asia. Applied Economics 48: 4210–26. [Google Scholar] [CrossRef]
- Rua, António, and Luís Catela Nunes. 2009. International comovement of stock market returns, A wavelet analysis. Journal of Empirical Finance 16: 632–39. [Google Scholar] [CrossRef]
- Schmitt, Tobias A., Rudi Schäfer, Dominik Wied, and Thomas Guhr. 2016. Spatial dependence in stock returns: Local normalization and VaR forecasts. Empirical Economics 50: 1091–109. [Google Scholar] [CrossRef]
- Selan, Beatriz, and Aquiles E. G. Kalatzis. 2017. Peer Effects of Stock Returns and Financial Characteristics: Spatial Approach for an Emerging Market. Athens/papers/EFMA2017_0315. Available online: https://www.efmaefm.org/0EFMAMEETINGS/EFMA%20ANNUAL%20MEETINGS/2017-Athens/papers/EFMA2017_0315_fullpaper.pdf (accessed on 12 December 2020).
- Tam, Pui Sun. 2014. A Spatial–Temporal Analysis of East Asian Equity Market Linkages. Journal of Comparative Economics 42: 304–27. [Google Scholar] [CrossRef]
- Weng, Yong, and Ping Gong. 2016. Modeling Spatial and Temporal Dependencies Among Global Stock Markets. Expert Systems with Applications 43: 175–85. [Google Scholar] [CrossRef]
- Wied, Dominik. 2013. CUSUM-type Testing for Changing Parameters in a Spatial Autoregressive Model for Stock Returns. Journal of Time Series Analysis 34: 221–29. [Google Scholar] [CrossRef]
- Zhang, Homg, Xiaojie Gao, Keqiang Dong, and Adiel T. de Almeida-Filho. 2022. The Global Transmission of Stock Market: A Spatial Analysis. Mathematical Problems in Engineering 2022: 5049014. [Google Scholar] [CrossRef]
- Zhang, Xinyu, and Yu Jihai. 2018. Spatial weights matrix selection and model averaging for spatial autoregressive models. Journal of Econometrics 203: 1–18. [Google Scholar] [CrossRef]
- Zhu, Bing, and Stanimira Milcheva. 2020. The pricing of spatial linkages in companies’ underlying assets. Journal of Real Estate Finance & Economics 61: 443–75. [Google Scholar] [CrossRef]
Wdistance | Wsector | Wtrade | Wsize | |
---|---|---|---|---|
Wdistance | 1.000 | −0.008 | 0.551 | 0.032 |
Wsector | −0.008 | 1.000 | 0.016 | −0.027 |
Wtrade | 0.551 | 0.016 | 1.000 | 0.051 |
Wsize | 0.032 | −0.027 | 0.051 | 1.000 |
Wdistance | Wsector | Wtrade | Wsize | |
---|---|---|---|---|
LM lag | 5802.449 *** | 9016.101 *** | 7303.048 *** | 339.561 *** |
Robust-LM lag | 334.974 *** | 411.656 *** | 325.483 *** | 10.866 *** |
LM error | 31,422.223 *** | 15,632.893 *** | 32,613.211 *** | 461.984 *** |
Robust-LM error | 25,954.748 *** | 7028.448 *** | 25,635.647 *** | 133.289 *** |
OLS | SAR-Wdistance | SAR-Wsector | SAR-Wtrade | SAR-Wsize | |
---|---|---|---|---|---|
Variable | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient |
ρ | - | 0.606 *** | 0.655 *** | 0.705 *** | 0.003 *** |
SIZE | 536.525 *** | 465.994 *** | 439.110 *** | 465.305 *** | 535.930 *** |
ROA | −0.090 *** | −0.077 *** | −0.074 *** | −0.077 *** | −0.090 *** |
EXCH | −12.407 *** | −5.298 *** | −4.971 *** | −4.030 *** | −12.346 *** |
TO | −3.019 *** | −1.649 *** | −1.258 *** | −1.526 *** | −2.998 *** |
INF | −2.861 *** | −0.843 *** | −0.739 *** | −0.695 *** | −2.868 *** |
GDP | 3.617 *** | 1.699 *** | 1.377 *** | 1.533 *** | 3.601 *** |
R-squared | 0.351 | 0.454 | 0.490 | 0.461 | 0.385 |
Log-likelihood | −69,258.215 | −68,905.466 | −69,176.333 | −69,957.849 |
