Lenticulostriate Vasculopathy in Very-Low-Birth-Weight Preterm Infants: A Longitudinal Cohort Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grant, E.G.; Williams, A.L.; Schellinger, D.; Slovis, T.L. Intracranial calcification in the infant and neonate: Evaluation by sonography and CT. Radiology 1985, 157, 63–68. [Google Scholar] [CrossRef]
- Teele, R.L.; Hemanz-Schulman, M.; Sotrel, A. Echogenic vasculature in the basal ganglia of neonates: A sonographic sign of vas-culopathy. Radiology 1988, 169, 423–427. [Google Scholar] [CrossRef]
- Sisman, J.; Logan, J.W.; Westra, S.J.; Allred, E.N.; Leviton, A. Lenticulostriate vasculopathy in extremely low gestational age newborns: Inter-rater variability of cranial ultrasound readings, antecedents and postnatal characteristics. J. Pediatr. Neurol. 2014, 12, 183–193. [Google Scholar]
- Paczko, N.; Rotta, N.T.; Silva, A.; Leiria, F. Hyperechogenicity of thalamic vessels in preterm newborn infants. J. Pediatr. 2002, 78, 371–374. [Google Scholar] [CrossRef][Green Version]
- Mittendorf, R.; Kuban, K.; Pryde, P.G.; Gianopoulos, J.G.; Yousefzadeh, D. Antenatal Risk Factors Associated with the Development of Lenticulostriate Vasculopathy (LSV) in Neonates. J. Perinatol. 2004, 25, 101–107. [Google Scholar] [CrossRef]
- Sisman, J.; Chalak, L.; Heyne, R.; Pritchard, M.; Weakley, D.; Brown, L.S.; Rosenfeld, C.R. Lenticulostriate vasculopathy in preterm infants: A new classification, clinical associations and neurodevelopmental outcome. J. Perinatol. 2018, 38, 1370–1378. [Google Scholar] [CrossRef]
- Leijser, L.M.; Steggerda, S.J.; de Bruine, F.T.; van Zuijlen, A.; van Steenis, A.; Walther, F.J.; van Wezel-Meijler, G. Lenticulostriate vasculopathy in very preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2010, 95, F42–F46. [Google Scholar] [CrossRef]
- Maayan-Metzger, A.; Leibovitch, L.; Schushan-Eisen, I.; Soudack, M.; Strauss, T. Risk factors and associated diseases among preterm infants with isolated lenticulostriate vasculopathy. J. Perinatol. 2016, 36, 775–778. [Google Scholar] [CrossRef]
- Rumack, C.M.; Drose, J.A. Neonatal and infant brain imaging. In Perinatal Neuroradiology; Rumack, C.M., Wilson, S.R., Charboneau, J.W., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2005; p. 1624. [Google Scholar]
- Hemachandra, A.H.; Oravec, D.; Collin, M.; Tafari, N.; Mhanna, M.J. Early and late postnatal indentification of isolated lenticu-ostriate vasculopathy in preterm infants: Associated findings. J. Perinatol. 2003, 23, 20–23. [Google Scholar] [CrossRef][Green Version]
- Redline, R.W. Inflammatory responses in the placenta and umbilical cord. Semin. Fetal Neonatal Med. 2006, 11, 296–301. [Google Scholar] [CrossRef]
- Hsieh, W.-S.; Wu, H.-C.; Jeng, S.-F.; Liao, H.-F.; Su, Y.-N.; Lin, S.-J.; Hsieh, C.-J.; Chen, P.-C. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998–2002. Acta Paediatr. Taiwanica 2006, 47, 25–33. [Google Scholar]
- Hu, I.-J.; Hsieh, C.-J.; Jeng, S.-F.; Wu, H.-C.; Chen, C.-Y.; Chou, H.-C.; Tsao, P.-N.; Lin, S.-J.; Chen, P.-C.; Hsieh, W.-S. Nationwide Twin Birth Weight Percentiles by Gestational Age in Taiwan. Pediatr. Neonatol. 2015, 56, 294–300. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hack, M.; Horbar, J.D.; Malloy, M.H.; Tyson, J.E.; Wright, E.; Wright, L. Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Network. Pediatrics 1991, 87, 587–597. [Google Scholar] [PubMed]
- Jain, A.; McNamara, P.J. Persistent pulmonary hypertension of the newborn: Advances in diagnosis and treatment. Semin. Fetal Neonatal Med. 2015, 20, 262–271. [Google Scholar] [CrossRef]
