The Role of Environmental Risk Factors on the Development of Childhood Allergic Rhinitis
Abstract
:1. Introduction
2. Indoor Exposures
2.1. Tobacco Smoke
2.2. Indoor Allergens
3. Outdoor Exposures
3.1. Outdoor Air Pollution
3.2. Traffic Related Air Pollution (TRAP)
3.3. Pollen
3.4. Climate Change
3.5. Greenness
4. Viruses
5. Prevention and Treatment of Allergic Rhinitis
5.1. Indoor strategies
5.2. Outdoor Strategies
5.3. Phamacotherapeutic Strategies
5.4. Knowledge Gaps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Canonica, G.W.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic rhinitis. Nat. Rev. Dis. Primers 2020, 6, 95. [Google Scholar] [CrossRef]
- Colás, C.; Brosa, M.; Antón, E.; Montoro, J.; Navarro, A.; Dordal, T.; Dávila, I.; Fernández-Parra, B.; Ibáñez, M.D.P.; Lluch-Bernal, M.; et al. Estimate of the total costs of allergic rhinitis in specialized care based on real-world data: The FERIN study. Allergy 2017, 72, 959–966. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norbäck, D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73. [Google Scholar] [CrossRef][Green Version]
- Meltzer, E.O.; Blaiss, M.S.; Derebery, M.J.; Mahr, T.A.; Gordon, B.R.; Sheth, K.K.; Simmons, A.L.; Wingertzahn, M.A.; Boyle, J.M. Burden of allergic rhinitis: Results from the pediatric allergies in America survey. J. Allergy Clin. Immunol. 2009, 124, S43–S70. [Google Scholar] [CrossRef] [PubMed]
- Newacheck, P.W.; Stoddard, J.J. Prevalence and impact of multiple childhood chronic illnesses. J. Pediatr. 1994, 124, 40–48. [Google Scholar] [CrossRef]
- Saulyte, J.; Regueira, C.; Montes-Martínez, A.; Khudyakov, P.; Takkouche, B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: A systematic review and meta-analysis. PLoS Med. 2014, 11, e1001611. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Drazdauskaitė, G.; Layhadi, J.A.; Shamji, M.H. Mechanisms of allergen immunotherapy in allergic rhinitis. Curr. Allergy Asthma Rep. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Zou, Q.-Y.; Shen, Y.; Ke, X.; Hong, S.-L.; Kang, H.-Y. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. Int. J. Pediatr. Otorhinolaryngol. 2018, 112, 82–90. [Google Scholar] [CrossRef]
- Naclerio, R.; Ansotegui, I.J.; Bousquet, J.; Canonica, G.W.; d’Amato, G.; Rosario, N.; Pawankar, R.; Peden, D.; Bergmann, K.C.; Bielory, L.; et al. International expert consensus on the management of allergic rhinitis (AR) aggravated by air pollutants: Impact of air pollution on patients with AR: Current knowledge and future strategies. World Allergy Organ. J. 2020, 13, 100106. [Google Scholar] [CrossRef]
- Chawes, B.; Kreiner-Moller, E.; Bisgaard, H. Objective Assessments of allergic and non-allergic rhinitis in young children. In Proceedings of the American Thoracic Society 2009 International Conference, San Diego, CA, USA, 15–20 May 2009; pp. 1547–1553. [Google Scholar] [CrossRef]
- Dondi, A.; Tripodi, S.; Panetta, V.; Asero, R.; Businco, A.D.R.; Bianchi, A.; Carlucci, A.; Ricci, G.; Bellini, F.; Maiello, N.; et al. Pollen-induced allergic rhinitis in 1360 Italian children: Comorbidities and determinants of severity. Pediatr. Allergy Immunol. 2013, 24, 742–751. [Google Scholar] [CrossRef]
- Dykewicz, M.S.; Wallace, D.V.; Amrol, D.J.; Baroody, F.M.; Bernstein, J.A.; Craig, T.J.; Dinakar, C.; Ellis, A.K.; Finegold, I.; Golden, D.B.; et al. Rhinitis 2020: A practice parameter update. J. Allergy Clin. Immunol. 2020, 146, 721–767. [Google Scholar] [CrossRef]
