Longitudinal Changes of Cardiorespiratory Fitness Performance in High School: Association with Individual and School-Based Variables
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Procedures
2.2. Participants
2.3. Variables and Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef]
- Lamoureux, N.R.; Fitzgerald, J.S.; Norton, K.I.; Sabato, T.; Tremblay, M.S.; Tomkinson, G.R. Temporal Trends in the Cardiorespiratory Fitness of 2,525,827 Adults Between 1967 and 2016: A Systematic Review. Sports Med. 2019, 49, 41–55. [Google Scholar] [CrossRef]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef] [PubMed]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef]
- Lang, J.J.; Larouche, R.; Tremblay, M.S. Original quantitative research—The association between physical fitness and health in a nationally representative sample of Canadian children and youth aged 6 to 17 years. Health Promot. Chronic Dis. Prev. Can. 2019, 39, 104–111. [Google Scholar] [CrossRef]
- Lobelo, F.; Ruiz, J.R. Cardiorespiratory fitness as criterion validity for health-based metabolic syndrome definition in adolescents. J. Am. Coll. Cadiol. 2007, 50, 471. [Google Scholar] [CrossRef] [Green Version]
- Hurtig-Wennlöf, A.; Ruiz, J.; Harro, M.; Sjöström, M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: The European Youth Heart Study. Eur. J. Cadiovasc. Prev. Rehabil. 2007, 14, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Ortega, F.B.; Meusel, D.; Harro, M.; Oja, P.; Sjöström, M. Cardiorespiratory fitness is associated with features of metabolic risk factors in children: Should cardiorespiratory fitness be assessed in the European health monitoring system? J. Public Health 2006, 14, 94–102. [Google Scholar] [CrossRef]
- Franssen, W.; Beyens, M.; Hatawe, T.A.; Frederix, I.; Verboven, K.; Dendale, P.; Eijnde, B.O.; Massa, G.; Hansen, D. Cardiac function in adolescents with obesity: Cardiometabolic risk factors and impact on physical fitness. Int. J. Obes. 2019, 43, 1400–1410. [Google Scholar] [CrossRef]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.N.M.; Roseboom, T.J.; Gemke, R.J.B.J. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: A systematic review of longitudinal studies. Sports Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Valls, M.R.; Adelantado-Renau, M.; Castro-Piñero, J.; Sánchez-López, M.; Moliner-Urdiales, D. Cardiorespiratory fitness and academic performance association is medicated by weight status in adolescents: DADOS study. Eur. J. Pediatr. 2018, 177, 1037–1043. [Google Scholar] [CrossRef]
- Hillman, C.H.; Khan, N.A.; Kao, S.-C. The relationship of health behaviors to childhood cognition and brain health. Proc. Ann. Nurt. Metab. 2015, 66, 1–4. [Google Scholar] [CrossRef]
- Huang, T.; Tarp, J.; Domazet, S.L.; Thorsen, A.K.; Froberg, K.; Andersen, L.B.; Bugge, A. Associations of adiposity and aerobic fitness with executive function and math performance in Danish adolescents. J. Pediatr. 2015, 167, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Van Dusen, D.P.; Kelder, S.H.; Kohl, H.W.; Ranjit, N.; Perry, C.L. Associations of physical fitness and academic performance among schoolchildren. J. School Health 2011, 81, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, K.A.; Dowda, M.; Dishman, R.K.; Sirard, J.R.; Pate, R.R. Cardiorespiratory fitness in girls-change from middle to high school. Med. Sci. Sports Exerc. 2007, 39, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Haegele, J.A.; Holland, S.K. Cardiorespiratory fitness growth in middle school: Socio-demographic factor associations. Res. Q. Exerc. Sports 2022, 93, 333–340. [Google Scholar] [CrossRef]
- Lo, K.-Y.; Wu, M.-C.; Tung, S.-C.; Hsieh, C.C.; Yao, H.-H.; Ho, C.-C. Association of school environment an after-school physical activity with health-related physical fitness among junior high school students in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 83. [Google Scholar] [CrossRef]
