Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | 1st Author Date of Publication Reference | Main Results | Group of Patients |
---|---|---|---|
1 | Haiping Li, 2022 [75] | Variations of EMX2 | 40 MRKH individuals and 140 individual controls |
2 | Chunfang Chu, 2022 [76] | Variants of nine genes: TBC1D1, KMT2D, HOXD3, DLG5, GLI3, HIRA, GATA3, LIFR, and CLIP1 (n = 9) | 10 MRKH individuals |
3 | Domenico Dell’Edera, 2021 [77] | Microduplications in 22q11.21 (n = 1) | Case Report: a MRKH individual |
4 | Mikhael S, 2021 [78] | Variants of: WNT4, LAMC1, RARA, HOXA10, PAX2, and WNT9B, TBX6, SHOX, MMP14, and LRP10 | 111 MRKH individuals |
5 | Chen N, 2021 [79] | Variants of 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1) | 592 MRKH individuals (442 Chinese and 150 of mixed ethnicity) 941 individual controls |
6 | Pontecorvi P, 2021 [80] | Altered gene expression pattern in PRKX, MUC1, HOXC8, GREB1L | 36 MRKH individuals |
7 | Jacquinet A, 2020 [81] | Variants of GREB1L (n = 4 families and 5 individuals) | 9 families with CUAs and/or kidney malformations 68 individuals with CUAs |
8 | Monika Anant, 2020 [82] | 18p deletion (n = 1) | Case Report: MRKH II individual with 18p deletion syndrome |
9 | Smol T, 2020 [83] | Microdeletion in 2q12.1q14.1 (involving PAX8) and microdeletion of SHOX locus (n = 1) | Case Report: a MRKH patient with congenital hypothyroidism |
10 | Herlin M K, 2019 [71] | Variants of GREB1L (n = 4) | A three-generation family with CUAs |
11 | Backhouse B, 2019 [35] | Variants (n = 6) and a deletion (affecting TBX6) (n = 1) of 16p11.2 | 8 MRKH and MURCS individuals |
12 | Pan H X, 2019 [84] | De novo changes in BAZ2B, KLHL18, PIK3CD, SLC4A10 and TNK2 | 9 MRKH Ι individuals and their parents |
13 | Tewes A C, 2019 [37] | Variants and substitution of TBX6 (n = 4) | 125 MRKH individuals: 26 MRKH I, 27 MRKH II and 72 individuals with Müllerian ducts fusion anomalies 135 individual controls |
14 | Chunfang Chu, 2019 [38] | Deletion of the 16p11.2 (affecting TBX6) (n = 1) | 5 individuals with distal vaginal atresia |
15 | Eggermann T, 2018 [85] | Failing to identify altered imprinting marks of differentially methylated regions PLAGL1, GRB10 and MEST, H19 and KCNQ1OT1, MEG3, SNRPN, DIRAS, NESPAS and GNAS | 53 MRKH I individuals and 52 patients with a MRKH II individuals |
16 | AlSubaihin A, 2018 [57] | Tetrasomy of the pericentromeric region of chromosome 22 (n = 1) | Case Report: a MRKH individual with CES |
17 | Takahashi K, 2018 [86] | De novo variants of MYCBP2, NAV3, and PTPN3 (n = 3 families) and a variant of MYCBP2 (n = 1) | 10 MRKH individuals, including three MRKH individuals from trio-based families and 7 unaffected individuals |
18 | Demir Εksi, 2018 [36] | Variants of BM8A, CMTM7, CCR4, TRIM71, CNOT10, TP63, EMX2, and CFTR (n = 4) | 19 MRKH individuals |
19 | Ledig S, 2018 [46] | Microdeletions and microduplications in 17q12, 22q11.21, 9q33.1, 3q26.11 and 7q31.1. (n = 8) | 103 individuals with CUAs |
20 | Brucker SY 2017 [87] | Variants of OXTR (n = 18) and ESR1 (n = 1) | 93 MRKH individuals (68 type I and 25 type ΙΙ) |
21 | Williams L S, 2017 [51] | Copy number variants of WNT4, HNF1B, or LHX1 (n = 6), but no point change (n = 100) | 147 MRKH individuals and their families 80 North American MRKH individuals, 58 with other family members and 22 singletons 67 Turkish MRKH individuals, (41 with family members and 26 singletons.) |
22 | Xing Q, 2016 [88] | Missense change of DACT1 (n = 1) | 100 individuals with Müllerian duct anomalies 200 individual controls |
23 | Waschk D E J, 2016 [47] | Variant of WNT9B (n = 5) | 226 individuals with Müllerian duct anomalies, including 109 MRKH individuals 135 individual controls |
24 | Wenqing Ma, 2015 [89] | Polymorphisms in WNT9B and PBX1 Epistatic effect of AMH, PBX1, WNT7A and WNT9B | 182 unrelated Chinese MRKH individuals (155 type I and 27 type II) and 228 individual controls |
25 | Rall K, 2015 [16] | Duplication of MMP14 and LRP10 (n = 1 affected twin) | 5 MRKHS-discordant monozygotic twin pairs |
26 | Tewes A C, 2015 [30] | Variants of RBM8A (n = 13) TBX6 (n = 5) | 167 individuals with CUAs: 116 MRKH and 51 with other anomalies of the Müllerian ducts 94 individual control |
27 | Liu S, 2015 [90] | Novel nonsense variants of EMX2 (n = 1) | 517 individuals with incomplete Müllerian fusion 563 individual controls |
28 | Murry, 2015 [91] | No pathogenic CNCs (n = 20) | 20 individuals with CUA |
29 | McGowan R, 2015 [27] | Microdeletion and microduplication 1q21.1, 7p14.3, 16p11.2, 17q12, and 22q11.21-q11.23 and possibly implicating several genes (LHX1, BBS9, HNF1β, and TBX6) (n = 9) | 35 individuals with Müllerian disorders |
30 | Chen M J, 2015 [92] | Deletions at 15q11.2 (80%), 19q13.31 (40%), 1p36.21 (40%) and 1q44 (40%) (n = 5),1q21.1 (n = 2) Damaging variants of HNRNPCL1, OR2T2, OR4M2, ZNF816 and PDE11A | 7 MRKH I individuals |
31 | Nodale C, 2014 [93] | Upregulation of MUC1 (n = 8) and significant upregulation of HOXC8 (n = 3) Downregulation of HOXB2 (n = 7) and HOXB5 (n = 7) and Notch ligands JAG1 (n = 6) and DLL1 (n = 5) | 8 out of 16 MRKHS individuals underwent reconstruction of neovagina with an autologous vaginal tissue and 5 individual controls |
32 | Wang M, 2014 [94] | Variants of WNT9B (n = 1) | 42 Chinese MRKH individuals and 42 individual controls |
