Gender Differences in Attention Adaptation after an 8-Week FIFA 11+ for Kids Training Program in Elementary School Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Training Intervention
2.4. Attentional Assessment
2.5. Statistical Analyses
3. Results
3.1. Physical Characteristics
3.2. Attention Scales for Elementary School Children Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Posner, M.I.; Boies, S.J. Components of attention. Psychol. Rev. 1971, 78, 391–408. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Wu, Y.; Fossella, J.A.; Posner, M.I. Assessing the heritability of attentional networks. BMC Neurosci. 2001, 2, 14. [Google Scholar] [CrossRef]
- Fossella, J.; Sommer, T.; Fan, J.; Wu, Y.; Swanson, J.M.; Pfaff, D.W.; Posner, M.I. Assessing the molecular genetics of attention networks. BMC Neurosci. 2002, 3, 14. [Google Scholar] [CrossRef]
- Fan, J.; Fossella, J.A.; Summer, T.; Posner, M.I. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl. Acad. Sci. USA 2003, 100, 7406–7411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, M.R.; Rothbart, M.K.; McCandliss, B.D.; Saccomanno, L.; Posner, M.I. Training, maturation, and genetic influences on the development of executive attention. Proc. Natl. Acad. Sci. USA 2005, 102, 14931–14936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNab, F.; Varrone, A.; Farde, L.; Jucaite, A.; Bystritsky, P.; Forssberg, H.; Klingberg, T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009, 323, 800–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A.R.; Barry, R.J.; McCarthy, R.; Selikowitz, M. Age and sex effects in the EEG: Development of the normal child. Clin. Neurophysiol. 2001, 112, 806–814. [Google Scholar] [CrossRef]
- Slobodin, O.; Davidovitch, M. Gender Differences in Objective and Subjective Measures of ADHD among Clinic-Referred Children. Front. Hum. Neurosci. 2019, 13, 441. [Google Scholar] [CrossRef] [Green Version]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audiffren, M. Acute Exercise and Psychological Functions: A Cognitive Energetic Approach, in Exercise and Cognitive Function, 1st ed.; McMorris, T., Tomporowski, P.D., Audiffren, M., Eds.; Wiley Online Library: Oxford, UK, 2009; pp. 3–39. [Google Scholar]
- Etnier, J.L.; Salazar, W.; Landers, D.M.; Petruzzello, S.J.; Han, M.; Nowell, P. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997, 19, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Tine, M.T.; Butler, A.G. Acute aerobic exercise impacts selective attention: An exceptional boost in lower-income children. Educ. Psychol. 2012, 32, 821–834. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutoo, D.; Akiyama, K. Regulation of brain function by exercise. Neurobiol. Dis. 2003, 13, 1–14. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Bastos, C.P.; Pereira, G.S.; Moreira, F.A.; Massensini, A.R. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice. Hippocampus 2014, 24, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Mazzocco, M.M.; Kover, S.T. A longitudinal assessment of executive function skills and their association with math performance. Child. Neuropsychol. 2017, 13, 18–45. [Google Scholar] [CrossRef]
