What Matters for Comovements among Gold, Bitcoin, CO2, Commodities, VIX and International Stock Markets during the Health, Political and Bank Crises?
Abstract
:1. Introduction
2. Methods
- computes the relationship between two time series;
- W is the wavelet transform;
- and s correspond to time and scale, respectively;
- ∗ refers to a complex conjugate.
3. Data and Descriptive Statistics
4. Empirical Results & Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1 | In our paper, we omit the tests for serial correlation and heteroskedasticity of the residuals because we do not estimate an econometric model. Instead, we employ the wavelet method to analyze the linkages between assets during crisis and calm periods. From an econometric standpoint, diagnosing residuals is necessary only after model estimation, which is not applicable in our case. |
References
- Adekoya, Oluwasegun B., and Johnson A. Oliyide. 2022. Commodity and financial markets’ fear before and during COVID-19 pandemic: Persistence and causality analyses. Resources Policy 76: 102598. [Google Scholar] [CrossRef]
- Adekoya, Oluwasegun B., Johnson A. Oliyide, and Ambreen Noman. 2021. The volatility connectedness of the eu carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty. Resources Policy 74: 102252. [Google Scholar] [CrossRef]
- Astrov, Vasily, Mahdi Ghodsi, Richard Grieveson, Mario Holzner, Artem Kochnev, Michael Landesmann, Olga Pindyuk, Robert Stehrer, Maryna Tverdostup, and Alexandra Bykova. 2022. Russia’s invasion of Ukraine: Assessment of the humanitarian, economic, and financial impact in the short and medium term. International Economics and Economic Policy 19: 331–81. [Google Scholar] [CrossRef]
- Badshah, Ihsan, Riza Demirer, and Muhammad Tahir Suleman. 2019. The effect of economic policy uncertainty on stock-commodity correlations and its implications on optimal hedging. Energy Economics 84: 104553. [Google Scholar] [CrossRef]
- Baker, Scott R., Nicholas Bloom, Steven J. Davis, and Stephen J. Terry. 2020. COVID-Induced Economic Uncertainty. NBER Working Papers 26983. Cambridge, MA: National Bureau of Economic Research, Inc. [Google Scholar]
- Batten, Jonathan A., and Xuan Vinh Vo. 2015. Foreign ownership in emerging stock markets. Journal of Multinational Financial Management 32: 15–24. [Google Scholar] [CrossRef]
- Bejaoui, Azza, Wajdi Frikha, Ahmed Jeribi, and Aurelio F. Bariviera. 2023. Connectedness between emerging stock markets, gold, cryptocurrencies, defi and nft: Some new evidence from wavelet analysis. Physica A: Statistical Mechanics and Its Applications 619: 128720. [Google Scholar] [CrossRef]
- Bekaert, Geert, and Marie Hoerova. 2014. The vix, the variance premium and stock market volatility. Journal of Econometrics 183: 181–92. [Google Scholar] [CrossRef]
- Bellalah, Mondher, Chaker Aloui, and Ezzeddine Abaoub. 2003. Long-Range Dependence in Daily Volatility on Tunisian Stock Market. Working Papers 0340. Cairo: Economic Research Forum. [Google Scholar]
- Bodart, Vincent, and Bertrand Candelon. 2009. Evidence of interdependence and contagion using a frequency domain framework. Emerging Markets Review 10: 140–50. [Google Scholar] [CrossRef]