- Cortese, F.; Scicchitano, P.; Gesualdo, M.; Filaninno, A.; de Giorgi, E.; Schettini, F.; Laforgia, N.; Ciccone, M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Shennan, A.T.; Dunn, M.S.; Ohlsson, A.; Lennox, K.; Hoskins, E.M. Abnormal pulmonary outcomes in premature infants: Prediction from oxygen requirement in the neonatal period. Pediatrics 1988, 82, 527–532. [Google Scholar]
- Walsh, M.C.; Kliegman, R.M. Necrotizing Enterocolitis: Treatment Based on Staging Criteria. Pediatr. Clin. North Am. 1986, 33, 179–201. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Makhoul, I.R.; Eisenstein, I.; Sujov, P.; Soudack, M.; Smolkin, T.; Tamir, A.; Epelman, M. Neonatal lenticulostriate vasculopathy: Further characterization. Arch. Dis. Child.-Fetal Neonatal Ed. 2003, 88, 410–414. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, M.-J.; Lee, H.S.; Namgung, R.; Park, K.I.; Lee, M.-J. Imaging patterns of sonographic lenticulostriate vasculopathy and correlation with clinical and neurodevelopmental outcome. J. Clin. Ultrasound 2015, 43, 367–374. [Google Scholar] [CrossRef]
- Govaert, P.; de Vries, L.S. Striatal vasculopathy. In An Atlas of Neonatal Brain Sonography; Hart, H.M., Ed.; Mac Keith Press: Cornwall, UK, 2010; pp. 165–169. [Google Scholar]
- Sisman, J.; Rosenfeld, C.R. Lenticulostriate vasculopathy in neonates: Is it a marker of cerebral insult? Critical review of the lit-erature. Early Hum. Dev. 2015, 91, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, T.; Yousefzadeh, D.; Backus, M.; Reichman, B.; Kessler, A.; Hammerman-Rozenberg, C. Lenticulostriate vasculopathy in infants with infections of the central nervous system sonographic and Doppler findings. Pediatr. Radiol. 1990, 20, 575–579. [Google Scholar] [CrossRef]
- Chamnanvanakij, S.; Rogers, C.G.; Luppino, C.; Broyles, S.R.; Hickman, J.; Perlman, J.M. Linear hyperechogenicity within the basal ganglia and thalamus of preterm infants. Pediatr. Neurol. 2000, 23, 129–133. [Google Scholar] [CrossRef]
- Weber, K.; Riebel, T.; Nasir, R. Hyperechoic lesions in the basal ganglia: An incidental sonographic finding in neonates and infants. Pediatr. Radiol. 1992, 22, 182–186. [Google Scholar] [CrossRef]
- Coley, B.D.; Rusin, J.A.; Boue, D.R. Importance of hypoxia/ischemic conditions in the development of cerebral lenticulostriate vasculopathy. Pediatr. Radiol. 2000, 30, 846–855. [Google Scholar] [CrossRef]
- Cabañas, F.; Pellicer, A.; Morales, C.; García-Alix, A.; Stiris, T.A.; Quero, J. New pattern of hyperechogenicity in thalamus and basal ganglia studied by color Doppler flow imaging. Pediatr. Neurol. 1994, 10, 109–116. [Google Scholar] [CrossRef]
- Wang, H.S.; Kuo, M.F.; Chang, T.C. Sonographic lenticulostriate vasculopathy in infants: Some associations and a hypothesis. Am. J. Neuroradiol. 1995, 16, 97–102. [Google Scholar] [PubMed]
- Hughes, P.; Weinberger, E.; Shaw, D.W. Linear areas of echogenicity in the thalami and basal ganglia of neonates: An expanded association. Work in progress. Radiology 1991, 179, 103–105. [Google Scholar] [CrossRef]
- Toma, P.; Mezzano, P.; Serra, G. The ”candlestick sign” on cerebral ultrasound. Pediatr. Radiol. 1991, 21, 319. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.S.; Beek, F.J.A.; Stoutenbeek, P. Lenticulostriate vasculopathy in twin to twin transfusion syndrome: Sonographic and CT findings. Pediatr. Radiol. 1995, 25, S41–S42. [Google Scholar] [CrossRef]
- Miller, G.; Eggli, K.D.; Contant, C.; Baylen, B.G.; Myers, J.L. Postoperative Neurologic Complications After Open Heart Surgery on Young Infants. Arch. Pediatr. Adolesc. Med. 1995, 149, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Duranovic, V.; Krakar, G.; Mejaski-Bosnjak, V.; Lujic, L.; Gojmerac, T.; Marn, B. Lenticulostriatal vasculopathy-a marker for con-genital cytomegalovirus infection? Coll. Antropol. 2011, 35, 149–153. [Google Scholar]