33 | Deqiong Ma, 2014 [95] | Deletion at 2q13q14.2 (including PAX8) (n = 1) | Case Report: 1 individual with Müllerian agenesis and hypothyroidism |
34 | Sandbacka M, 2013 [34] | Variations including 16p11.2 and 17q12 deletions (8/50) or variations in TBX6 or LHX1 in MA patients (30/112) | 112 MRKH I individuals |
35 | Ekici AB, 2013 [96] | Variations HOXA10 and HOXA13 | 20 MRKH individuals, 7 non-MRKH individuals with genital tract anomalies and 53 individual control |
36 | Ledig S, 2012 [44] | No changes in HNF1B Variants of LHX1 (n = 1/62) | 62 MRKH individuals (23 MRKH I and 39 MRKH II) |
37 | Chang X, 2012 [97] | No perturbation that indicates significance of WNT4 | 189 Chinese individuals with CUAs (10 MRKH, 5 Müllerian aplasia and 174 incomplete Müllerian fusion) |
38 | Ravel C, 2012 [98] | No significant changes were observed between the MRKH individuals and control group for LAMC1 and DLGH1 gene polymorphisms. | 12 MRKH individuals |
39 | Mingdi Xia, 2012 [52] | No significant variants (n = 0/96) but a rare polymorphism of LHX1 (n = 1/77) | For variants of LHX: 96 individuals with CUAs and 105 individual controls |
40 | Wang P, 2012 [99] | Variant of PAX2 (n = 1) | 192 Chinese individuals with CUAs (15 with uterine aplasia and 177 with incomplete Müllerian fusion) and 192 ethnic-matched individual controls |
41 | Hinkes B, 2012 [45] | Microdeletion in 17q12 (involving HNF1β and LHX1) (n = 1) | Case Report: 1 MRKH individual with right kidney aplasia |
42 | Rall K, 2011 [23] | 293 genes with altered expression and 194 genes differentially methylated | 8 MRKH individuals and 8 individual controls |
43 | Morcel K, 2011 [55] | Deletion in 4q34-qter, 8p23.1, 10p14 and 22q11.2 (n = 4) | 57 MRKH individuals |
44 | Philibert P, 2011 [66] | Variants of WNT4 (n = 1) | 4 individuals with Müllerian duct abnormalities and hyperandrogenism |
45 | Nik-Zainal S, 2011 [33] | Microdeletion at 16p11.2 (n = 4), microdeletion at 17q12 (n = 4), 22q11.2 (n = 1) | 38 MRKH I individuals and 25 MRKH II individuals |
46 | Sandbacka M, 2011 [100] | No association between hypomethylation of the H19 imprinted control region but aberrant methylation (n = 3/16) | 83 individuals with CUAs |
47 | Jinlong Ma, 2011 [101] | Polymorphisms in PBX1 (n = 2) | 192 Chinese individuals with CUAs |
48 | Ledig S, 2011 [25] | Microdeletions and -duplications in 1q21.1, 17q12, and 22q11.21 involving LHX1 and HNF1B gene (n = 48) | 56 MRKH individuals |
49 | Gervasini C, 2010 [102] | Partial duplication of SHOX (n = 5) | 30 MRKH individuals 53 individual controls |
50 | Acién P, 2010 [103] | No microdeletions in 17q12 and 22q11.21 (n = 1) | Case Report: 1 MRKH individual with pulmonary hypoplasia |
51 | Liatsikos S A, 2010 [58] | No causative variants of HOX A10 and HOX A11 | 30 individuals with MDAs 100 individual controls |
52 | Richard A Oram, 2010 [104] | Variants or deletion of HNF1B (n = 9/50 individuals with both CUAs and renal abnormalities) | 50 individuals with both CUAs and renal abnormalities 58 individuals with isolated CUAs |
53 | Bernardini L, 2009 [43] | Deletion in 17q12 (involving TCF2 and LHX1 genes) (n = 2) | 22 MRKH individuals |
54 | Ravel C, 2009 [105] | Variants of WNT4, WNT5A, WNT7A, and WNT9B | 11 MRKH individuals |
55 | Hofstetter G, 2008 [106] | No major deletions or duplications in 22q11.1 12q24.1. and 3q27 (n = 1) | Case report: 1 MURCS individual |
56 | Mencarelli M A, 2008 [48] | Deletions in 7q31, 14q21.1, Xq25 and duplications in 12p11.22, 12q21.31, 13q31.1, 17q12, Xp22.31, Xq28 | 84 individuals with mental problems and congenital anomalies (including CUAs) |
57 | Philibert P, 2008 [65] | Variants of WNT4 gene | 28 individuals with CUAs 100 individual controls |
58 | Drummond JB, 2008 [107] | No variants of the GSK-3beta phosphorylation sites on exon 3 of beta-catenin gene (n = 12) | 12 MRKH patients |
59 | Lalwani S, 2008 [108] | No HOXA10 gene variants | 26 individuals with CUAs 30 individual controls |
60 | Sundaram U T, 2007 [54] | Deletion in 22q11.2 (n = 2) | 2 individuals with absent uterus and unilateral renal agenesis |
61 | Cheroki C, 2007 [26] | Submicroscopic genomic imbalances in 1q21.1, 17q12, 22q11.21, and Xq21.31 | 14 MRKH II individuals |
62 | Biason-Lauber A, 2007 [64] | Variants of WNT4 (n = 1) | Case report: 1 MRKH individual |
63 | Burel A, 2006 [109] | No variants of HOXA7-HOXA13 region (n = 6) | 6 MRKH individuals |
64 | Cheroki C, 2006 [56] | Deletion in 22q11 (excluding WNT-4, RARgamma, RXR-alpha) (n = 1) | 25 MRKH individuals |
65 | Oppelt P, 2005 [110] | AMH promoter sequence variations cannot the cause of aberrant AMH expression leading to Müllerian duct formation disorders | 30 MRKH individuals 48 individual controls |
66 | Clément-Ziza Mi, 2005 [111] | No significant variations of WNT4 (n = 19) | 19 MRKH individuals |
67 | Zenteno J C, 2004 [112] | Nο significant difference in Polymorphisms AMH and AMHR genes between MRKH individuals and controls | 15 individuals with Mullerian agenesis 25 individual controls |
68 | Biason-Lauber A, 2004 [63] | Variants of the WNT4 (n = 1) | Case Report: 1 MRKH individual |
69 | Plevraki E, 2004 [113] | Positive TSPY gene (n = 2) | 6 MRKH individuals |
70 | Klipstein S, 2003 [114] | GALT enzyme do not affect PMD formation | 32 individuals with CUAs 138 individual controls |
71 | Aydos S, 2003 [115] | Deletion of Xq (n = 1) | Case Report: 1 MRKH individual with gonadal dysgenesis |