- Bossman, Ahmed, Mariya Gubareva, and Tamara Teplova. 2023. Hedge and safe-haven attributes of faith-based stocks vis-à-vis cryptocurrency environmental attention: A multi-scale quantile regression analysis. Applied Economics 2023: 1–24. [Google Scholar] [CrossRef]
- Bouri, Elie, Mahamitra Das, Rangan Gupta, and David Roubaud. 2018. Spillovers between bitcoin and other assets during bear and bull markets. Applied Economics 50: 5935–49. [Google Scholar] [CrossRef]
- Bredin, Don, Thomas Conlon, and Valerio Potì. 2015. Does gold glitter in the long-run? Gold as a hedge and safe haven across time and investment horizon. International Review of Financial Analysis 41: 320–28. [Google Scholar] [CrossRef]
- Cai, Yu Xin, Yun Lu Gong, and Guo Yang Sheng. 2021. The gold price and the economic policy uncertainty dynamics relationship: The continuous wavelet analysis. Economic Computation and Economic Cybernetics Studies and Research 55: 105–16. [Google Scholar] [CrossRef]
- Chang, Chia-Lin, Jukka Ilomäki, Hannu Laurila, and Michael McAleer. 2020. Causality between CO2 Emissions and Stock Markets. Energies 13: 2893. [Google Scholar] [CrossRef]
- Ciner, Cetin, Brian Lucey, and Larisa Yarovaya. 2018. Spillovers, integration and causality in lme non-ferrous metal markets. Journal of Commodity Markets 17: 100079. [Google Scholar] [CrossRef]
- Cong, Ren, and Alex Y. Lo. 2017. Emission trading and carbon market performance in Shenzhen, China. Applied Energy 193: 414–25. [Google Scholar] [CrossRef]
- Corbet, Shaen, Charles Larkin, and Brian Lucey. 2020. The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies. Finance Research Letters 35: 101554. [Google Scholar] [CrossRef]
- Creti, Anna, Marc Joëts, and Valérie Mignon. 2013. On the links between stock and commodity markets’ volatility. Energy Economics 37: 16–28. [Google Scholar] [CrossRef]
- Crowley, Patrick M. 2007. A guide to wavelets for economists. Journal of Economic Surveys 21: 207–67. [Google Scholar] [CrossRef]
- Deng, Jing, Jingxuan Lu, Yujie Zheng, Xiaoyun Xing, Cheng Liu, and Tao Qin. 2022. The Impact of the COVID-19 Pandemic on the Connectedness between Green Industries and Financial Markets in China: Evidence from Time-Frequency Domain with Portfolio Implications. Sustainability 14: 13178. [Google Scholar] [CrossRef]
- Dutta, Anupam, Elie Bouri, and Md Hasib Noor. 2018. Return and volatility linkages between CO2 emission and clean energy stock prices. Energy 164: 803–10. [Google Scholar] [CrossRef]
- Dwyer, Gerald P. 2015. The economics of bitcoin and similar private digital currencies. Journal of Financial Stability 17: 81–91. [Google Scholar] [CrossRef]
- El Hedi Arouri, Mohamed, Amine Lahiani, and Duc Khuong Nguyen. 2015. World gold prices and stock returns in china: Insights for hedging and diversification strategies. Economic Modelling 44: 273–82. [Google Scholar] [CrossRef]
- Fakhfekh, Mohamed, Ahmed Jeribi, Ahmed Ghorbel, and Nejib Hachicha. 2021. Hedging stock market prices with WTI, Gold, VIX and cryptocurrencies: A comparison between DCC, ADCC and GO-GARCH models. International Journal of Emerging Markets 18: 978–1006. [Google Scholar] [CrossRef]
- Fang, Yi, and Zhiquan Shao. 2022. The russia-ukraine conflict and volatility risk of commodity markets. Finance Research Letters 50: 103264. [Google Scholar] [CrossRef]