- Gall, S.; Adams, L.; Joubert, N.; Ludyga, S.; Müller, I.; Nqweniso, S.; Pühse, U.; du Randt, R.; Seelig, H.; Smith, D.; et al. Effect of a 20-week physical activity intervention on selective attention and academic performance in children living in disadvantaged neighborhoods: A cluster randomized control trial. PLoS ONE 2018, 13, e0206908. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child. Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Lin, C.C.; Chang, Y.K.; Huang, C.J.; Hung, T.M. Effects of childhood gymnastics program on spatial working Memory. Med. Sci. Sports Exerc. 2017, 49, 2537–2547. [Google Scholar] [CrossRef]
- Rössler, R.; Junge, A.; Bizzini, M.; Verhagen, E.; Chomiak, J.; Aus der Fünten, K.; Meyer, T.; Dvorak, J.; Lichtenstein, E.; Beaudouin, F.; et al. A multinational cluster randomised controlled trial to assess the efficacy of “11+ kids”: A warm-up programme to prevent injuries in children’s football. Sports Med. 2018, 48, 1493–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössler, R.; Verhagen, E.; Rommers, N.; Dvorak, J.; Junge, A.; Lichtenstein, E.; Donath, L.; Faude, O. Comparison of the “11+ Kids” injury prevention programme and a regular warm up in children’s football (soccer): A cost effectiveness analysis. Br. J. Sports Med. 2019, 53, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössler, R.; Donath, L.; Bizzini, M.; Faude, O. A new injury prevention programme for children’s football-FIFA 11+ Kids-can improve motor performance: A cluster-randomised controlled trial. J. Sports Sci. 2016, 34, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Pomares-Noguera, C.; Ayala, F.; Robles-Palazón, F.J.; Alomoto-Burneo, J.F.; López-Valenciano, A.; Elvira, J.L.L.; Hernández-Sánchez, S.; Croix, M.D.S. Training Effects of the FIFA 11+ Kids on Physical Performance in Youth Football Players: A Randomized Control Trial. Front. Pediatr. 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei, M.; Abbasi, H.; Daneshjoo, A.; Gheitasi, M.; Johari, K.; Faude, O.; Rommers, N.; Rössler, R. The effect of the “11+ kids” on the isokinetic strength of young football players. Int. J. Sports Physiol. Perform. 2020, 15, 25–30. [Google Scholar] [CrossRef]
- Tseng, W.Y.; Rekik, G.; Chen, C.H.; Clement, F.M.; Bezerra, P.; Crowley-McHattan, Z.; Chen, Y.S. Effects of 8-week FIFA 11+ for Kids intervention on physical fitness and attention in elementary school children. J. Phys. Act. Health 2021, 18, 686–693. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chou, T.J. The development of an attention test for elementary school children. Bull. Spec. Educ. 2010, 35, 29–53. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Effectiveness of an attention training program. J. Clin. Exp. Neuropsychol. 1987, 9, 117–130. [Google Scholar] [CrossRef]
- Sohlberg, M.M.; Mateer, C.A. Improving attention and managing attentional problems: Adapting rehabilitation techniques to adults with ADD. Ann. N. Y. Acad. Sci. 2001, 931, 359–375. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- North, T.C.; McCullagh, P.; Tran, Z.V. Effect of exercise on depression. Exerc. Sport Sci. Rev. 1990, 18, 379–415. [Google Scholar] [CrossRef]
- Isaacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Black, J.E.; Greenough, W.T. Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 1992, 12, 110–119. [Google Scholar] [CrossRef]