72 | Timmreck LS, 2003 [116] | Variants of CFTR (n = 2) | 25 individuals with CUAs |
73 | Bingham C, 2002 [49] | Changes in HNF-1beta gene (n = 2 families) | 9 families with renal abnormalities and a personal or family history of female genital tract malformations, but no history of diabetes |
74 | Resendes D L, 2001 [117] | No changes or rare polymorphism in AMH and the AMHR genes (n = 22) | 22 individuals with CUAs 96 individual controls |
75 | Lindner T H, 1999 [50] | Deletion in HNF-1beta gene | 1 Norwegian family, N5, with a syndrome of mild diabetes, progressive non-diabetic renal disease and severe genital malformations |
76 | Cramer D W, 1996 [118] | Carriers for the N314D variants of GALT (n = 6/13 individuals with Müllerian agenesis and 16/113 individual controls) | 13 individuals with vaginal agenesis and their mothers 113 individual controls |
References
- Herlin, M.K.; Petersen, M.B.; Brännström, M. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: A comprehensive update. Orphanet J. Rare Dis. 2020, 15, 214. [Google Scholar] [CrossRef]
- Herlin, M.; Bjørn, A.-M.B.; Rasmussen, M.; Trolle, B.; Petersen, M.B. Prevalence and patient characteristics of Mayer–Rokitansky–Küster–Hauser syndrome: A nationwide registry-based study. Hum. Reprod. 2016, 31, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Blontzos, N.; Iavazzo, C.; Vorgias, G.; Kalinoglou, N. Leiomyoma development in Mayer-Rokitansky-Küster-Hauser syndrome: A case report and a narrative review of the literature. Obstet. Gynecol. Sci. 2019, 62, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Aittomäki, K.; Eroila, H.; Kajanoja, P. A population-based study of the incidence of müllerian aplasia in Finland. Fertil. Steril. 2001, 76, 624–625. [Google Scholar] [CrossRef]
- Tsitoura, A.; Michala, L. The Sexuality of Adolescents and Young Women with MRKH Syndrome: A Qualitative Study. J. Sex. Med. 2021, 18, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Creighton, S.; Crouch, N.; Deans, R.; Cutner, A.; Michala, L.; Barnett, M.; Williams, C.; Liao, L.-M. Nonsurgical dilation for vaginal agenesis is promising, but better research is needed. Fertil. Steril. 2012, 97, e32. [Google Scholar] [CrossRef]
- Kobayashi, A.; Behringer, R.R. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet. 2003, 4, 969–980. [Google Scholar] [CrossRef]
- Cunha, G.R.; Robboy, S.J.; Kurita, T.; Isaacson, D.; Shen, J.; Cao, M.; Baskin, L.S. Development of the human female reproductive tract. Differentiation 2018, 103, 46–65. [Google Scholar] [CrossRef]
- Wottgen, M.; Brucker, S.; Renner, S.; Strissel, P.; Strick, R.; Kellermann, A.; Wallwiener, D.; Beckmann, M.; Oppelt, P. Higher incidence of linked malformations in siblings of Mayer-Rokitansky-Kuster-Hauser-syndrome patients. Hum. Reprod. 2008, 23, 1226–1231. [Google Scholar] [CrossRef]
- Fontana, L.; Gentilin, B.; Fedele, L.; Gervasini, C.; Miozzo, M. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Clin. Genet. 2017, 91, 233–246. [Google Scholar] [CrossRef]
- Herlin, M.; Højland, A.T.; Petersen, M.B. Familial occurrence of Mayer-Rokitansky-Küster-Hauser syndrome: A case report and review of the literature. Am. J. Med. Genet. Part A 2014, 164, 2276–2286. [Google Scholar] [CrossRef]
- Jacquinet, A.; Millar, D.; Lehman, A. Etiologies of uterine malformations. Am. J. Med. Genet. Part A 2016, 170, 2141–2172. [Google Scholar] [CrossRef]
- Shokeir, M.H. Aplasia of the Müllerian system: Evidence for probable sex-limited autosomal dominant inheritance. Birth Defects Orig. Artic. Ser. 1978, 14, 147–165. [Google Scholar]
- De Cássia, M.; Pavanello, R.; Eigier, A.; Otto, P.A.; Optiz, J.M.; Reynolds, J.F. Relationship between Mayer-Rokitansky-Küster (MRK) anomaly and hereditary renal adysplasia (HRA). Am. J. Med. Genet. 1988, 29, 845–849. [Google Scholar] [CrossRef]
- Lischke, J.H.; Curtis, C.H.; Lamb, E.J. Discordance of vaginal agenesis in monozygotic twins. Obstet. Gynecol. 1973, 41, 920–924. [Google Scholar]
- Rall, K.; Eisenbeis, S.; Barresi, G.; Rückner, D.; Walter, M.; Poths, S.; Wallwiener, D.; Riess, O.; Bonin, M.; Brucker, S. Mayer-Rokitansky-Küster-Hauser syndrome discordance in monozygotic twins: Matrix metalloproteinase 14, low-density lipoprotein receptor–related protein 10, extracellular matrix, and neoangiogenesis genes identified as candidate genes in a tissue-specific mosaicism. Fertil. Steril. 2015, 103, 494–502.e3. [Google Scholar] [CrossRef]
- Heidenreich, W.; Pfeiffer, A.; Kumbnani, H.K.; Scholz, W.; Zeuner, W. Disordant monozygotic twins with Mayer Rokitansky Kütser syndrome (author’s transl). Geburtshilfe Und Frauenheilkd. 1977, 37, 221–223. [Google Scholar]
- Steinkampf, M.P.; Dharia, S.P.; Dickerson, R.D. Monozygotic twins discordant for vaginal agenesis and bilateral tibial longitudinal deficiency. Fertil. Steril. 2003, 80, 643–645. [Google Scholar] [CrossRef]
- Regenstein, A.C.; Berkeley, A.S. Discordance of müllerian agenesis in monozygotic twins. A case report. J. Reprod. Med. 1991, 36, 396–397. [Google Scholar]
- Duru, U.A.; Laufer, M.R. Discordance in Mayer-von Rokitansky-Küster-Hauser Syndrome Noted in Monozygotic Twins. J. Pediatr. Adolesc. Gynecol. 2009, 22, e73–e75. [Google Scholar] [CrossRef]