- Fareed, Zeeshan, Najaf Iqbal, Farrukh Shahzad, Syed Shah, Bushra Zulfiqar, Khurram Shahzad, Shujahat Hashmi, and Umer Shahzad. 2020. Co-variance nexus between COVID-19 mortality, humidity, and air quality index in Wuhan, China: New insights from partial and multiple wavelet coherence. Air Quality, Atmosphere & Health 13: 673–82. [Google Scholar] [CrossRef]
- Ghorbel, Achraf, and Ahmed Jeribi. 2021. Investigating the relationship between volatilities of cryptocurrencies and other financial assets. Decisions in Economics and Finance 44: 817–43. [Google Scholar] [CrossRef]
- Grinsted, Aslak, John C. Moore, and Svetlana Jevrejeva. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11: 561–66. [Google Scholar] [CrossRef]
- Huang, Xiaohong, and Shupei Huang. 2020. Identifying the comovement of price between china’s and international crude oil futures: A time-frequency perspective. International Review of Financial Analysis 72: 101562. [Google Scholar] [CrossRef]
- Jain, Anshul, and Pratap Chandra Biswal. 2016. Dynamic linkages among oil price, gold price, exchange rate, and stock market in india. Resources Policy 49: 179–85. [Google Scholar] [CrossRef]
- Jeribi, Ahmed, and Achraf Ghorbel. 2022. Forecasting developed and brics stock markets with cryptocurrencies and gold: Generalized orthogonal generalized autoregressive conditional heteroskedasticity and generalized autoregressive score analysis. International Journal of Emerging Markets 17: 2290–320. [Google Scholar] [CrossRef]
- Jiang, Wei, and Yunfei Chen. 2022a. The time-frequency connectedness among carbon, traditional/new energy and material markets of china in pre- and post-COVID-19 outbreak periods. Energy 246: 123320. [Google Scholar] [CrossRef]
- Jiang, Wei, and Yunfei Chen. 2022b. The time-frequency connectedness among metal, energy and carbon markets pre and during COVID-19 outbreak. Resources Policy 77: 102763. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rodríguez, Rebeca. 2019. What happens to the relationship between eu allowances prices and stock market indices in europe? Energy Economics 81: 13–24. [Google Scholar] [CrossRef]
- Junttila, Juha, Juho Pesonen, and Juhani Raatikainen. 2018. Commodity market based hedging against stock market risk in times of financial crisis: The case of crude oil and gold. Journal of International Financial Markets, Institutions and Money 56: 255–80. [Google Scholar] [CrossRef]
- Kang, Sang Hoon, and Jang Woo Lee. 2019. The network connectedness of volatility spillovers across global futures markets. Physica A: Statistical Mechanics and Its Applications 526: 120756. [Google Scholar] [CrossRef]
- Khalfaoui, Rabeh, Mohamed Boutahar, and Heni Boubaker. 2015. Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis. Energy Economics 49: 540–49. [Google Scholar] [CrossRef]
- Krueger, Philipp, Zacharias Sautner, and Laura T Starks. 2020. The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies 33: 1067–111. [Google Scholar] [CrossRef]
- Li, Xin, and Chong Alex Wang. 2017. The technology and economic determinants of cryptocurrency exchange rates: The case of bitcoin. Decision Support Systems 95: 49–60. [Google Scholar] [CrossRef]