- Zhu, W.; Boiarskaia, E.A.; Welk, G.J.; Meredith, M.D. Physical education and school contextual factors relating to students’ achievement and cross-grade differences in aerobic fitness and obesity. Res. Q. Exerc. Sports 2010, 81, S53–S64. [Google Scholar] [CrossRef]
- Bogin, B.; MacVean, R.B. The relationship of socioeconomic status and sex to body size, skeletal maturation, and cognitive status of Guatemala City schoolchildren. Child. Dev. 1983, 54, 115–128. Available online: https://pubmed.ncbi.nlm.nih.gov/6831980/ (accessed on 30 August 2022). [CrossRef]
- Finn, J.D.; Achilles, C.M. Answers and questions about class size: A statewide experiment. Am. Educ. Res. J. 1990, 27, 557–577. [Google Scholar] [CrossRef]
- Davis, S.; Zhu, X.; Haegele, J. High school student fitness test attributions: Does BMI or performance matter? J. Teach. Phys. Educ. 2021, 40, 49–57. [Google Scholar] [CrossRef]
- Zhu, X.; A Haegele, J. Gender- and school-level correlates of growth in health-related fitness knowledge among US high-school students. Health. Educ. J. 2018, 77, 927–938. [Google Scholar] [CrossRef]
- Morrow, J.R., Jr.; Martin, S.B.; Jackson, A.W. Reliability and validity of the FITNESSGRAM®: Quality of teacher-collected health-related fitness surveillance data. Res. Q. Exerc. Sports 2010, 81, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Maduro, P.F.D.S.-M.; Laurson, K.R.; Brown, D.D. Field evaluation of the new FITNESSGRAM® criterion-referenced standards. Am. J. Prev. Med. 2011, 41, S131–S142. [Google Scholar] [CrossRef] [PubMed]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Zhu, X.; Chen, S.; Parrot, J. Adolescents’ interest and performances in aerobic fitness testing. J. Teach. Phys. Educ. 2014, 33, 53–67. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.R. Development of aerobic fitness during childhood and adolescence. Pediatr. Exerc. Sci. 2000, 12, 128–149. [Google Scholar] [CrossRef]
- Pate, R.R.; O’Neill, J.R.; McIver, K.L. Physical activity and health: Does physical education matter? Quest 2011, 63, 19–35. [Google Scholar] [CrossRef]
- Madsen, K.A.; Gosliner, W.; Woodward-Lopez, G.; Crawford, P.B. Physical activity opportunities associated with fitness and weight status among adolescents in low-income communities. Arch. Pediatr. Adolesc. Med. 2009, 163, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Welk, G.J.; Jackson, A.W.; Morrow, J.R.; Haskell, W.H.; Meredith, M.D.; Cooper, K.H. The association of health-related fitness with indicators of academic performance in Texas schools. Res. Q. Exerc. Sports 2010, 81, S16–S23. [Google Scholar] [CrossRef]
- Bezold, C.P.; Konty, K.J.; Day, S.E.; Berger, M.; Harr, L.; Larkin, M.; Napier, M.D.; Nonas, C.; Saha, S.; Harris, T.G.; et al. The effects of changes in physical fitness on academic performance among New York City youth. J. Adolesc. Health 2014, 55, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Haegele, J.; Sun, H. Health-related fitness knowledge growth in middle school years: Individual and school level correlates. J. Sports Health Sci. 2020, 9, 664–669. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J. Twenty-metre shuttle run: (mis)representation, (mis)interpretation and (mis) use. Br. J. Sports Med. 2018, 53, 1199. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.; A Léger, L.; Olds, T.S.; Ortega, F.B.; Ruiz, J.R.; Tremblay, M.S. Response to criticisms of the 20m shuttle run test: Deflections, distortions, and distractions. Br. J. Sports Med. 2019, 53, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Kann, L.; McManus, T.; Harris, W.A.; Shanklin, S.L.; Flint, K.H.; Hawkins, J.; Queen, B.; Lowry, R.; Olsen, E.O.; Chyen, D.; et al. Youth risk behavior surveillance—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 1–174. [Google Scholar] [CrossRef]
Testing Year | Age (M ± SD) | Participant (N) | PACER (# Laps, M ± SD) |