- Moya, J.; Bearer, C.F.; Etzel, R.A. Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 2004, 113, 996–1006. [Google Scholar] [PubMed]
- Jiang, F.; Yan, A. IL-4 rs2243250 polymorphism associated with susceptibility to allergic rhinitis: A meta-analysis. Biosci. Rep. 2021, 41. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Update of WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air pollution and noncommunicable diseases: A review by the forum of international respiratory societies’ environmental committee, part 2: Air pollution and organ systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Canonica, G.W.; Tarantini, F.; Compalati, E.; Penagos, M. Efficacy of desloratadine in the treatment of allergic rhinitis: A meta-analysis of randomized, double-blind, controlled trials. Allergy 2007, 62, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Eguiluz-Gracia, I.; Mathioudakis, A.G.; Bartel, S.; Vijverberg, S.J.H.; Fuertes, E.; Comberiati, P.; Cai, Y.S.; Tomazic, P.V.; Diamant, Z.; Vestbo, J.; et al. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020, 75, 2170–2184. [Google Scholar] [CrossRef]
- Songnuy, T.; Scholand, S.J.; Panprayoon, S. Effects of tobacco smoke on aeroallergen sensitization and clinical severity among university students and staff with allergic rhinitis. J. Environ. Public Health 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norbäck, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef]
- Ruggieri, S.; Longo, V.; Perrino, C.; Canepari, S.; Drago, G.; L’Abbate, L.; Balzan, M.; Cuttitta, G.; Scaccianoce, G.; Minardi, R.; et al. Indoor air quality in schools of a highly polluted south Mediterranean area. Indoor Air 2018, 29, 276–290. [Google Scholar] [CrossRef]
- Azizi, B.H.I.; Zulkifli, H.; Kasim, S. Indoor air pollution and asthma in hospitalized children in a tropical environment. J. Asthma 1995, 32, 413–418. [Google Scholar] [CrossRef]
- Logue, J.M.; Klepeis, N.; Lobscheid, A.B.; Singer, B.C. Pollutant exposures from natural gas cooking burners: A simulation-based assessment for Southern California. Environ. Health Perspect. 2014, 122, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zolnikov, T.R.; Furio, F.; Cruvinel, V.; Richards, J. A systematic review on informal waste picking: Occupational hazards and health outcomes. Waste Manag. 2021, 126, 291–308. [Google Scholar] [CrossRef]
- Gómez, R.M.; Croce, V.H.; Zernotti, M.E.; Muiño, J.C. Active smoking effect in allergic rhinitis. World Allergy Organ. J. 2021, 14, 100504. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Lee, S.Y.; Lee, K.-S. The use of heated tobacco products is associated with asthma, allergic rhinitis, and atopic dermatitis in Korean adolescents. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, B.B.; Salvi, S.; Chhatwal, J.; Jain, K.C.; Kumar, L.; Joshi, M.K.; Pandramajal, S.B.; Awasthi, S.; Bhave, S.; et al. Allergic rhinitis, rhinoconjunctivitis, and eczema: Prevalence and associated factors in children. Clin. Respir. J. 2018, 12, 547–556. [Google Scholar] [CrossRef]
- Nikasinovic, L.; Momas, I.; Seta, N. Nasal epithelial and inflammatory response to ozone exposure: A review of laboratory-based studies published since 1985. J. Toxicol. Environ. Health Part B 2003, 6, 521–568. [Google Scholar] [CrossRef] [PubMed]