- Liadze, Iana, Corrado Macchiarelli, Paul Mortimer-Lee, and Patricia Sanchez Juanino. 2023. Economic costs of the Russia-Ukraine war. The World Economy 46: 874–86. [Google Scholar] [CrossRef]
- Lin, Boqiang, and Nan Wu. 2022. Will the China’s carbon emissions market increase the risk-taking of its enterprises? International Review of Economics & Finance 77: 413–34. [Google Scholar] [CrossRef]
- Lo, Gaye-Del, Isaac Marcelin, Théophile Bassène, and Babacar Sène. 2022. The russo-ukrainian war and financial markets: The role of dependence on russian commodities. Finance Research Letters 50: 103194. [Google Scholar] [CrossRef]
- Loukil, Sahar, Mouna Aloui, Ahmed Jeribi, and Anis Jarboui. 2021. Are digital assets backstops for GCC stock markets in COVID-19-led financial crisis? International Journal of Electronic Finance 10: 232–59. [Google Scholar] [CrossRef]
- Magazzino, Cosimo, and Lorenzo Giolli. 2024. Analyzing the relationship between oil prices and renewable energy sources in italy during the first COVID-19 wave through quantile and wavelet analyses. Renewable Energy Focus 48: 100544. [Google Scholar] [CrossRef]
- Maghyereh, Aktham I., Hussein Abdoh, and Basel Awartani. 2019. Connectedness and hedging between gold and islamic securities: A new evidence from time-frequency domain approaches. Pacific-Basin Finance Journal 54: 13–28. [Google Scholar] [CrossRef]
- Marfatia, Hardik A. 2020. Investors’ risk perceptions in the us and global stock market integration. Research in International Business and Finance 52: 101169. [Google Scholar] [CrossRef]
- Marimoutou, Vêlayoudom, and Manel Soury. 2015. Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model. Energy 88: 417–29. [Google Scholar] [CrossRef]
- Mensi, Walid, Ferihane Zaraa Boubaker, Khamis Hamed Al-Yahyaee, and Sang Hoon Kang. 2018. Dynamic volatility spillovers and connectedness between global, regional, and gipsi stock markets. Finance Research Letters 25: 230–38. [Google Scholar] [CrossRef]
- Mensi, Walid, Xuan Vinh Vo, and Sang Hoon Kang. 2022. COVID-19 pandemic’s impact on intraday volatility spillover between oil, gold, and stock markets. Economic Analysis and Policy 74: 702–15. [Google Scholar] [CrossRef] [PubMed]
- Naeem, Muhammad Abubakr, Mudassar Hasan, Muhammad Arif, Faruk Balli, and Syed Jawad Hussain Shahzad. 2020. Time and frequency domain quantile coherence of emerging stock markets with gold and oil prices. Physica A: Statistical Mechanics and Its Applications 553: 124235. [Google Scholar] [CrossRef]
- Nguyen, Quang H., Binh P. Nguyen, Trung B. Nguyen, Trang T. T. Do, James F. Mbinta, and Colin R. Simpson. 2021. Stacking segment-based cnn with svm for recognition of atrial fibrillation from single-lead ecg recordings. Biomedical Signal Processing and Control 68: 102672. [Google Scholar] [CrossRef]
- Ramsey, James B., and Zhifeng Zhang. 1997. The analysis of foreign exchange data using waveform dictionaries. Journal of Empirical Finance 4: 341–72. [Google Scholar] [CrossRef]
- Rehman, Mobeen Ur, and Nicholas Apergis. 2019. Determining the predictive power between cryptocurrencies and real time commodity futures: Evidence from quantile causality tests. Resources Policy 61: 603–16. [Google Scholar] [CrossRef]
- Rua, António, and Luís C. Nunes. 2009. International comovement of stock market returns: A wavelet analysis. Journal of Empirical Finance 16: 632–39. [Google Scholar] [CrossRef]
