The Development of an Enhanced Recovery Protocol for Kasai Portoenterostomy
Abstract
1. Introduction
2. Materials and Methods
3. Case Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bouwmeester, N.J.; Hop, W.C.; van Dijk, M.; Anand, K.J.; van den Anker, J.N.; Tibboel, D. Postoperative pain in the neonate: Age-related differences in morphine requirements and metabolism. Intensive Care Med. 2003, 29, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Saarenmaa, E.; Huttunen, P.; Leppäluoto, J.; Meretoja, O.; Fellman, V. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: A randomized trial. J. Pediatr. 1999, 134, 144–150. [Google Scholar] [CrossRef]
- ERAS Society Guildelines. Available online: https://erassociety.org/ (accessed on 31 August 2022).
- Shinnick, J.K.; Short, H.L.; Heiss, K.F.; Santore, M.T.; Blakely, M.L.; Raval, M.V. Enhancing recovery in pediatric surgery: A review of the literature. J. Surg. Res. 2016, 202, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K.L.; Hall, N.J. What is the role of enhanced recovery after surgery in children? A scoping review. Pediatr. Surg. Int. 2017, 33, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.K.; Joselyn, A.S.; Babu, M.; Jehangir, S. Implementation and outcomes of enhanced recovery protocols in pediatric surgery: A systematic review and meta-analysis. Pediatr. Surg. Int. 2022, 38, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Phelps, H.M.; Robinson, J.R.; Chen, H.; Luckett, T.R.; Conroy, P.C.; Gillis, L.A.; Hays, S.R.; Lovvorn, H.N. Enhancing Recovery After Kasai Portoenterostomy With Epidural Analgesia. J. Surg. Res. 2019, 243, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Gurnaney, H.G.; Cook-Sather, S.D.; Shaked, A.; Olthoff, K.M.; Rand, E.B.; Lingappan, A.M.; Rehman, M.A. Extubation in the operating room after pediatric liver transplant: A retrospective cohort study. Paediatr. Anaesth. 2018, 28, 174–178. [Google Scholar] [CrossRef]
- Sahinturk, H.; Ozdemirkan, A.; Yilmaz, O.; Zeyneloglu, P.; Torgay, A.; Pirat, A.; Haberal, M. Immediate Tracheal Extubation After Pediatric Liver Transplantation. Exp. Clin. Transplant. 2021, 19, 1063–1068. [Google Scholar] [CrossRef]
- Yoeli, D.; Nguyen, T.; Wilder, M.; Huang, J.; Pahlavan, S.; Brigham, D.; Sundaram, S.S.; Wachs, M.E.; Adams, M.A. Immediate extubation following pediatric liver transplantation. Pediatr. Transplant. 2022, e14352. [Google Scholar] [CrossRef]
- Morehouse, D.; Williams, L.; Lloyd, C.; McCoy, D.S.; Miller Walters, E.; Guzzetta, C.E.; Baumgart, S.; Sill, A.; Mueller-Burke, D.; Short, B.L. Perioperative hypothermia in NICU infants: Its occurrence and impact on infant outcomes. Adv. Neonatal Care 2014, 14, 154–164. [Google Scholar] [CrossRef]
- Larsson, L.E.; Nilsson, K.; Niklasson, A.; Andreasson, S.; Ekström-Jodal, B. Influence of fluid regimens on perioperative blood-glucose concentrations in neonates. Br. J. Anaesth. 1990, 64, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Sacha, G.L.; Foreman, M.G.; Kyllonen, K.; Rodriguez, R.J. The Use of Gabapentin for Pain and Agitation in Neonates and Infants in a Neonatal ICU. J. Pediatr. Pharmacol. Ther. 2017, 22, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Engorn, B.M.; Kahntroff, S.L.; Frank, K.M.; Singh, S.; Harvey, H.A.; Barkulis, C.T.; Barnett, A.M.; Olambiwonnu, O.O.; Heitmiller, E.S.; Greenberg, R.S. Perioperative hypothermia in neonatal intensive care unit patients: Effectiveness of a thermoregulation intervention and associated risk factors. Paediatr. Anaesth. 2017, 27, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Taghon, T.; Fetzer, M.; Tobias, J.D. Perioperative hypothermia in the pediatric population: A quality improvement project. Am. J. Med. Qual. 2013, 28, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Paap, C.M.; Nahata, M.C. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin. Pharmacokinet. 1990, 19, 280–318. [Google Scholar] [CrossRef] [PubMed]
- Brindle, M.E.; McDiarmid, C.; Short, K.; Miller, K.; MacRobie, A.; Lam, J.Y.K.; Brockel, M.; Raval, M.V.; Howlett, A.; Lee, K.S.; et al. Consensus Guidelines for Perioperative Care in Neonatal Intestinal Surgery: Enhanced Recovery After Surgery (ERAS). World J. Surg. 2020, 44, 2482–2492. [Google Scholar] [CrossRef]
- Goobie, S.M.; Faraoni, D.; Zurakowski, D.; DiNardo, J.A. Association of Preoperative Anemia With Postoperative Mortality in Neonates. JAMA Pediatr. 2016, 170, 855–862. [Google Scholar] [CrossRef]