- Thacher, J.D.; Gruzieva, O.; Pershagen, G.; Neuman, Å.; Wickman, M.; Kull, I.; Melén, E.; Bergström, A. Pre and postnatal exposure to parental smoking and allergic disease through adolescence. Pediatrics 2014, 134, 428–434. [Google Scholar] [CrossRef][Green Version]
- Kabir, Z.; Manning, P.J.; Holohan, J.; Keogan, S.; Goodman, P.G.; Clancy, L. Second-hand smoke exposure in cars and respiratory health effects in children. Eur. Respir. J. 2009, 34, 629–633. [Google Scholar] [CrossRef][Green Version]
- Grillo, C.; La Mantia Ignazio, M.; Giorgio, C.; Martina, R.; Claudio, A. Influence of cigarette smoking on allergic rhinitis: A comparative study on smokers and non-smokers. Acta Biomed. 2019, 90, 45–51. [Google Scholar]
- Caillaud, D.; Leynaert, B.; Keirsbulck, M.; Nadif, R. Indoor mould exposure, asthma and rhinitis: Findings from systematic reviews and recent longitudinal studies. Eur. Respir. Rev. 2018, 27, 170137. [Google Scholar] [CrossRef][Green Version]
- Jaakkola, M.S.; Quansah, R.; Hugg, T.; Heikkinen, S.A.; Jaakkola, J. Association of indoor dampness and molds with rhinitis risk: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2013, 132, 1099–1110.e18. [Google Scholar] [CrossRef] [PubMed]
- Calderón, M.A.; Linneberg, A.; Kleine-Tebbe, J.; De Blay, F.; de Rojas, D.H.F.; Virchow, J.C.; Demoly, P. Respiratory allergy caused by house dust mites: What do we really know? J. Allergy Clin. Immunol. 2015, 136, 38–48. [Google Scholar] [CrossRef][Green Version]
- Dror, A.A.; Eisenbach, N.; Marshak, T.; Layous, E.; Zigron, A.; Shivatzki, S.; Morozov, N.G.; Taiber, S.; Alon, E.E.; Ronen, O.; et al. Reduction of allergic rhinitis symptoms with face mask usage during the COVID-19 pandemic. J. Allergy Clin. Immunol. Pract. 2020, 8, 3590–3593. [Google Scholar] [CrossRef]
- Shah, R.; Grammer, L.C. Chapter 1: An overview of allergens. Allergy Asthma Proc. 2012, 33, 2–5. [Google Scholar] [CrossRef]
- Shargorodsky, J.; Umanskiy, R.; Lin, S.Y.; Navas-Acien, A.; Garcia-Esquinas, E. Household pet exposure, allergic sensitization, and rhinitis in the U.S. population. Int. Forum Allergy Rhinol. 2017, 7, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; D’Amato, G.; Annesi-Maesano, I. External exposome and allergic respiratory and skin diseases. J. Allergy Clin. Immunol. 2018, 141, 846–857. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ormstad, H. Suspended particulate matter in indoor air: Adjuvants and allergen carriers. Toxicology 2000, 152, 53–68. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.; Mudway, I.S.; Anderson, H.R.; Kelly, F.J. Short-term exposure to traffic-related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 125–132. [Google Scholar] [CrossRef][Green Version]
- Codispoti, C.D.; Lemasters, G.K.; Levin, L.; Reponen, T.; Ryan, P.H.; Myers, J.B.; Villareal, M.; Burkle, J.; Evans, S.; Lockey, J.E.; et al. Traffic pollution is associated with early childhood aeroallergen sensitization. Ann. Allergy Asthma Immunol. 2015, 114, 126–133.e3. [Google Scholar] [CrossRef][Green Version]
- Porebski, G.; Woźniak, M.; Czarnobilska, E. Residential proximity to major roadways is associated with increased prevalence of allergic respiratory symptoms in children. Ann. Agric. Environ. Med. 2014, 21, 760–766. [Google Scholar] [CrossRef]