- Sadorsky, Perry. 2014. Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics 43: 72–81. [Google Scholar] [CrossRef]
- Shahzad, Syed Jawad Hussain, Elie Bouri, David Roubaud, and Ladislav Kristoufek. 2020. Safe haven, hedge and diversification for g7 stock markets: Gold versus bitcoin. Economic Modelling 87: 212–24. [Google Scholar] [CrossRef]
- Singh, Jitendra, Wasim Ahmad, and Anil Mishra. 2018. Coherence, connectedness and dynamic hedging effectiveness between emerging markets equities and commodity index funds. Resources Policy 61: 441–60. [Google Scholar] [CrossRef]
- Szczygielski, Jan, Ailie Charteris, Princess Bwanya, and Janusz Brzeszczyński. 2021. The impact and role of COVID-19 uncertainty: A global industry analysis. International Review of Financial Analysis 80: 101837. [Google Scholar] [CrossRef] [PubMed]
- Umar, Muhammad, Yasir Riaz, and Imran Yousaf. 2022. Impact of russian-ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach. Resources Policy 79: 102966. [Google Scholar] [CrossRef]
- Urquhart, Andrew, and Hanxiong Zhang. 2019. Is bitcoin a hedge or safe haven for currencies? An intraday analysis. International Review of Financial Analysis 63: 49–57. [Google Scholar] [CrossRef]
- Wen, Fenghua, Lili Zhao, Shaoyi He, and Guozheng Yang. 2020. Asymmetric relationship between carbon emission trading market and stock market: Evidences from china. Energy Economics 91: 104850. [Google Scholar] [CrossRef]
- Whaley, Robert. 2000. The investor fear gauge. Journal of Portfolio Management 26: 12–17. [Google Scholar] [CrossRef]
- Yadav, Miklesh Prasad, Amar Rao, Mohammad Zoynul Abedin, Sabia Tabassum, and Brian Lucey. 2023. The domino effect: Analyzing the impact of silicon valley bank’s fall on top equity indices around the world. Finance Research Letters 55: 103952. [Google Scholar] [CrossRef]
- Yoon, Seong-Min, Md Al Mamun, Gazi Salah Uddin, and Sang Hoon Kang. 2019. Network connectedness and net spillover between financial and commodity markets. The North American Journal of Economics and Finance 48: 801–18. [Google Scholar] [CrossRef]
- Zhu, Bangzhu, Xinxing Zhou, Xianfeng Liu, Haifang Wang, Kaijian He, and Ping Wang. 2020. Exploring the risk spillover effects among china’s pilot carbon markets: A regular vine copula-coes approach. Journal of Cleaner Production 242: 118455. [Google Scholar] [CrossRef]
ADX | BAX | BSE30 | BTC | BVSP | CAC40 | Co2 | DAX40 | KuwIndx | FTSE | FTSEMIB | GOLD | JTOPI | MSM30 | NASDAQ | Natgas | NIKKEI | QEAS | RTSI | SP500 | SPTSX | SSE | TASI | VIX | WHEAT | WTI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 Pandemic | ||||||||||||||||||||||||||
Mean | 0.00013 | 0.00071 | 0.00052 | 0.00258 | 0.00093 | 0.00091 | −0.00022 | 0.00087 | 0.00092 | 0.00044 | 0.00098 | 0.00065 | 0.00033 | −0.00032 | 0.00125 | −0.00115 | 0.00053 | 0.00003 | 0.00144 | 0.00108 | 0.00068 | 0.00082 | 0.00027 | −0.00238 | 0.00041 | 0.00116 |
Median | −0.00035 | 0.00036 | 0.00018 | 0.00006 | 0.00180 | 0.00142 | 0.00000 | 0.00137 | 0.00071 | 0.00072 | 0.00097 | 0.00074 | 0.00050 | −0.00009 | 0.00158 | −0.00150 | 0.00034 | −0.00038 | 0.00166 | 0.00091 | 0.00070 | 0.00050 | 0.00118 | −0.00638 | 0.00000 | 0.00157 |