- Milsom, S.R.; Ogilvie, C.M.; Jefferies, C.; Cree, L. Discordant Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome in identical twins—A case report and implications for reproduction in MRKH women. Gynecol. Endocrinol. 2015, 31, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Maniglio, P.; Ricciardi, E.; Laganà, A.S.; Triolo, O.; Caserta, D. Epigenetic modifications of primordial reproductive tract: A common etiologic pathway for Mayer-Rokitansky-Kuster-Hauser Syndrome and endometriosis? Med. Hypotheses 2016, 90, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Rall, K.; Barresi, G.; Walter, M.; Poths, S.; Haebig, K.; Schaeferhoff, K.; Schoenfisch, B.; Riess, O.; Wallwiener, D.; Bonin, M.; et al. A combination of transcriptome and methylation analyses reveals embryologically-relevant candidate genes in MRKH patients. Orphanet J. Rare Dis. 2011, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Ledig, S.; Schippert, C.; Strick, R.; Beckmann, M.W.; Oppelt, P.G.; Wieacker, P. Recurrent aberrations identified by array-CGH in patients with Mayer-Rokitansky-Küster-Hauser syndrome. Fertil. Steril. 2011, 95, 1589–1594. [Google Scholar] [CrossRef]
- Cheroki, C.; Krepischi, A.; Szuhai, K.; Brenner, V.; Kim, C.; Otto, P.A.; Rosenberg, C. Genomic imbalances associated with mullerian aplasia. J. Med. Genet. 2007, 45, 228–232. [Google Scholar] [CrossRef]
- McGowan, R.; Tydeman, G.; Shapiro, D.; Craig, T.; Morrison, N.; Logan, S.; Balen, A.H.; Ahmed, S.F.; Deeny, M.; Tolmie, J.; et al. DNA copy number variations are important in the complex genetic architecture of müllerian disorders. Fertil. Steril. 2015, 103, 1021–1030.e1. [Google Scholar] [CrossRef]
- Ledig, S.; Wieacker, P. Clinical and genetic aspects of Mayer–Rokitansky–Küster–Hauser syndrome. Med. Genet. 2018, 30, 3–11. [Google Scholar] [CrossRef]
- Parma, D.H.; Bennett, P.E.; Boswell, R.E. Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Dev. Biol. 2007, 308, 507–519. [Google Scholar] [CrossRef]
- Tewes, A.-C.; Rall, K.K.; Römer, T.; Hucke, J.; Kapczuk, K.; Brucker, S.; Wieacker, P.; Ledig, S. Variations in RBM8A and TBX6 are associated with disorders of the müllerian ducts. Fertil. Steril. 2015, 103, 1313–1318. [Google Scholar] [CrossRef]
- Nacke, S.; Schäfer, R.; Habré de Angelis, M.; Mundlos, S. Mouse mutant “rib-vertebrae” (rv): A defect in somite polarity. Dev. Dyn. 2000, 219, 192–200. [Google Scholar] [CrossRef]
- White, P.H.; Farkas, D.R.; McFadden, E.E.; Chapman, D.L. Defective somite patterning in mouse embryos with reduced levels of Tbx6. Development 2003, 130, 1681–1690. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Strick, R.; Storer, M.; Huang, N.; Rad, R.; Willatt, L.; Fitzgerald, T.; Martin, V.; Sandford, R.; Carter, N.P.; et al. High incidence of recurrent copy number variants in patients with isolated and syndromic Mullerian aplasia. J. Med. Genet. 2011, 48, 197–204. [Google Scholar] [CrossRef]
- Sandbacka, M.; Laivuori, H.; Freitas, É.; Halttunen, M.; Jokimaa, V.; Morin-Papunen, L.; Rosenberg, C.; Aittomäki, K. TBX6, LHX1 and copy number variations in the complex genetics of Müllerian aplasia. Orphanet J. Rare Dis. 2013, 8, 125. [Google Scholar] [CrossRef]
- Backhouse, B.; Hanna, C.; Robevska, G.; Bergen, J.V.D.; Pelosi, E.; Simons, C.; Koopman, P.; Juniarto, A.Z.; Grover, S.; Faradz, S.; et al. Identification of Candidate Genes for Mayer-Rokitansky-Küster-Hauser Syndrome Using Genomic Approaches. Sex. Dev. 2019, 13, 26–34. [Google Scholar] [CrossRef]
- Eksi, D.D.; Shen, Y.; Erman, M.; Chorich, L.P.; Sullivan, M.E.; Bilekdemir, M.; Yılmaz, E.; Luleci, G.; Kim, H.-G.; Alper, O.M.; et al. Copy number variation and regions of homozygosity analysis in patients with MÜLLERIAN aplasia. Mol. Cytogenet. 2018, 11, 13. [Google Scholar] [CrossRef]
- Tewes, A.-C.; Hucke, J.; Römer, T.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P.; Ledig, S. Sequence Variants in TBX6 Are Associated with Disorders of the Müllerian Ducts: An Update. Sex. Dev. 2019, 13, 35–40. [Google Scholar] [CrossRef]
- Chu, C.; Li, L.; Lu, D.; Duan, A.-H.; Luo, L.-J.; Li, S.; Yin, C. Whole-Exome Sequencing Identified a TBX6 Loss of Function Mutation in a Patient with Distal Vaginal Atresia. J. Pediatr. Adolesc. Gynecol. 2019, 32, 550–554. [Google Scholar] [CrossRef]
- Bozzi, F.; Bertuzzi, S.; Strina, D.; Giannetto, C.; Vezzoni, P.; Villa, A. The Exon–Intron Structure of HumanLHX1 Gene. Biochem. Biophys. Res. Commun. 1996, 229, 494–497. [Google Scholar] [CrossRef]
- Kobayashi, A.; Shawlot, W.; Kania, A.; Behringer, R.R. Requirement of Lim1 for female reproductive tract development. Development 2004, 131, 539–549. [Google Scholar] [CrossRef]
- Shawlot, W.; Behringer, R.R. Requirement for LIml in head-organizer function. Nature 1995, 374, 425–430. [Google Scholar] [CrossRef]
- Tsang, T.E.; Khoo, P.L.; Jamieson, R.V.; Zhou, S.X.; Ang, S.L.; Behringer, R.; Tam, P.P. The allocation and differentiation of mouse primordial germ cells. Int. J. Dev. Biol. 2001, 45, 549–555. [Google Scholar]
- Bernardini, L.; Gimelli, S.; Gervasini, C.; Carella, M.; Baban, A.; Frontino, G.; Barbano, G.; Divizia, M.T.; Fedele, L.; Novelli, A.; et al. Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: Two case reports. Orphanet J. Rare Dis. 2009, 4, 25. [Google Scholar] [CrossRef]
- Ledig, S.; Brucker, S.; Barresi, G.; Schomburg, J.; Rall, K.; Wieacker, P. Frame shift mutation of LHX1 is associated with Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Hum. Reprod. 2012, 27, 2872–2875. [Google Scholar] [CrossRef]