- Dishman, R.K.; Berthoud, H.R.; Booth, F.W.; Cotman, C.W.; Edgerton, V.R.; Fleshner, M.R.; Gandevia, S.C.; Gomez-Pinilla, F.; Greenwood, B.N.; Hillman, C.H.; et al. Neurobiology of exercise. Obesity 2006, 14, 345–356. [Google Scholar] [CrossRef]
- de Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Snook, E.M.; Jerome, G.J. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. 2003, 48, 307–314. [Google Scholar] [CrossRef]
- Ison, M.S.; Greco, C.; Korzeniowski, C.G.; Morelato, G.S. Selective attention: A comparative study on Argentine students from different socioeconomic contexts. Electron. J. Res. Educ. Psychol. 2015, 13, 343–368. [Google Scholar] [CrossRef] [Green Version]
- Tomporowski, P.D.; Davis, C.L.; Miller, P.H.; Naglieri, J.A. Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 2008, 20, 111–131. [Google Scholar] [CrossRef]
- Pesce, C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazou, S.; Pesce, C.; Lakes, K.; Smiley-Oyen, A. More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 2019, 17, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Spelke, E.; Hirst, W.; Neisser, U. Skills of divided attention. Cognition 1976, 4, 215–230. [Google Scholar] [CrossRef]
- Gur, R.C.; Turetsky, B.I.; Matsui, M.; Yan, M.; Bilker, W.; Hughett, P.; Gur, R.E. Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. J. Neurosci. 1999, 19, 4065–4072. [Google Scholar] [CrossRef]
- Solianik, R.; Brazaitis, M.; Skurvydas, A. Sex-related differences in attention and memory. Medicina 2016, 52, 372–377. [Google Scholar] [CrossRef]
- Kanai, R.; Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 2011, 12, 231–242. [Google Scholar] [CrossRef]
- Van Schouwenburg, M.R.; Onnink, A.M.H.; Ter Huurne, N.; Kan, C.C.; Zwiers, M.P.; Hoogman, M.; Franke, B.; Buitelaar, J.K.; Cools, R. Cognitive flexibility depends on white matter microstructure of the basal ganglia. Neuropsychologia 2014, 53, 171–177. [Google Scholar] [CrossRef] [Green Version]
FIFA 11+ for Kids Boys (n = 13) | FIFA 11+ for Kids Girls (n = 13) | Control Boys (n = 13) | Control Girls (n = 13) | p-Value | ||
---|---|---|---|---|---|---|
Age (years) | Min | 11.1 | 10.9 | 10.9 | 10.7 | |
Max | 11.7 | 11.6 | 11.7 | 11.7 | ||
Mean ± SD | 11.4 ± 0.2 | 11.3 ± 0.2 | 11.3 ± 0.2 | 11.2 ± 0.4 | p = 0.234 | |
Height (cm) | Min | 135.2 | 126.3 | 136.2 | 132.7 | |
Max | 162.2 | 155.7 | 148.7 | 154.6 | ||
Mean ± SD | 146.1 ± 8.6 | 142.9 ± 8 | 141.2 ± 3.9 | 142.6 ± 6.6 | p = 0.346 | |
Weight (kg) | Min | 26.4 | 25.1 | 28.7 | 23.3 | |
Max | 74.8 | 63.3 | 56.0 | 51.9 | ||
Mean ± SD | 46.1 ± 14.4 | 38 ± 10.2 | 38 ± 7.5 | 34.4 ± 8.2 | p = 0.045 |
Variables | FIFA 11+ for Kids Boys (n = 13) | FIFA 11+ for Kids Girls (n = 13) | Control Boys (n = 13) | Control Girls (n = 13) | Baseline p-Value | Post-Test p-Value | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Test | MD | ES | Baseline | Post-Test | MD | ES | Baseline | Post-Test | MD | ES | Baseline | Post-Test | MD | ES | |||
Item 1 | 10.0 (7.0, 13.5) | 14.0 (9.5, 15.0) * | −2.69 | −0.64 (−1.45, 0.14 | 9.0 (7.5, 11.5) | 13.0 (11.0, 13.5) * | −3.15 | −0.93 (−1.78, −0.14) | 9.0 (8.0, 11.0) | 9.0 (7.5, 11.0) | 0.46 | 0.20 (−0.56, 0.98) | 12.0 (9.5, 14.0) | 11.0 (9.0, 13.0) | 0.46 | 0.15 (−0.62, 0.92) | 0.154 | 0.000 # |
Item 2 | 9.0 (6.5, 11.5) | 12.0 (10.0, 13.0) * | −3.15 | −0.98 (−1.82, 0.18 | 10.0 (6.5, 12.5) | 12.0 (9.5, 14.0) | −2.23 | −0.54 (−1.34, 0.23) | 9.0 (7.5, 12.0) | 10.0 (7.0, 12.0) | −0.46 | −0.14 (−0.91, 0.63) | 12.0 (9.5, 13.0) | 10.0 (7.0, 11.0) | −0.46 | −0.14 (−0.91, 0.63) | 0.288 | 0.058 |