Maximum | 0.03621 | 0.23428 | 0.05186 | 0.20079 | 0.02753 | 0.02688 | 0.07617 | 0.03314 | 0.02173 | 0.02227 | 0.03311 | 0.03244 | 0.02198 | 0.01621 | 0.04385 | 0.14735 | 0.02578 | 0.03388 | 0.02833 | 0.03376 | 0.01494 | 0.05450 | 0.02415 | 0.33387 | 0.05528 | 0.13694 |
Minimum | −0.03373 | −0.23186 | −0.02027 | −0.15601 | −0.03811 | −0.03636 | −0.08375 | −0.03156 | −0.03476 | −0.03284 | −0.02912 | −0.02138 | −0.03078 | −0.01919 | −0.03669 | −0.13575 | −0.03053 | −0.04168 | −0.04032 | −0.03023 | −0.01882 | −0.04496 | −0.03615 | −0.19814 | −0.05716 | −0.08234 |
Std. Dev. | 0.00783 | 0.02101 | 0.00821 | 0.04257 | 0.01085 | 0.00833 | 0.02550 | 0.00872 | 0.00654 | 0.00733 | 0.00920 | 0.00744 | 0.00842 | 0.00452 | 0.01018 | 0.02641 | 0.00791 | 0.00785 | 0.00928 | 0.00761 | 0.00453 | 0.01061 | 0.00871 | 0.07401 | 0.01668 | 0.02090 |
Skewness | 0.37257 | 0.07057 | 1.35573 | 0.40146 | −0.57795 | −0.72633 | −0.12509 | −0.35808 | −0.58180 | −0.43672 | −0.40841 | 0.39103 | −0.39312 | 0.01907 | −0.47024 | 0.05179 | −0.08367 | −0.35659 | −0.39309 | −0.55715 | −0.43828 | 0.37156 | −0.46950 | 0.81332 | 0.03206 | 0.57962 |
Kurtosis | 7.20147 | 118.80600 | 9.58844 | 7.19956 | 4.11374 | 5.57772 | 3.62836 | 5.03832 | 7.35317 | 5.24633 | 4.39690 | 4.62483 | 3.52697 | 5.19260 | 5.70509 | 8.82157 | 4.94357 | 7.50798 | 4.87916 | 6.47654 | 4.41045 | 6.62405 | 3.84037 | 5.20982 | 4.12798 | 10.33779 |
Jarque–Bera | 194.97240 | 143,610.10000 | 543.54990 | 195.75850 | 27.58995 | 93.74957 | 4.89826 | 49.98248 | 217.42230 | 62.20363 | 28.04014 | 34.82038 | 9.59305 | 51.49585 | 87.83010 | 363.02700 | 40.75019 | 223.05970 | 44.43212 | 142.72080 | 29.53042 | 146.55380 | 17.00426 | 80.62548 | 13.66866 | 590.96110 |
Probability | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08637 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00826 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00020 | 0.00000 | 0.00108 | 0.00000 |
Sum | 0.03217 | 0.18315 | 0.13433 | 0.66271 | 0.23763 | 0.23403 | −0.05631 | 0.22306 | 0.23733 | 0.11334 | 0.25293 | 0.16664 | 0.08390 | −0.08254 | 0.32182 | −0.29497 | 0.13724 | 0.00651 | 0.36990 | 0.27750 | 0.17508 | 0.21096 | 0.06940 | −0.61232 | 0.10462 | 0.29858 |
Sum Sq. Dev. | 0.01570 | 0.11299 | 0.01724 | 0.46384 | 0.03015 | 0.01777 | 0.16648 | 0.01947 | 0.01096 | 0.01375 | 0.02165 | 0.01418 | 0.01817 | 0.00523 | 0.02653 | 0.17857 | 0.01601 | 0.01578 | 0.02204 | 0.01482 | 0.00524 | 0.02883 | 0.01944 | 1.40211 | 0.07121 | 0.11181 |
During COVID-19 Pandemic | ||||||||||||||||||||||||||
Mean | 0.00105 | 0.00036 | 0.00059 | 0.00297 | −0.00004 | 0.00023 | 0.00241 | 0.00019 | 0.00034 | −0.00001 | 0.00017 | 0.00041 | 0.00054 | 0.00003 | 0.00079 | 0.00135 | 0.00019 | 0.00047 | −0.00045 | 0.00048 | 0.00035 | 0.00024 | 0.00072 | 0.00146 | 0.00074 | 0.00074 |
Median | 0.00134 | 0.00066 | 0.00132 | 0.00286 | 0.00102 | 0.00106 | 0.00287 | 0.00076 | 0.00081 | 0.00065 | 0.00127 | 0.00111 | 0.00105 | 0.00012 | 0.00215 | 0.00159 | 0.00030 | 0.00058 | 0.00178 | 0.00133 | 0.00129 | 0.00072 | 0.00132 | −0.00757 | 0.00000 | 0.00258 |
Maximum | 0.08076 | 0.02420 | 0.06747 | 0.19367 | 0.13023 | 0.08056 | 0.12497 | 0.10414 | 0.04137 | 0.08667 | 0.08550 | 0.04297 | 0.07907 | 0.02157 | 0.09597 | 0.19798 | 0.07731 | 0.03996 | 0.08825 | 0.08968 | 0.11295 | 0.06130 | 0.06832 | 0.48021 | 0.05350 | 0.31963 |