SAR-Wsector | SAR Convex Combination Model | |
---|---|---|
Variable | Coefficient | Coefficient |
ρ | 0.655 *** | 0.691 *** |
SIZE | 439.110 *** | 442.518 *** |
ROA | −0.074 *** | −0.074 *** |
EXCH | −4.971 *** | −4.427 *** |
TO | −1.258 *** | −1.264 *** |
INF | −0.739 *** | −0.650 *** |
GDP | 1.377 *** | 1.335 *** |
-Wdistance | - | 0.0179 |
-Wsector | - | 0.701 *** |
-Wtrade | - | 0.256 *** |
-Wsize | - | 0.023 *** |
Log-likelihood | −68,905.466 | −63,197.917 |
Models | logm | Prob | rho | Wdistance | Wsector | Wtrade | Wsize |
---|---|---|---|---|---|---|---|
Model 1 | −63,219.107 | 0.000 | 0.654 | 0.155 | 0.845 | 0.000 | 0.000 |
Model 2 | −63,376.783 | 0.000 | 0.707 | 0.029 | 0.000 | 0.971 | 0.000 |
Model 3 | −63,437.662 | 0.000 | 0.609 | 0.967 | 0.000 | 0.000 | 0.033 |
Model 4 | −63,203.867 | 0.000 | 0.694 | 0.000 | 0.705 | 0.295 | 0.000 |
Model 5 | −63,209.427 | 0.000 | 0.631 | 0.000 | 0.972 | 0.000 | 0.028 |
Model 6 | −63,357.774 | 0.000 | 0.707 | 0.000 | 0.000 | 0.974 | 0.026 |
Model 7 | −63,208.299 | 0.000 | 0.693 | 0.017 | 0.706 | 0.277 | 0.000 |
Model 8 | −63,207.610 | 0.000 | 0.655 | 0.143 | 0.832 | 0.000 | 0.025 |
Model 9 | −63,362.225 | 0.000 | 0.705 | 0.028 | 0.000 | 0.946 | 0.026 |
Model 10 | −63,193.441 | 0.988 | 0.692 | 0.000 | 0.700 | 0.277 | 0.023 |
Model 11 | −63,197.893 | 0.012 | 0.692 | 0.016 | 0.701 | 0.260 | 0.023 |
BMA | −63,193.493 | 1.000 | 0.692 | 0.000 | 0.700 | 0.277 | 0.023 |
Highest | −63,193.441 | 0.988 | 0.692 | 0.000 | 0.700 | 0.277 | 0.023 |
Variable | Mean | Lower 0.01 | Lower 0.05 | Median | Upper 0.95 | Upper 0.99 |
---|---|---|---|---|---|---|
ρ | 0.692 | 0.650 | 0.659 | 0.692 | 0.725 | 0.734 |
SIZE | 442.578 | 420.931 | 426.173 | 442.501 | 458.972 | 463.113 |
ROA | −0.074 | −0.089 | −0.085 | −0.074 | −0.062 | −0.058 |
EXCH | −4.401 | −7.011 | −6.366 | −4.397 | −2.473 | −1.923 |
TO | −1.262 | −1.536 | −1.479 | −1.263 | −1.046 | −0.978 |
INF | −0.655 | −1.277 | −1.123 | −0.656 | −0.184 | −0.061 |
GDP | 1.333 | 1.043 | 1.110 | 1.333 | 1.562 | 1.637 |
-Wdistance | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
-Wsector | 0.700 | 0.599 | 0.618 | 0.698 | 0.787 | 0.803 |
-Wtrade | 0.277 | 0.171 | 0.186 | 0.278 | 0.355 | 0.379 |
-Wsize | 0.023 | 0.013 | 0.015 | 0.023 | 0.031 | 0.034 |
BMA log-likelihood | −63,193.493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Abdallah, N.; Dabbou, H.; Gallali, M.I.; Hathroubi, S. Stock Returns’ Co-Movement: A Spatial Model with Convex Combination of Connectivity Matrices. Risks 2025, 13, 110. https://doi.org/10.3390/risks13060110
Ben Abdallah N, Dabbou H, Gallali MI, Hathroubi S. Stock Returns’ Co-Movement: A Spatial Model with Convex Combination of Connectivity Matrices. Risks. 2025; 13(6):110. https://doi.org/10.3390/risks13060110
Chicago/Turabian StyleBen Abdallah, Nadia, Halim Dabbou, Mohamed Imen Gallali, and Salem Hathroubi. 2025. "Stock Returns’ Co-Movement: A Spatial Model with Convex Combination of Connectivity Matrices" Risks 13, no. 6: 110. https://doi.org/10.3390/risks13060110
APA StyleBen Abdallah, N., Dabbou, H., Gallali, M. I., & Hathroubi, S. (2025). Stock Returns’ Co-Movement: A Spatial Model with Convex Combination of Connectivity Matrices. Risks, 13(6), 110. https://doi.org/10.3390/risks13060110