- Hinkes, B.; Hilgers, K.F.; Bolz, H.J.; Goppelt-Struebe, M.; Amann, K.; Nagl, S.; Bergmann, C.; Rascher, W.; Eckardt, K.-U.; Jacobi, J. A complex microdeletion 17q12 phenotype in a patient with recurrent de novo membranous nephropathy. BMC Nephrol. 2012, 13, 27. [Google Scholar] [CrossRef]
- Ledig, S.; Tewes, A.; Hucke, J.; Römer, T.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P. Array-comparative genomic hybridization analysis in patients with Müllerian fusion anomalies. Clin. Genet. 2018, 93, 640–646. [Google Scholar] [CrossRef]
- Waschk, D.; Tewes, A.-C.; Römer, T.; Hucke, J.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P.; Ledig, S. Mutations in WNT9B are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Clin. Genet. 2016, 89, 590–596. [Google Scholar] [CrossRef]
- Mencarelli, M.A.; Katzaki, E.; Papa, F.T.; Sampieri, K.; Caselli, R.; Uliana, V.; Pollazzon, M.; Canitano, R.; Mostardini, R.; Grosso, S.; et al. Private inherited microdeletion/microduplications: Implications in clinical practice. Eur. J. Med. Genet. 2008, 51, 409–416. [Google Scholar] [CrossRef]
- Bingham, C.; Ellard, S.; Cole, T.R.; Jones, K.E.; Allen, L.I.; Goodship, J.A.; Goodship, T.H.; Bakalinova-Pugh, D.; Russell, G.I.; Woolf, A.; et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int. 2002, 61, 1243–1251. [Google Scholar] [CrossRef]
- Lindner, T.H.; Njølstad, P.R.; Horikawa, Y.; Bostad, L.; Bell, G.I.; Søvik, O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum. Mol. Genet. 1999, 8, 2001–2008. [Google Scholar] [CrossRef]
- Williams, L.S.; Eksi, D.D.; Shen, Y.; Lossie, A.C.; Chorich, L.P.; Sullivan, M.E.; Phillips, J.A.; Erman, M.; Kim, H.-G.; Alper, O.M.; et al. Genetic analysis of Mayer-Rokitansky-Kuster-Hauser syndrome in a large cohort of families. Fertil. Steril. 2017, 108, 145–151.e2. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Zhao, H.; Qin, Y.; Mu, Y.; Wang, J.; Bian, Y.; Ma, J.; Chen, Z.-J. LHX1 mutation screening in 96 patients with müllerian duct abnormalities. Fertil. Steril. 2012, 97, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Coffinier, C.; Barra, J.; Babinet, C.; Yaniv, M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev. 1999, 89, 211–213. [Google Scholar] [CrossRef]
- Sundaram, U.T.; McDonald-McGinn, D.M.; Huff, D.; Emanuel, B.S.; Zackai, E.H.; Driscoll, D.A.; Bodurtha, J. Primary amenorrhea and absent uterus in the 22q11.2 deletion syndrome. Am. J. Med. Genet. Part A 2007, 143, 2016–2018. [Google Scholar] [CrossRef]
- Morcel, K.; Watrin, T.; Pasquier, L.; Rochard, L.; Le Caignec, C.; Dubourg, C.; Loget, P.; Paniel, B.-J.; Odent, S.; David, V.; et al. Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci. Orphanet J. Rare Dis. 2011, 6, 9. [Google Scholar] [CrossRef]
- Cheroki, C.; Krepischi-Santos, A.C.; Rosenberg, C.; Jehee, F.S.; Mingroni-Netto, R.C.; Filho, I.P.; Filho, S.Z.; Kim, C.A.; Bagnoli, V.R.; Mendonca, B.B.; et al. Report of a del22q11 in a patient with Mayer-Rokitansky-Küster-Hauser (MRKH) anomaly and exclusion ofWNT-4,RAR-gamma, andRXR-alpha as major genes determining MRKH anomaly in a study of 25 affected women. Am. J. Med. Genet. Part A 2006, 140, 1339–1342. [Google Scholar] [CrossRef]
- AlSubaihin, A.; Vandermeulen, J.; Harris, K.; Duck, J.; McCready, E. Müllerian Agenesis in Cat Eye Syndrome and 22q11 Chromosome Abnormalities: A Case Report and Literature Review. J. Pediatr. Adolesc. Gynecol. 2018, 31, 158–161. [Google Scholar] [CrossRef]
- Liatsikos, S.A.; Grimbizis, G.F.; Georgiou, I.; Papadopoulos, N.; Lazaros, L.; Bontis, J.N.; Tarlatzis, B.C. HOX A10 and HOX A11 mutation scan in congenital malformations of the female genital tract. Reprod. Biomed. Online 2010, 21, 126–132. [Google Scholar] [CrossRef]
- Mericskay, M.; Kitajewski, J.; Sassoon, D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 2004, 131, 2061–2072. [Google Scholar] [CrossRef]
- Miyamoto, N.; Yoshida, M.; Kuratani, S.; Matsuo, I.; Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 1997, 124, 1653–1664. [Google Scholar] [CrossRef]
- Morcel, K.; Dallapiccola, B.; Pasquier, L.; Watrin, T.; Bernardini, L.; Guerrier, D. Clinical utility gene card for: Mayer–Rokitansky–Küster–Hauser syndrome. Eur. J. Hum. Genet. 2012, 20, 1–3. [Google Scholar] [CrossRef]
- Vainio, S.; Heikkilä, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; Konrad, D.; Navratil, F.; Schoenle, E.J. A WNT4 Mutation Associated with Müllerian-Duct Regression and Virilization in a 46,XX Woman. N. Engl. J. Med. 2004, 351, 792–798. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; De Filippo, G.; Konrad, D.; Scarano, G.; Nazzaro, A.; Schoenle, E. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: A Case Report. Hum. Reprod. 2007, 22, 224–229. [Google Scholar] [CrossRef]
- Philibert, P.; Biason-Lauber, A.; Rouzier, R.; Pienkowski, C.; Paris, F.; Konrad, D.; Schoenle, E.; Sultan, C. Identification and Functional Analysis of a New WNT4 Gene Mutation among 28 Adolescent Girls with Primary Amenorrhea and Muüllerian Duct Abnormalities: A French Collaborative Study. J. Clin. Endocrinol. Metab. 2008, 93, 895–900. [Google Scholar] [CrossRef]
- Philibert, P.; Biason-Lauber, A.; Gueorguieva, I.; Stuckens, C.; Pienkowski, C.; Lebon-Labich, B.; Paris, F.; Sultan, C. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Küster-Hauser syndrome). Fertil. Steril. 2011, 95, 2683–2686. [Google Scholar] [CrossRef]