---|---|---|---|
Grade 9 | 14.61 ± 0.69 | 76,227 | 41.44 ± 21.10 |
Grade 10 | 15.41 ± 0.70 | 73,602 | 43.74 ± 21.71 |
Grade 11 * | 16.38 ± 0.92 | 5495 | 45.81 ± 23.64 |
Grade 12 * | 17.63 ± 0.70 | 1372 | 40.67 ± 22.35 |
Fixed Effect with SAP | Coefficient | se | t Ratio | df | OR (95% CI) | p Value |
---|---|---|---|---|---|---|
Model for performance, π0ij | ||||||
Predicting β00j | ||||||
Intercept, γ000 | 0.55 | 0.09 | 6.21 | 77 | 1.74 (1.46, 2.07) | <0.001 |
S/F-PE, γ001 | −0.06 | 0.07 | −1.03 | 77 | 0.94 (0.85, 1.05) | 0.306 |
SAP, γ002 | 0.26 | 0.07 | 3.73 | 77 | 1.29 (1.13, 1.49) | 0.001 |
Predicting β01j | ||||||
Intercept sex, γ010 | −0.23 | 0.05 | −4.11 | 81,557 | 0.79 (0.71, 0.88) | <0.001 |
Model for growth rate (1st order), π1ij | ||||||
Predicting β10j | ||||||
Intercept, γ100 | −0.10 | 0.08 | −1.24 | 156,688 | 0.91 (0.77, 1.06) | 0.215 |
Predicting β11j | ||||||
Intercept sex, γ110 | −0.18 | 0.07 | −2.40 | 156,688 | 0.83 (0.72, 0.97) | 0.016 |
Model for growth rate (2nd order), π2ij | ||||||
Predicting β20j | ||||||
Intercept, γ200 | −0.09 | 0.04 | −2.37 | 156,688 | 0.91 (0.85, 0.98) | 0.018 |
Predicting β21j | ||||||
Intercept sex, γ210 | 0.10 | 0.04 | 2.51 | 156,688 | 1.10 (1.02, 1.19) | 0.012 |
Fixed Effect with FARM and SAP | Coefficient | se | tRatio | df | OR (95% CI) | pValue |
Model for performance, π0ij | ||||||
Predicting β00j | ||||||
Intercept, γ000 | 0.57 | 0.08 | 7.08 | 76 | 1.76 (1.51, 2.07) | <0.001 |
FARM, γ001 | −0.59 | 0.13 | −4.30 | 76 | 0.55 (0.42, 0.73) | <0.001 |
S/F-PE, γ002 | −0.06 | 0.05 | −1.11 | 76 | 0.94 (0.85, 1.05) | 0.270 |
SAP, γ003 | −0.24 | 0.14 | −1.71 | 76 | 0.78 (0.59, 1.04) | 0.091 |
Predicting β01j | ||||||
Intercept sex, γ010 | −0.24 | 0.06 | −4.15 | 81,557 | 0.79 (0.71, 0.88) | <0.001 |
Model for growth rate (1st order), π1ij | ||||||
Predicting β10j | ||||||
Intercept, γ100 | −0.10 | 0.08 | −1.23 | 156,688 | 0.91 (0.77, 1.06) | 0.217 |
Predicting β11j | ||||||
Intercept sex, γ110 | −0.18 | 0.07 | −2.36 | 137,260 | 0.84 (0.72, 0.97) | 0.019 |
Model for growth rate (2nd order), π2ij | ||||||
Predicting β20j | ||||||
Intercept, γ200 | −0.09 | 0.04 | −2.41 | 137,260 | 0.91 (0.85, 0.98) | 0.016 |
Predicting β21j | ||||||
Intercept sex, γ210 | 0.10 | 0.04 | 2.53 | 137,260 | 1.11 (1.02, 1.20) | 0.012 |
Sex | Year | % in HFZ (95% CI) | Odds Ratio in HFZ (95% CI) |
---|---|---|---|
Grade 9 | 0.56 (0.55, 0.56) | 2.32 (1.77, 3.03) ** | |
Boys | Grade 10 | 0.49 (0.48, 0.49) | 2.14 (1.64, 2.79) ** |
Grade 11 † | 0.45 (0.43, 0.47) | 1.64 (1.23, 2.18) * | |
Grade 12 † | 0.27 (0.24, 0.30) | 1.00 (referent) | |
Grade 9 | 0.61 (0.61, 0.62) | 3.35 (2.88, 3.91) ** | |
Girls | Grade 10 | 0.57 (0.56, 0.57) | 2.56 (2.20, 2.98) ** |
Grade 11 † | 0.44 (0.42, 0.46) | 2.21 (1.87, 2.61) * | |
Grade 12 † | 0.18 (0.15, 0.21) | 1.00 (referent) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Haegele, J.A.; Shao, J.; Davis, S. Longitudinal Changes of Cardiorespiratory Fitness Performance in High School: Association with Individual and School-Based Variables. Children 2022, 9, 1884. https://doi.org/10.3390/children9121884
Zhu X, Haegele JA, Shao J, Davis S. Longitudinal Changes of Cardiorespiratory Fitness Performance in High School: Association with Individual and School-Based Variables. Children. 2022; 9(12):1884. https://doi.org/10.3390/children9121884
Chicago/Turabian StyleZhu, Xihe, Justin A. Haegele, Jinting Shao, and Summer Davis. 2022. "Longitudinal Changes of Cardiorespiratory Fitness Performance in High School: Association with Individual and School-Based Variables" Children 9, no. 12: 1884. https://doi.org/10.3390/children9121884
APA StyleZhu, X., Haegele, J. A., Shao, J., & Davis, S. (2022). Longitudinal Changes of Cardiorespiratory Fitness Performance in High School: Association with Individual and School-Based Variables. Children, 9(12), 1884. https://doi.org/10.3390/children9121884