Item 3 | 10.0 (9.0, 11.0) | 12.0 (10.0, 14.0) * | −2.08 | −0.69 (−1.50, 0.09 | 7.0 (3.5, 10.0) | 11.0 (6.5, 15.0) * | −4.00 | −0.97 (−1.81, −0.17) | 9.0 (3.0, 11.5) | 11.0 (9.0, 12.0) * | −2.00 | −0.51 (−1.30, 0.26) | 9.0 (6.5, 11.5) | 11.0 (7.5, 12.0) | −2.00 | −0.39 (−1.17, 0.38) | 0.250 | 0.423 |
Item 4 | 12.0 (10.0, 13.0) | 14.0 (12.5, 15.0) * | −2.31 | −1.04 (−1.89, 0.23 | 9.0 (5.0, 11.0) | 10.0 (8.0, 14.0) * | −2.77 | −0.80 (−1.62, −0.02) | 9.0 (8.0, 11.5) | 11.0 (9.0, 13.5) * | −1.85 | −0.75 (−1.56, 0.03) | 9.0 (7.0, 12.0) | 9.0 (8.0, 14.0) | −1.85 | −0.51 (−1.30, 0.27) | 0.019 # | 0.077 |
Item 5 | 15.0 (14.0, 17.0) | 17.0 (16.0, 17.0) * | −0.92 | −0.61 (−1.41, 0.16 | 15.0 (14.0, 17.0) | 17.0 (16.0, 17.0) * | −0.92 | −0.85 (−1.68, −0.06) | 17.0 (15.0, 17.0) | 14.0 (12.0, 17.0) | 2.31 | 1.08 (0.27, 1.93) | 15.0 (12.0, 17.0) | 15.0 (12.5, 17.0) | 2.31 | 0.80 (0.01, 1.62) | 0.269 | 0.000 # |
Item 6 | 15.0 (13.0, 16.0) | 16.0 (14.5, 17.5) | −0.46 | −0.13 (−0.90, 0.64 | 11.0 (8.5, 14.0) | 15.0 (12.0, 16.5) * | −3.15 | −0.86 (−1.69, −0.07 | 14.0 (11.0, 15.5) | 11.0 (10.0, 13.0) * | 2.00 | 0.67 (−0.11, 1.48) | 15.0 (14.0, 16.0) | 12.0 (9.0, 13.0) * | 2.00 | 0.51 (−0.27, 1.30) | 0.038 # | 0.000 # |
Item 7 | 10.0 (9.0, 14.0) | 14.0 (10.5, 14.5) | −1.77 | 0.48 (−1.27, 0.29 | 9.0 (7.0, 12.5) | 13.0 (11.0, 15.5) * | −3.23 | −1.00 (−1.84, −0.20) | 9.0 (7.0, 12.0) | 10.0 (8.0, 12.0) | −0.62 | −0.21 (−0.98, 0.56) | 9.0 (4.0, 11.0) | 10.0 (9.5, 13.5) * | −0.62 | −0.20 (−0.97, 0.57) | 0.712 | 0.019 # |
Item 8 | 10.0 (8.5, 13.0) | 11.0 (8.0, 14.5) | 0.54 | 0.13 (−0.64, 0.90 | 11.0 (7.0, 12.0) | 11.0 (7.0, 13.5) | 0.46 | 0.11 (−0.66, 0.88) | 11.0 (7.0, 12.0) | 8.0 (6.5, 9.0) | 1.62 | 0.43 (−0.34, 1.22) | 11.0 (4.5, 13.0) | 9.0 (7.0, 10.0) | 1.62 | 0.44 (−0.33, 1.23) | 0.962 | 0.077 |
Item 9 | 12.0 (9.5, 14.0) | 13.0 (11.0, 15.5) | −0.85 | −0.25 (−1.03, 0.52) | 9.0 (6.5, 12.5) | 11.0 (7.5, 14.5) | −1.31 | −0.33 (−1.11, 0.44) | 9.0 (8.0, 11.0) | 11.0 (9.5, 13.5) * | −1.62 | −0.53 (−1.33, 0.24) | 9.0 (7.5, 11.0) | 11.0 (8.5, 13.0) | −1.62 | −0.55 (−1.35, 0.22) | 0.019 # | 0.192 |
Item 10 | 12.0 (8.0, 13.5) | 11.0 (7.0, 12.5) | 0.92 | 0.26 (−0.51, 1.04) | 8.0 (6.0, 11.5) | 9.0 (6.0, 12.5) | −0.77 | −0.21 (−0.98, 0.56) | 11.0 (7.5, 12.5) | 9.0 (4.0, 11.5) | 1.31 | 0.33 (−0.43, 1.12) | 8.0 (5.0, 11.0) | 11.0 (5.5, 12.0) | 1.31 | 0.41 (−0.36, 1.20) | 0.038 # | 0.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Rekik, G.; Belkhir, Y.; Huang, Y.-L.; Chen, Y.-S. Gender Differences in Attention Adaptation after an 8-Week FIFA 11+ for Kids Training Program in Elementary School Children. Children 2021, 8, 822. https://doi.org/10.3390/children8090822
Chen C-H, Rekik G, Belkhir Y, Huang Y-L, Chen Y-S. Gender Differences in Attention Adaptation after an 8-Week FIFA 11+ for Kids Training Program in Elementary School Children. Children. 2021; 8(9):822. https://doi.org/10.3390/children8090822
Chicago/Turabian StyleChen, Chia-Hui, Ghazi Rekik, Yosra Belkhir, Ya-Ling Huang, and Yung-Sheng Chen. 2021. "Gender Differences in Attention Adaptation after an 8-Week FIFA 11+ for Kids Training Program in Elementary School Children" Children 8, no. 9: 822. https://doi.org/10.3390/children8090822