- Masse, J.; Watrin, T.; Laurent, A.; Deschamps, S.; Guerrier, D.; Pellerin, I. The developing female genital tract: From genetics to epigenetics. Int. J. Dev. Biol. 2009, 53, 411–424. [Google Scholar] [CrossRef]
- Patterson, L.T.; Potter, S.S. Atlas of Hox gene expression in the developing kidney. Dev. Dyn. 2004, 229, 771–779. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kwan, K.-M.; Carroll, T.J.; McMahon, A.P.; Mendelsohn, C.L.; Behringer, R.R. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 2005, 132, 2809–2823. [Google Scholar] [CrossRef]
- Pedersen, A.; Skjong, C.; Shawlot, W. Lim1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 2005, 288, 571–581. [Google Scholar] [CrossRef]
- Herlin, M.K.; Le-Quy, V.; Højland, A.T.; Ernst, A.; Okkels, H.; Petersen, A.C.; Petersen, M.B.; Pedersen, I.S. Whole-exome sequencing identifies a GREB1L variant in a three-generation family with Müllerian and renal agenesis: A novel candidate gene in Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome. A case report. Hum. Reprod. 2019, 34, 1838–1846. [Google Scholar] [CrossRef]
- De Tomasi, L.; David, P.; Humbert, C.; Silbermann, F.; Arrondel, C.; Tores, F.; Fouquet, S.; Desgrange, A.; Niel, O.; Bole-Feysot, C.; et al. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice. Am. J. Hum. Genet. 2017, 101, 803–814. [Google Scholar] [CrossRef]
- Sanna-Cherchi, S.; Khan, K.; Westland, R.; Krithivasan, P.; Fievet, L.; Rasouly, H.M.; Ionita-Laza, I.; Capone, V.P.; Fasel, D.A.; Kiryluk, K.; et al. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. Am. J. Hum. Genet. 2017, 101, 789–802. [Google Scholar] [CrossRef]
- Pask, A. The Reproductive System. In Non-Coding RNA and the Reproductive System; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2016; pp. 1–12. [Google Scholar] [CrossRef]
- Li, H.; Liao, S.; Luo, G.; Li, H.; Wang, S.; Li, Z.; Luo, X. An Association between EMX2 Variations and Mayer-Rokitansky-Küster-Hauser Syndrome: A Case-Control Study of Chinese Women. J. Healthc. Eng. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Chu, C.; Li, L.; Li, S.; Zhou, Q.; Zheng, P.; Zhang, Y.-D.; Duan, A.-H.; Lu, D.; Wu, Y.-M. Variants in genes related to development of the urinary system are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Hum. Genom. 2022, 16, 10. [Google Scholar] [CrossRef]
- Dell’Edera, D.; Allegretti, A.; Ventura, M.; Mercuri, L.; Mitidieri, A.; Cuscianna, G.; Epifania, A.A.; Morizio, E.; Alfonsi, M.; Guanciali-Franchi, P. Mayer-Rokitansky-Küster-Hauser syndrome with 22q11.21 microduplication: A case report. J. Med. Case Rep. 2021, 15, 208. [Google Scholar] [CrossRef]
- Mikhael, S.; Dugar, S.; Morton, M.; Chorich, L.P.; Tam, K.B.; Lossie, A.C.; Kim, H.-G.; Knight, J.; Taylor, H.S.; Mukherjee, S.; et al. Genetics of agenesis/hypoplasia of the uterus and vagina: Narrowing down the number of candidate genes for Mayer–Rokitansky–Küster–Hauser Syndrome. Qual. Life Res. 2021, 140, 667–680. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, S.; Jolly, A.; Wang, L.; Pan, H.; Yuan, J.; Chen, S.; Koch, A.; Ma, C.; Tian, W.; et al. Perturbations of genes essential for Müllerian duct and Wölffian duct development in Mayer-Rokitansky-Küster-Hauser syndrome. Am. J. Hum. Genet. 2021, 108, 337–345. [Google Scholar] [CrossRef]
- Pontecorvi, P.; Bernardini, L.; Capalbo, A.; Ceccarelli, S.; Megiorni, F.; Vescarelli, E.; Bottillo, I.; Preziosi, N.; Fabbretti, M.; Perniola, G.; et al. Protein–protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer–Rokitansky–Küster–Hauser syndrome. Sci. Rep. 2021, 11, 448. [Google Scholar] [CrossRef]
- Jacquinet, A.; Boujemla, B.; Fasquelle, C.; Thiry, J.; Josse, C.; Lumaka, A.; Brischoux-Boucher, E.; Dubourg, C.; David, V.; Pasquier, L.; et al. GREB1L variants in familial and sporadic hereditary urogenital adysplasia and Mayer-Rokitansky-Kuster-Hauser syndrome. Clin. Genet. 2020, 98, 126–137. [Google Scholar] [CrossRef]
- Anant, M.; Raj, N.; Yadav, N.; Prasad, A.; Kumar, S.; Saxena, A.K. Two Distinctively Rare Syndromes in a Case of Primary Amenorrhea: 18p Deletion and Mayer–Rokitansky–Kuster–Hauser Syndromes. J. Pediatr. Genet. 2020, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Smol, T.; Ribero-Karrouz, W.; Edery, P.; Gorduza, D.B.; Catteau-Jonard, S.; Manouvrier-Hanu, S.; Ghoumid, J. Mayer-Rokitansky-Künster-Hauser syndrome due to 2q12.1q14.1 deletion: PAX8 the causing gene? Eur. J. Med. Genet. 2020, 63, 103812. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.-X.; Luo, G.-N.; Wan, S.-Q.; Qin, C.-L.; Tang, J.; Zhang, M.; Du, M.; Xu, K.-K.; Shi, J.-Q. Detection of de novo genetic variants in Mayer–Rokitansky–Küster–Hauser syndrome by whole genome sequencing. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 4, 100089. [Google Scholar] [CrossRef] [PubMed]
- Eggermann, T.; Ledig, S.; Begemann, M.; Elbracht, M.; Kurth, I.; Wieacker, P. Search for altered imprinting marks in Mayer–Rokitansky–Küster–Hauser patients. Mol. Genet. Genom. Med. 2018, 6, 1225–1228. [Google Scholar] [CrossRef]
- Takahashi, K.; Hayano, T.; Sugimoto, R.; Kashiwagi, H.; Shinoda, M.; Nishijima, Y.; Suzuki, T.; Suzuki, S.; Ohnuki, Y.; Kondo, A.; et al. Exome and copy number variation analyses of Mayer–Rokitansky–Küster–Hauser syndrome. Hum. Genome Var. 2018, 5, 27. [Google Scholar] [CrossRef]
- Brucker, S.Y.; Frank, L.; Eisenbeis, S.; Henes, M.; Wallwiener, D.; Riess, O.; van Eijck, B.; Schöller, D.; Bonin, M.; Rall, K.K. Sequence variants in ESR1 and OXTR are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Acta Obstet. Gynecol. Scand. 2017, 96, 1338–1346. [Google Scholar] [CrossRef]