- Whyte, R.K.; Jefferies, A.L.; Canadian Paediatric Society, Fetus and Newborn Committee. Red blood cell transfusion in newborn infants. Paediatr. Child Health 2014, 19, 213–222. [Google Scholar] [CrossRef]
- Sümpelmann, R.; Becke, K.; Brenner, S.; Breschan, C.; Eich, C.; Höhne, C.; Jöhr, M.; Kretz, F.J.; Marx, G.; Pape, L.; et al. Perioperative intravenous fluid therapy in children: Guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr. Anaesth. 2017, 27, 10–18. [Google Scholar] [CrossRef]
- Somri, M.; Tome, R.; Yanovski, B.; Asfandiarov, E.; Carmi, N.; Mogilner, J.; David, B.; Gaitini, L.A. Combined spinal-epidural anesthesia in major abdominal surgery in high-risk neonates and infants. Paediatr. Anaesth. 2007, 17, 1059–1065. [Google Scholar] [CrossRef]
- Moon, J.K.; Hwang, R.; Balis, F.M.; Mattei, P. An enhanced recovery after surgery protocol in children who undergo nephrectomy for Wilms tumor safely shortens hospital stay. J. Pediatr. Surg. 2022, 57, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Baxter, K.J.; Short, H.L.; Wetzel, M.; Steinberg, R.S.; Heiss, K.F.; Raval, M.V. Decreased opioid prescribing in children using an enhanced recovery protocol. J. Pediatr. Surg. 2019, 54, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Chernobylsky, D.J.; Thakur, P.; Siddaiah, H.; Kaye, R.J.; Eng, L.K.; Harbell, M.W.; Lajaunie, J.; Cornett, E.M. Dexmedetomidine in Enhanced Recovery After Surgery (ERAS) Protocols for Postoperative Pain. Curr. Pain Headache Rep. 2020, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.B. Ketorolac in Postoperative Neonates and Infants: A Systematic Review. J. Pediatr. Pharmacol. Ther. 2021, 26, 240–247. [Google Scholar] [CrossRef]
- Stevens, B.; Yamada, J.; Lee, G.Y.; Ohlsson, A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst. Rev. 2013, 7, CD001069. [Google Scholar] [CrossRef]
- Varma, S.; Bartlett, E.L.; Nam, L.; Shores, D.R. Use of Breast Milk and Other Feeding Practices Following Gastrointestinal Surgery in Infants. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 264–271. [Google Scholar] [CrossRef]
- Quigley, M.; Embleton, N.D.; McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2018, 6, CD002971. [Google Scholar] [CrossRef]
- Ekingen, G.; Ceran, C.; Guvenc, B.H.; Tuzlaci, A.; Kahraman, H. Early enteral feeding in newborn surgical patients. Nutrition 2005, 21, 142–146. [Google Scholar] [CrossRef]
- Arena, S.; Di Fabrizio, D.; Impellizzeri, P.; Gandullia, P.; Mattioli, G.; Romeo, C. Enhanced Recovery After Gastrointestinal Surgery (ERAS) in Pediatric Patients: A Systematic Review and Meta-analysis. J. Gastrointest. Surg. 2021, 25, 2976–2988. [Google Scholar] [CrossRef]
- Gao, R.; Yang, H.; Li, Y.; Meng, L.; Sun, B.; Zhang, G.; Yue, M.; Guo, F. Enhanced recovery after surgery in pediatric gastrointestinal surgery. J. Int. Med. Res. 2019, 47, 4815–4826. [Google Scholar] [CrossRef]
- Habre, W.; Disma, N.; Virag, K.; Becke, K.; Hansen, T.G.; Jöhr, M.; Leva, B.; Morton, N.S.; Vermeulen, P.M.; Zielinska, M.; et al. Incidence of severe critical events in paediatric anaesthesia (APRICOT): A prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir. Med. 2017, 5, 412–425. [Google Scholar] [CrossRef]
- Datta, P.K.; Aravindan, A. Glucose for Children during Surgery: Pros, Cons, and Protocols: A Postgraduate Educational Review. Anesth. Essays Res. 2017, 11, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Melloul, E.; Hübner, M.; Scott, M.; Snowden, C.; Prentis, J.; Dejong, C.H.; Garden, O.J.; Farges, O.; Kokudo, N.; Vauthey, J.N.; et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations. World J. Surg. 2016, 40, 2425–2440. [Google Scholar] [CrossRef]
- Schleelein, L.E.; Vincent, A.M.; Jawad, A.F.; Pruitt, E.Y.; Kreher, G.D.; Rehman, M.A.; Goebel, T.K.; Cohen, D.E.; Cook-Sather, S.D. Pediatric perioperative adverse events requiring rapid response: A retrospective case-control study. Paediatr. Anaesth. 2016, 26, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Tay, C.L.; Tan, G.M.; Ng, S.B. Critical incidents in paediatric anaesthesia: An audit of 10 000 anaesthetics in Singapore. Paediatr. Anaesth. 2001, 11, 711–718. [Google Scholar] [CrossRef]