- Biedermann, T.; Winther, L.; Till, S.J.; Panzner, P.; Knulst, A.; Valovirta, E. Birch pollen allergy in Europe. Allergy 2019, 74, 1237–1248. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Niederberger, V.; Pauli, G.; Grönlund, H.; Fröschla, R.; Rumpold, H.; Kraft, D.; Valenta, R.; Spitzauer, S. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: A quantitative IgE inhibition study with sera from different populations. J. Allergy Clin. Immunol. 1998, 102, 579–591. [Google Scholar] [CrossRef]
- Geroldinger-Simic, M.; Zelniker, T.; Aberer, W.; Ebner, C.; Egger, C.; Greiderer, A.; Prem, N.; Lidholm, J.; Ballmer-Weber, B.K.; Vieths, S.; et al. Birch pollen-related food allergy: Clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J. Allergy Clin. Immunol. 2011, 127, 616–622. [Google Scholar] [CrossRef]
- Siekierzynska, A.; Piasecka-Kwiatkowska, D.; Myszka, A.; Burzynska, M.; Sozanska, B.; Sozanski, T. Apple allergy: Causes and factors influencing fruits allergenic properties–review. Clin. Transl. Allergy 2021, 11, e12032. [Google Scholar] [CrossRef] [PubMed]
- De Weger, L.A.; Hiemstra, P.S.; Buysch, E.O.D.; van Vliet, A. Spatiotemporal monitoring of allergic rhinitis symptoms in the Netherlands using citizen science. Allergy 2014, 69, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Pfaar, O.; Karatzas, K.; Bastl, K.; Berger, U.; Buters, J.; Darsow, U.; Demoly, P.; Durham, S.R.; Galán, C.; Gehrig, R.; et al. Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas—an EAACI task force report. Allergy 2019, 75, 1099–1106. [Google Scholar] [CrossRef][Green Version]
- Ziska, L.H.; Gebhard, D.E.; Frenz, D.A.; Faulkner, S.; Singer, B.; Straka, J.G. Cities as harbingers of climate change: Common ragweed, urbanization, and public health. J. Allergy Clin. Immunol. 2003, 111, 290–295. [Google Scholar] [CrossRef] [PubMed][Green Version]
- García-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef][Green Version]
- Westman, M.; Lupinek, C.; Bousquet, J.; Andersson, N.; Pahr, S.; Baar, A.; Bergström, A.; Holmström, M.; Stjärne, P.; Carlsen, K.C.L.; et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J. Allergy Clin. Immunol. 2015, 135, 1199–1206.e11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schmitz, R.; Ellert, U.; Kalcklösch, M.; Dahm, S.; Thamm, M. Patterns of sensitization to inhalant and food allergens—findings from the german health interview and examination survey for children and adolescents. Int. Arch. Allergy Immunol. 2013, 162, 263–270. [Google Scholar] [CrossRef]
- Reinmuth-Selzle, K.; Kampf, C.J.; Lucas, K.; Lang-Yona, N.; Fröhlich-Nowoisky, J.; Shiraiwa, M.; Lakey, P.; Lai, S.; Liu, F.; Kunert, A.T.; et al. Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environ. Sci. Technol. 2017, 51, 4119–4141. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Vitale, C.; Rosário, N.; Neto, H.J.C.; Chong-Silva, D.C.; Mendonça, F.; Perini, J.; Landgraf, L.; Sole, D.; Sánchez-Borges, M.; et al. Climate change, allergy and asthma, and the role of tropical forests. World Allergy Organ. J. 2017, 10, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kurganskiy, A.; Creer, S.; de Vere, N.; Griffith, G.W.; Osborne, N.J.; Wheeler, B.W.; McInnes, R.N.; Clewlow, Y.; Barber, A.; Brennan, G.L.; et al. Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Sci. Adv. 2021, 7, eabd7658. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; Sharma, A.; Sen, A.; Saxena, P.; Mandal, T.K.; Sharma, S.K.; Sharma, C. Water soluble inorganic species of PM 10 and PM 2.5 at an urban site of Delhi, India: Seasonal variability and sources. In Atmospheric Research; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. In Atmospheric Research; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Wang, Y.; Zhang, Q.Q.; He, K.; Zhang, Q.; Chai, L. Sulfate-nitrateammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 2013, 13, 2635–2652. [Google Scholar] [CrossRef][Green Version]