- Xing, Q.; Xu, Z.; Zhu, Y.; Wang, X.; Wang, J.; Chen, D.; Xu, Y.; He, X.; Xiang, H.; Wang, B.; et al. Genetic analysis of DACT1 in 100 Chinese Han women with Müllerian duct anomalies. Reprod. Biomed. Online 2016, 32, 420–426. [Google Scholar] [CrossRef][Green Version]
- Ma, W.; Li, Y.; Wang, M.; Li, H.; Su, T.; Wang, S. Associations of Polymorphisms in WNT9B and PBX1 with Mayer-Rokitansky-Küster-Hauser Syndrome in Chinese Han. PLoS ONE 2015, 10, e0130202. [Google Scholar] [CrossRef]
- Liu, S.; Gao, X.; Qin, Y.; Liu, W.; Huang, T.; Ma, J.; Simpson, J.L.; Chen, Z.-J. Nonsense mutation of EMX2 is potential causative for uterus didelphysis: First molecular explanation for isolated incomplete müllerian fusion. Fertil. Steril. 2015, 103, 769–774.e2. [Google Scholar] [CrossRef]
- Murry, J.B.; Santos, X.M.; Wang, X.; Wan, Y.-W.; Veyver, I.B.V.D.; Dietrich, J.E. A genome-wide screen for copy number alterations in an adolescent pilot cohort with müllerian anomalies. Fertil. Steril. 2015, 103, 487–493. [Google Scholar] [CrossRef]
- Chen, M.-J.; Wei, S.-Y.; Yang, W.-S.; Wu, T.-T.; Li, H.-Y.; Ho, H.-N.; Yang, Y.-S.; Chen, P.-L. Concurrent exome-targeted next-generation sequencing and single nucleotide polymorphism array to identify the causative genetic aberrations of isolated Mayer-Rokitansky-Kuster-Hauser syndrome. Hum. Reprod. 2015, 30, 1732–1742. [Google Scholar] [CrossRef]
- Nodale, C.; Ceccarelli, S.; Giuliano, M.; Cammarota, M.; D’Amici, S.; Vescarelli, E.; Maffucci, D.; Bellati, F.; Panici, P.B.; Romano, F.; et al. Gene Expression Profile of Patients with Mayer-Rokitansky-Küster-Hauser Syndrome: New Insights into the Potential Role of Developmental Pathways. PLoS ONE 2014, 9, e91010. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Ma, W.; Li, H.; He, F.; Pu, D.; Su, T.; Wang, S. Analysis of WNT9B mutations in Chinese women with Mayer–Rokitansky–Küster–Hauser syndrome. Reprod. Biomed. Online 2014, 28, 80–85. [Google Scholar] [CrossRef]
- Ma, D.; Marion, R.; Punjabi, N.P.; Pereira, E.; Samanich, J.; Agarwal, C.; Li, J.; Huang, C.-K.; Ramesh, K.H.; Cannizzaro, A.L.; et al. A de novo 10.79 Mb interstitial deletion at 2q13q14.2 involving PAX8 causing hypothyroidism and mullerian agenesis: A novel case report and literature review. Mol. Cytogenet. 2014, 7, 85. [Google Scholar] [CrossRef]
- Ekici, A.B.; Strissel, P.L.; Oppelt, P.G.; Renner, S.P.; Brucker, S.; Beckmann, M.W.; Strick, R. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene 2013, 518, 267–272. [Google Scholar] [CrossRef]
- Chang, X.; Qin, Y.; Xu, C.; Li, G.; Zhao, X.; Chen, Z.-J. Mutations in WNT4 are not responsible for Müllerian duct abnormalities in Chinese women. Reprod. Biomed. Online 2012, 24, 630–633. [Google Scholar] [CrossRef]
- Ravel, C.; Bashamboo, A.; Bignon-Topalovic, J.; Siffroi, J.-P.; McElreavey, K.; Darai, E. Polymorphisms in DLGH1 and LAMC1 in Mayer–Rokitansky–Kuster–Hauser syndrome. Reprod. Biomed. Online 2012, 24, 462–465. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, H.; Sun, M.; Li, Y.; Chen, Z.-J. PAX2 in 192 Chinese women with Müllerian duct abnormalities: Mutation analysis. Reprod. Biomed. Online 2012, 25, 219–222. [Google Scholar] [CrossRef]
- Sandbacka, M.; Bruce, S.; Halttunen, M.; Puhakka, M.; Lahermo, P.; Hannula-Jouppi, K.; Lipsanen-Nyman, M.; Kere, J.; Aittomäki, K.; Laivuori, H. Methylation of H19 and its imprinted control region (H19 ICR1) in Müllerian aplasia. Fertil. Steril. 2011, 95, 2703–2706. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Y.; Liu, W.; Duan, H.; Xia, M.; Chen, Z.-J. Analysis of PBX1 mutations in 192 Chinese women with Müllerian duct abnormalities. Fertil. Steril. 2011, 95, 2615–2617. [Google Scholar] [CrossRef]
- Gervasini, C.; Grati, F.R.; Lalatta, F.; Tabano, S.; Gentilin, B.; Colapietro, P.; De Toffol, S.; Frontino, G.; Motta, F.; Maitz, S.; et al. SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome. Genet. Med. 2010, 12, 634–640. [Google Scholar] [CrossRef]
- Acién, P.; Galán, F.; Manchón, I.; Ruiz, E.; Acién, M.; Alcaraz, A.L. Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: A case report. Orphanet J. Rare Dis. 2010, 5, 6. [Google Scholar] [CrossRef]
- Oram, R.A.; Edghill, E.L.; Blackman, J.; Taylor, M.J.; Kay, T.; Flanagan, S.E.; Ismail-Pratt, I.; Creighton, S.M.; Ellard, S.; Hattersley, A.T.; et al. Mutations in the hepatocyte nuclear factor-1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am. J. Obstet. Gynecol. 2010, 203, 364.e1–364.e5. [Google Scholar] [CrossRef]
- Ravel, C.; Lorenço, D.; Dessolle, L.; Mandelbaum, J.; McElreavey, K.; Darai, E.; Siffroi, J.P. Mutational analysis of the WNT gene family in women with Mayer-Rokitansky-Kuster-Hauser syndrome. Fertil. Steril. 2009, 91, 1604–1607. [Google Scholar] [CrossRef]
- Hofstetter, G.; Concin, N.; Marth, C.; Rinne, T.; Erdel, M.; Janecke, A. Genetic analyses in a variant of Mayer-Rokitansky-Kuster-Hauser syndrome (MURCS association). Wien. Klin. Wochenschr. 2008, 120, 435–439. [Google Scholar] [CrossRef]
- Drummond, J.B.; Rezende, C.F.; Peixoto, F.C.; Carvalho, J.S.; Reis, F.M.; De Marco, L. Molecular analysis of the β-catenin gene in patients with the Mayer-Rokitansky-Küster-Hauser syndrome. J. Assist. Reprod. Genet. 2008, 25, 511–514. [Google Scholar] [CrossRef]