Minimum | −0.08406 | −0.06001 | −0.14102 | −0.49728 | −0.15994 | −0.13098 | −0.17369 | −0.13055 | −0.19188 | −0.11512 | −0.18541 | −0.05893 | −0.10450 | −0.05735 | −0.13003 | −0.12881 | −0.06274 | −0.09998 | −0.14169 | −0.12765 | −0.13176 | −0.07994 | −0.08685 | −0.26623 | −0.04269 | −0.60168 |
Std. Dev. | 0.01308 | 0.00633 | 0.01527 | 0.04856 | 0.02117 | 0.01560 | 0.02892 | 0.01573 | 0.01189 | 0.01385 | 0.01708 | 0.01034 | 0.01497 | 0.00564 | 0.01803 | 0.04040 | 0.01366 | 0.00879 | 0.02153 | 0.01599 | 0.01498 | 0.01106 | 0.01128 | 0.08759 | 0.01717 | 0.04959 |
Skewness | −0.54164 | −2.51892 | −2.04826 | −1.95788 | −1.59476 | −1.36453 | −0.62315 | −1.03200 | −8.07087 | −1.23483 | −2.88955 | −0.76321 | −1.03922 | −2.26695 | −0.74878 | 0.26597 | 0.09881 | −2.83482 | −1.38388 | −1.01386 | −1.79608 | −0.50328 | −2.19976 | 1.27832 | 0.35121 | −3.12788 |
Kurtosis | 19.09637 | 23.64210 | 20.97115 | 23.67621 | 19.70911 | 16.43821 | 7.23611 | 16.87138 | 128.38270 | 16.61038 | 33.21446 | 7.14481 | 12.21404 | 24.02546 | 11.86094 | 5.29382 | 7.33245 | 36.72663 | 10.80923 | 18.31614 | 31.92866 | 11.10187 | 21.76144 | 7.77218 | 3.15939 | 51.97299 |
Jarque–Bera | 6018.66900 | 10,440.39000 | 7856.56800 | 10,240.64000 | 6691.62400 | 4348.27200 | 450.88890 | 4548.11400 | 369,569.30000 | 4424.77500 | 21,883.46000 | 451.15600 | 2063.17700 | 10,698.23000 | 1867.55200 | 128.21880 | 434.96150 | 27,047.70000 | 1587.40500 | 5519.84000 | 19,650.96000 | 1541.36300 | 8587.40900 | 677.79690 | 11.99703 | 56,366.91000 |
Probability | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00248 | 0.00000 |
Sum | 0.58383 | 0.19880 | 0.32737 | 1.64717 | −0.02362 | 0.12598 | 1.33788 | 0.10295 | 0.18997 | −0.00588 | 0.09512 | 0.22889 | 0.29672 | 0.01587 | 0.43627 | 0.74760 | 0.10593 | 0.25895 | −0.25182 | 0.26841 | 0.19533 | 0.13448 | 0.40099 | 0.81141 | 0.41299 | 0.40856 |
Sum Sq. Dev. | 0.09484 | 0.02220 | 0.12911 | 1.30610 | 0.24836 | 0.13477 | 0.46318 | 0.13701 | 0.07825 | 0.10622 | 0.16154 | 0.05920 | 0.12417 | 0.01764 | 0.18001 | 0.90419 | 0.10331 | 0.04279 | 0.25670 | 0.14169 | 0.12423 | 0.06772 | 0.07047 | 4.25072 | 0.16339 | 1.36229 |
During War | ||||||||||||||||||||||||||
Mean | 0.00020 | −0.00014 | 0.00014 | −0.00105 | −0.00023 | 0.00037 | −0.00018 | 0.00027 | −0.00029 | 0.00018 | 0.00022 | 0.00013 | 0.00019 | 0.00056 | −0.00013 | −0.00242 | 0.00027 | −0.00063 | −0.00055 | −0.00007 | −0.00001 | −0.00018 | −0.00040 | −0.00204 | −0.00093 | −0.00056 |
Median | −0.00044 | −0.00010 | −0.00015 | −0.00096 | −0.00016 | 0.00077 | 0.00187 | 0.00117 | −0.00013 | 0.00097 | 0.00147 | 0.00019 | 0.00008 | 0.00039 | −0.00103 | 0.00087 | 0.00101 | −0.00090 | 0.00010 | −0.00076 | 0.00075 | 0.00001 | 0.00011 | −0.00972 | −0.00226 | 0.00174 |
Maximum | 0.03451 | 0.03423 | 0.03358 | 0.18120 | 0.05393 | 0.06883 | 0.15874 | 0.07623 | 2.39600 | 0.03845 | 0.06723 | 0.03402 | 0.05342 | 0.02762 | 0.07220 | 0.13351 | 0.03861 | 0.06531 | 0.23204 | 0.05395 | 0.03285 | 0.03424 | 0.02590 | 0.21819 | 0.19701 | 3.29177 |
Minimum | −0.06013 | −0.02618 | −0.04837 | −0.28683 | −0.03408 | −0.05093 | −0.16984 | −0.04508 | −2.40532 | −0.03961 | −0.06439 | −0.02836 | −0.03882 | −0.02585 | −0.05702 | −0.18066 | −0.03054 | −0.07323 | −0.48292 | −0.04420 | −0.03147 | −0.05268 | −0.04544 | −0.14034 | −0.11297 | −3.30159 |