- Stocker, C. Climate change 2013: The physical science basis. In Working Group I Contribution to the IPCC Fifth Assessment Report; Stocker, C., Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ziello, C.; Sparks, T.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to airborne pollen counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Storkey, J.; Stratonovitch, P.; Chapman, D.S.; Vidotto, F.; Semenov, M.A. A Process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE 2014, 9, e88156. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pinkerton, K.E.; Rom, W.; Akpinar-Elci, M.; Balmes, J.R.; Bayram, H.; Brandli, O.; Hollingsworth, J.W.; Kinney, P.L.; Margolis, H.G.; Martin, W.J.; et al. An official american thoracic society workshop report: Climate change and human health. Proc. Am. Thorac. Soc. 2012, 9, 3–8. [Google Scholar] [CrossRef][Green Version]
- D’Amato, G.; Annesi-Maesano, I.; Cecchi, L.; D’Amato, M. Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy 2019, 74, 9–11. [Google Scholar] [CrossRef][Green Version]
- D’Amato, M.; Molino, A.; Calabrese, G.; Cecchi, L.; Annesi-Maesano, I.; D’Amato, G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin. Transl. Allergy 2018, 8, 20. [Google Scholar] [CrossRef][Green Version]
- March, D.; Williams, J.; Wells, S.; Eimicke, J.P.; Teresi, J.A.; Almonte, C.; Link, B.G.; Findley, S.E.; Palmas, W.; Carrasquillo, O.; et al. Discrimination and depression among urban hispanics with poorly controlled diabetes. Ethn. Dis. 2015, 25, 130–137. [Google Scholar]
- Franchini, M.; Mannucci, P.M. Mitigation of air pollution by greenness: A narrative review. Eur. J. Intern. Med. 2018, 55, 1–5. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chaparro, L.; Terradas, J. Ecological Services of Urban Forest in Barcelona; Institut Municipal de Parcs i Jardins Ajuntament de Barcelona, Àrea de Medi Ambient: Barcelona, Spain, 2009. [Google Scholar]
- ISO Emissions. Available online: http://www.es.lancs.ac.uk/cnhgroup/iso-emissions.pdf (accessed on 1 July 2021).
- Gernes, R.; Brokamp, C.; Rice, G.E.; Wright, J.M.; Kondo, M.C.; Michael, Y.L.; Donovan, G.H.; Gatziolis, D.; Bernstein, D.; LeMasters, G.K.; et al. Using high-resolution residential greenspace measures in an urban environment to assess risks of allergy outcomes in children. Sci. Total Environ. 2019, 668, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J. Green infrastructure and health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, M.; Hagedorn, F.; Wipf, S.; Donhauser, J.; Vittoz, P.; Rixen, C.; Frossard, A.; Theurillat, J.-P.; Frey, B. The soil microbiome of GLORIA mountain summits in the Swiss Alps. Front. Microbiol. 2019, 10, 1080. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, A.; Hui, N.; Puhakka, R.; Oikarinen, S.; Grönroos, M.; Selonen, V.A.; Siter, N.; Kramna, L.; Roslund, M.I.; Vari, H.K.; et al. Yard vegetation is associated with gut microbiota composition. Sci. Total Environ. 2020, 713, 136707. [Google Scholar] [CrossRef] [PubMed]