- Lalwani, S.; Wu, H.-H.; Reindollar, R.H.; Gray, M.R. HOXA10 mutations in congenital absence of uterus and vagina. Fertil. Steril. 2008, 89, 325–330. [Google Scholar] [CrossRef]
- Burel, A.; Mouchel, T.; Odent, S.; Tiker, F.; Knebelmann, B.; Pellerin, I.; Guerrier, D. Role of HOXA7 to HOXA13 and PBX1 genes in various forms of MRKH syndrome (congenital absence of uterus and vagina). J. Negat. Results Biomed. 2006, 5, 4. [Google Scholar] [CrossRef]
- Oppelt, P.; Strissel, P.; Kellermann, A.; Seeber, S.; Humeny, A.; Beckmann, M.; Strick, R. DNA sequence variations of the entire anti-Müllerian hormone (AMH) gene promoter and AMH protein expression in patients with the Mayer–Rokitanski–Küster–Hauser syndrome. Hum. Reprod. 2005, 20, 149–157. [Google Scholar] [CrossRef]
- Clément-Ziza, M.; Khen-Dunlop, N.; Gonzales, J.; Crétolle-Vastel, C.; Picard, J.-Y.; Tullio-Pelet, A.; Besmond, C.; Munnich, A.; Lyonnet, S.; Nihoul-Fékété, C. Exclusion ofWNT4 as a major gene in Rokitansky-Küster-Hauser anomaly. Am. J. Med. Genet. Part A 2005, 137, 98–99. [Google Scholar] [CrossRef]
- Zenteno, J.C.; Carranza-Lira, S.; Kofman-Alfaro, S. Molecular analysis of the anti-Müllerian hormone, the anti-Müllerian hormone receptor, and galactose-1-phosphate uridyl transferase genes in patients with the Mayer-Rokitansky-Küster-Hauser syndrome. Arch. Gynecol. Obstet. 2004, 269, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Plevraki, E.; Kita, M.; Goulis, D.G.; Hatzisevastou-Loukidou, H.; Lambropoulos, A.F.; Avramides, A. Bilateral ovarian agenesis and the presence of the testis-specific protein 1-Y-linked gene: Two new features of Mayer-Rokitansky-Küster-hauser syndrome. Fertil. Steril. 2004, 81, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Klipstein, S.; Bhagavath, B.; Topipat, C.; Sasur, L.; Reindollar, R.; Gray, M. The N314D polymorphism of the GALT gene is not associated with congenital absence of the uterus and vagina. Mol. Hum. Reprod. 2003, 9, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Aydos, S.; Tükün, A.; Bökesoy, I. Gonadal dysgenesis and the Mayer-Rokitansky-Kuster-Hauser syndrome in a girl with 46,X,del(X)(pter→q22:). Arch. Gynecol. Obstet. 2003, 267, 173–174. [Google Scholar] [CrossRef]
- Timmreck, L.S.; Gray, M.R.; Handelin, B.; Allito, B.; Rohlfs, E.; Davis, A.J.; Gidwani, G.; Reindollar, R.H. Analysis of cystic fibrosis transmembrane conductance regulator gene mutations in patients with congenital absence of the uterus and vagina. Am. J. Med. Genet. 2003, 120, 72–76. [Google Scholar] [CrossRef]
- Resendes, B.L.; Sohn, S.H.; Stelling, J.R.; Tineo, R.; Davis, A.J.; Gray, M.R.; Reindollar, R.H. Role for anti-Müllerian hormone in congenital absence of the uterus and vagina. Am. J. Med. Genet. 2001, 98, 129–136. [Google Scholar] [CrossRef]
- Cramer, D.W.; Goldstein, D.P.; Fraer, C.; Reichardt, J. Vaginal agenesis (Mayer-Rokitansky-Kuster-Hauser Syndrome) associated with the N314D mutation of galactose-1-phosphate uridyl transferase (GALT). Mol. Hum. Reprod. 1996, 2, 145–148. [Google Scholar] [CrossRef]
Chromosome Location | Suspected Genes Involved | Associated Syndromes | Non-Humans Study | Phenotype | References |
---|---|---|---|---|---|
1q21 | RBM8A | TAR syndrome (thrombocytopenia, absence of the radius) [25,26,27,28] | Drosophila melanogaster: RBM8A encodes Y14 protein, which affects oocyte differentiation and determination of primordial germ cells [29] | Type I + II | [25,26,27,30] |
16p11.2 | TBX6 | Autism spectrum disorders, neurological disorders, unaffected persons [28] | Mouse models: Deletion of TBX6 presents skeletal (mainly vertebral) and urinary tract malformations [31,32] | Type I + II | [27,30,33,34,35,36,37,38] |
17q12 | LHX1 | Anomalies in the embryogenesis, in body axis formation [28,39] | Mouse model: LHX1 null mutant mice are characterized by absent uterus and oviducts [40] Mouse model: LHX1 mutant mice had lack of kidneys and anencephaly [28,41] Mouse embryos with decreased LHX1 activity had lower capacity of primordial germ cells (PGCs; [42]) | Type I + II | [25,26,33,34,43,44,45,46,47,48,49,50,51,52] |
HNF1B | Renal cysts and diabetes [28] | Mouse models: Expression of HNF1B in MDs and in epithelial tissue of liver, pancreas, lungs and kidneys [53] | |||
22q11 | Uncertain (TBX1) | DiGeorge or Velocardiofacial syndrome (heart defects, hypocalcemia, immunodeficiency, typical facial malformations, cognitive and behavioral disorders) | Type I + II | [25,26,27,33,54,55,56,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllidi, V.E.; Mavrogianni, D.; Kalampalikis, A.; Litos, M.; Roidi, S.; Michala, L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children 2022, 9, 961. https://doi.org/10.3390/children9070961
Triantafyllidi VE, Mavrogianni D, Kalampalikis A, Litos M, Roidi S, Michala L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children. 2022; 9(7):961. https://doi.org/10.3390/children9070961
Chicago/Turabian StyleTriantafyllidi, Varvara Ermioni, Despoina Mavrogianni, Andreas Kalampalikis, Michael Litos, Stella Roidi, and Lina Michala. 2022. "Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature" Children 9, no. 7: 961. https://doi.org/10.3390/children9070961
APA StyleTriantafyllidi, V. E., Mavrogianni, D., Kalampalikis, A., Litos, M., Roidi, S., & Michala, L. (2022). Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children, 9(7), 961. https://doi.org/10.3390/children9070961