Std. Dev. | 0.00914 | 0.00571 | 0.00968 | 0.04053 | 0.01301 | 0.01326 | 0.03123 | 0.01373 | 0.19618 | 0.00983 | 0.01496 | 0.00974 | 0.01324 | 0.00614 | 0.01869 | 0.05313 | 0.01140 | 0.01174 | 0.03873 | 0.01403 | 0.00945 | 0.01024 | 0.01016 | 0.05974 | 0.02976 | 0.27073 |
Skewness | −0.57454 | 0.31955 | −0.19344 | −1.22589 | 0.18237 | 0.12397 | −0.35102 | 0.25380 | −0.06693 | −0.57697 | −0.49087 | 0.12230 | 0.27559 | 0.41602 | −0.03613 | −0.40967 | 0.03450 | −0.06486 | −5.81767 | −0.11141 | −0.18330 | −0.81011 | −0.57426 | 0.94296 | 0.82485 | −0.04831 |
Kurtosis | 9.99109 | 10.51224 | 5.43210 | 13.41840 | 3.52828 | 6.10824 | 8.02396 | 6.38920 | 150.00740 | 6.15448 | 5.89137 | 3.73443 | 4.02487 | 6.03521 | 3.57714 | 3.22703 | 3.69884 | 10.59343 | 85.65991 | 3.80798 | 3.86969 | 7.11258 | 4.77532 | 4.58194 | 10.40134 | 147.06300 |
Jarque–Bera | 629.53740 | 712.89540 | 76.06259 | 1436.70000 | 5.16864 | 121.93820 | 322.73460 | 147.29340 | 271,040.30000 | 141.49850 | 116.93670 | 7.51513 | 16.98324 | 124.22300 | 4.24297 | 9.06596 | 6.18485 | 723.36590 | 87,390.86000 | 8.81018 | 11.17169 | 245.04420 | 56.07218 | 75.99256 | 721.16220 | 260,291.70000 |
Probability | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.07545 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02334 | 0.00021 | 0.00000 | 0.11985 | 0.01075 | 0.04539 | 0.00000 | 0.00000 | 0.01222 | 0.00375 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Sum | 0.05865 | −0.04068 | 0.04147 | −0.31471 | −0.06824 | 0.11104 | −0.05288 | 0.08200 | −0.08569 | 0.05398 | 0.06672 | 0.03874 | 0.05651 | 0.16900 | −0.03838 | −0.72770 | 0.08259 | −0.19015 | −0.16672 | −0.02201 | −0.00246 | −0.05535 | −0.12099 | −0.61504 | −0.28048 | −0.16783 |
Sum Sq. Dev. | 0.02508 | 0.00977 | 0.02810 | 0.49275 | 0.05074 | 0.05271 | 0.29251 | 0.05654 | 11.54535 | 0.02898 | 0.06711 | 0.02847 | 0.05258 | 0.01130 | 0.10484 | 0.84675 | 0.03897 | 0.04133 | 0.44997 | 0.05906 | 0.02678 | 0.03148 | 0.03097 | 1.07061 | 0.26563 | 21.98894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frikha, W.; Béjaoui, A.; Bariviera, A.F.; Jeribi, A. What Matters for Comovements among Gold, Bitcoin, CO2, Commodities, VIX and International Stock Markets during the Health, Political and Bank Crises? Risks 2024, 12, 47. https://doi.org/10.3390/risks12030047
Frikha W, Béjaoui A, Bariviera AF, Jeribi A. What Matters for Comovements among Gold, Bitcoin, CO2, Commodities, VIX and International Stock Markets during the Health, Political and Bank Crises? Risks. 2024; 12(3):47. https://doi.org/10.3390/risks12030047
Chicago/Turabian StyleFrikha, Wajdi, Azza Béjaoui, Aurelio F. Bariviera, and Ahmed Jeribi. 2024. "What Matters for Comovements among Gold, Bitcoin, CO2, Commodities, VIX and International Stock Markets during the Health, Political and Bank Crises?" Risks 12, no. 3: 47. https://doi.org/10.3390/risks12030047
APA StyleFrikha, W., Béjaoui, A., Bariviera, A. F., & Jeribi, A. (2024). What Matters for Comovements among Gold, Bitcoin, CO2, Commodities, VIX and International Stock Markets during the Health, Political and Bank Crises? Risks, 12(3), 47. https://doi.org/10.3390/risks12030047