- Zhu, A.; Benzon, H.A.; Anderson, T.A. Evidence for the Efficacy of Systemic Opioid-Sparing Analgesics in Pediatric Surgical Populations: A Systematic Review. Anesth. Analg. 2017, 125, 1569–1587. [Google Scholar] [CrossRef]
- Pehora, C.; Pearson, A.M.; Kaushal, A.; Crawford, M.W.; Johnston, B. Dexamethasone as an adjuvant to peripheral nerve block. Cochrane Database Syst. Rev. 2017, 11, CD011770. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Rosoklija, I.; Meade, P.; Burjek, N.E.; Raval, M.V.; Yerkes, E.B.; Rove, K.O.; Chu, D.I. Utilization of and barriers to enhanced recovery pathway implementation in pediatric urology. J. Pediatr. Urol. 2021, 17, 294.e291–294.e299. [Google Scholar] [CrossRef]
ERP Protocol Components | Number of Patients |
---|---|
Pre-Operative Management [11,12,13,14,15] | |
Utilize dextrose-containing fluids the night previous to avoid hypoglycemia and hypovolemia | 12/12 |
Pre-op dose of Tylenol not recommended given due to liver function and coagulation abnormalities | 12/12 |
Pre-op gabapentin not recommended given the risk of sedation and lack of FDA approval in this age group | 12/12 |
Pre-warm the room, ensure forced air warmer and warming lights are in the operating room | 12/12 |
Initial intra-operative period [16,17] | |
Administer stress dose steroids when indicated | 12/12 |
Place nasopharyngeal or esophageal temperature probe and turn on forced air warmer, maintain normothermia (36.5 degrees) | 12/12 |
Give dexamethasone 0.5 mg/kg to minimize airway edema and maximize likelihood of extubation | 4/12 |
Muscle relaxants for surgical assistance | 12/12 |
Administer antibiotics within 60 min prior to incision | 12/12 |
Fluid Management [12,18,19,20] | |
All maintenance fluids on pump during case | N/A |
If present, replacement of pre-op fluid deficit at the discretion of the anesthesiologist caring for the patient. | 12/12 |
If the need for transfusion of any blood products arises, it will be decided by the attending anesthesiologist and surgeon. Consider a Hb < 9 for a healthy full-term infant or Hb < 10–11 for infant with oxygen requirements | 7/12 |
Recommend dextrose-containing fluids with intermittent glucose checks to avoid hypo- and hyperglycemia. Titrate fluids accordingly. | 12/12 |
If hypotension with concern for hypovolemia and not meeting transfusion requirements, then consdier 10 mL/kg albumin bolus to avoid hyperchloremic acidosis and/or hyponatremia. | 12/12 |
Perioperative Pain Management [21,22,23,24,25] | |
Regional anesthesia: Consider epidural, caudal, or abdominal wall regional block (check coagulopathy if considering neuraxial) | 3/12 |
IV Ketorolac at closure, communicate with surgical team for appropriate timing | 1/12 |
Dexmedetomidine bolus at discretion of anesthesiology team. Consider dexmedetomidine AFTER extubation to avoid sedation | 5/12 |
Attempt to use narcotics judiciously to maximize likelihood of extubation | 12/12 |
If continued pain concerns, low dose ketamine bolus (0.5 mg/kg−1 mg/kg) but consider post-operative sedation | 0/12 |
Postoperative Care [21,26,27,28,29] | |
Pain team consult if patient received regional anesthesia | 3/12 |
Scheduled ketorolac, q12hr | 1/12 |
Consider lingual sucrose/dextrose for minor non-painful procedures such as NG tube placement | N/A |
Continue perioperative antibiotics until tolerating enteral feeds. Switch to long-term trimethoprim/sulbactam when appropriate | 12/12 |
Consider early enteral feeds within 24–48 h if appropriate; Breast milk preferred if available and parents approve | 9/12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogt, P.; Tolly, R.; Clifton, M.; Austin, T.; Karlik, J. The Development of an Enhanced Recovery Protocol for Kasai Portoenterostomy. Children 2022, 9, 1675. https://doi.org/10.3390/children9111675
Vogt P, Tolly R, Clifton M, Austin T, Karlik J. The Development of an Enhanced Recovery Protocol for Kasai Portoenterostomy. Children. 2022; 9(11):1675. https://doi.org/10.3390/children9111675
Chicago/Turabian StyleVogt, Peggy, Renee Tolly, Matt Clifton, Tom Austin, and Joelle Karlik. 2022. "The Development of an Enhanced Recovery Protocol for Kasai Portoenterostomy" Children 9, no. 11: 1675. https://doi.org/10.3390/children9111675
APA StyleVogt, P., Tolly, R., Clifton, M., Austin, T., & Karlik, J. (2022). The Development of an Enhanced Recovery Protocol for Kasai Portoenterostomy. Children, 9(11), 1675. https://doi.org/10.3390/children9111675