- Dzhambov, A.M.; Lercher, P.; Rüdisser, J.; Browning, M.H.; Markevych, I. Allergic symptoms in association with naturalness, greenness, and greyness: A cross-sectional study in schoolchildren in the Alps. Environ. Res. 2021, 198, 110456. [Google Scholar] [CrossRef]
- Stas, M.; Aerts, R.; Hendrickx, M.; Delcloo, A.; Dendoncker, N.; Dujardin, S.; Linard, C.; Nawrot, T.; Van Nieuwenhuyse, A.; Aerts, J.-M.; et al. Exposure to green space and pollen allergy symptom severity: A case-crossover study in Belgium. Sci. Total Environ. 2021, 781, 146682. [Google Scholar] [CrossRef]
- Fireman, P. Virus-provoked rhinitis in patients who have allergies. Allergy Asthma Proc. 2002, 23, 99–102. [Google Scholar]
- Tantilipikorn, P. The relationship between allergic rhinitis and viral infections. Curr. Opin. Otolaryngol. Head Neck Surg. 2014, 22, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Doyle, W.J.; Skoner, D.P.; Fireman, P.; Seroky, J.T.; Green, I.; Ruben, F.; Kardatzke, D.R.; Gwaltney, J.M. Rhinovirus 39 infection in allergic and nonallergic subjects. J. Allergy Clin. Immunol. 1992, 89, 968–978. [Google Scholar] [CrossRef]
- Skoner, D.P.; Doyle, W.J.; Tanner, E.P.; Kiss, J.; Fireman, P. Effect of rhinovirus 39 (RV-39) infection on immune and inflammatory parameters in allergic and non-allergic subjects. Clin. Exp. Allergy 1995, 25, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Doyle, W.J.; Skoner, D.P.; Seroky, J.T.; Fireman, P.; Gwaltney, J.M. Effect of experimental rhinovirus 39 infection on the nasal response to histamine and cold air challenges in allergic and nonallergic subjects. J. Allergy Clin. Immunol. 1994, 93, 534–542. [Google Scholar] [CrossRef]
- Faber, T.; Kumar, A.; Mackenbach, J.P.; Millett, C.; Basu, S.; Sheikh, A.; Been, J.V. Effect of tobacco control policies on perinatal and child health: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e420–e437. [Google Scholar] [CrossRef][Green Version]
- Bousquet, J.; Pfaar, O.; Togias, A.; Schünemann, H.J.; Ansotegui, I.; Papadopoulos, N.G.; Tsiligianni, I.; Agache, I.; Anto, J.M.; Bachert, C.; et al. 2019 ARIA care pathways for allergen immunotherapy. Allergy 2019, 74, 2087–2102. [Google Scholar] [CrossRef]
- Sur, D.K.; Plesa, M.L. Treatment of allergic rhinitis. Am. Fam. Physician 2015, 92, 985–992. [Google Scholar]
- Bhardwaj, B.; Singh, J. Efficacy of vitamin D supplementation in allergic rhinitis. Indian J. Otolaryngol. Head Neck Surg. 2021, 73, 152–159. [Google Scholar] [CrossRef]
- Feng, Q.; Bønnelykke, K.; Ek, W.E.; Chawes, B.L.; Yuan, S.; Cheung, C.L.; Li, G.H.; Leung, R.Y.; Cheung, B.M. Null association between serum 25-hydroxy vitamin D levels with allergic rhinitis, allergic sensitization and non-allergic rhinitis: A Mendelian randomization study. Clin. Exp. Allergy 2021, 51, 78–86. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.C.; Dahlin, A.; Wang, A.L. The Role of Environmental Risk Factors on the Development of Childhood Allergic Rhinitis. Children 2021, 8, 708. https://doi.org/10.3390/children8080708
Wu AC, Dahlin A, Wang AL. The Role of Environmental Risk Factors on the Development of Childhood Allergic Rhinitis. Children. 2021; 8(8):708. https://doi.org/10.3390/children8080708
Chicago/Turabian StyleWu, Allison C., Amber Dahlin, and Alberta L. Wang. 2021. "The Role of Environmental Risk Factors on the Development of Childhood Allergic Rhinitis" Children 8, no. 8: 708. https://doi.org/10.3390/children8080708