- Malinger, G.; Lev, D.; Zahalka, N.; Ben Aroia, Z.; Watemberg, N.; Kidron, D.; Ben Sira, L.; Lerman-Sagie, T. Fetal Cytomegalovirus Infection of the Brain: The Spectrum of Sonographic Findings. Am. J. Neuroradiol. 2003, 24, 28–32. [Google Scholar]
- Hong, S.-Y.; Yang, J.-J.; Li, S.-Y.; Lee, I.-C. Lenticulostriate Vasculopathy in Brain Ultrasonography is Associated with Cytomegalovirus Infection in Newborns. Pediatr. Neonatol. 2015, 56, 408–414. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nijman, J.; de Vries, L.S.; Koopman-Esseboom, C.; Uiterwaal, C.S.P.M.; van Loon, A.M.; Verboon-Maciolek, M.A. Postnatally acquired cytomegalovi-rus infection in preterm infants: A prospective study on risk factors and cranial ultrasound findings. Arch. Dis. Child.-Fetal Neonatal Ed. 2012, 97, F259–F263. [Google Scholar] [CrossRef]
Characteristics of LSV | Early-Onset LSV n = 6 | Late-Onset LSV n = 45 | Early- vs. Late-Onset LSV p Value * |
---|---|---|---|
First detection | |||
Postnatal age (days) | 5.5 (1–9) | 116 (21–371) | <0.001 |
PMA (weeks) | 31 (25–32) | 45 (31–80) | <0.001 |
Last detection # | |||
Postnatal age (days) | 94 (65–272) | 356 (63–494) | 0.009 |
PMA (weeks) | 43 (34–69) | 78 (37–92) | 0.015 |
Visible duration (days) | 72 (62–265) | 202 (30–406) | 0.042 |
Appearance at first detection | |||
Linear | 3 (50) | 26 (57.8) | 1.000 |
Branching | 2 (33.3) | 13 (28.9) | 1.000 |
Punctate | 1 (16.7) | 6 (13.3) | 1.000 |
Laterality | |||
Unilateral | 2 (33.3) | 19 (42.2) | 1.000 |
Right | 2 (100) | 10 (52.6) | 0.486 |
Left | 0 | 9 (47.4) | 0.486 |
Bilateral | 4 (66.7) | 26 (57.8) | 1.000 |
Associated cUS changes | |||
IVH (any grade) | 2 (33.3) | 10 (22.2) | 0.616 |
IVH ≥grade III | 0 | 3 (6.7) | 1.000 |
PVL | 1 (16.7) | 2 (4.4) | 0.319 |
LSV Present n = 51 | LSV Absent n = 79 | p Value * | |
---|---|---|---|
Perinatal characteristics | |||
Boy:girl, n | 30:21 | 42:37 | 0.526 |
GA (weeks) ‡ | 27.8 (2.3) | 28.4 (2.3) | 0.150 |
BBW (g) | 1070 (253) | 1114 (243) | 0.329 |
Vaginal delivery | 4 (7.8) | 10 (12.7) | 0.387 |
Twin gestation | 15 (29.4) | 26 (32.9) | 0.657 |
SGA | 6 (11.8) | 19 (24.1) | 0.083 |
LGA | 2 (3.9) | 3 (3.8) | 1.000 |
Antenatal steroid use | 37 (72.5) | 58 (73.4) | 0.913 |
Antenatal MgSO4 use | 10 (19.6) | 23 (29.1) | 0.224 |
Maternal age | 33.4 (5.0) | 34.2 (4.8) | 0.390 |
History of pre-eclampsia | 10 (19.6) | 18 (22.8) | 0.667 |
History of PPROM | 18 (35.3) | 21 (26.6) | 0.290 |
History of GDM | 7 (13.7) | 14 (17.7) | 0.546 |
Apgar score <7 at 5 min | 15 (29.4) | 19 (24.1) | 0.497 |
Placental findings ‡ | |||
HCAM | 24 (57.1) | 35 (50.7) | 0.560 |
Intermediate-to-advanced HCAM | 18 (42.9) | 17 (24.6) | 0.045 |
Funisitis | 4 (9.5) | 8 (11.6) | 1.000 |
Laboratory results | |||
Maternal WBC count (×103/µL) | 14.82 (0.53) | 13.12 (0.46) | 0.060 |
Maternal CRP (mg/dL) | 1.35 (1.7) | 1.48 (1.9) | 0.741 |
Neonatal WBC count (×103/uL) || | 9.71 (0.45) | 10.05 (0.78) | 0.777 |
Neonatal CRP (mg/dL) || | 0.53 (0.95) | 0.54 (0.89) | 0.961 |
Clinical outcomes | |||
RDS | 27 (52.9) | 34 (43) | 0.269 |
PPHN | 4 (7.8) | 8 (10.1) | 0.763 |
Pneumothorax | 5 (9.8) | 6 (7.6) | 0.751 |
BPD | 17 (33.3) | 15 (18.9) | 0.064 |
Steroid use for BPD | 6 (11.8) | 2 (2.5) | 0.056 |
Early onset sepsis | 0 | 1 (1.3) | 1.000 |
Late onset sepsis | 17 (33.3) | 15 (18.9) | 0.064 |
Mechanical ventilator usage duration (days) | 8.2 (13.8) | 4.4 (6.8) | 0.073 |
Oxygen usage duration (days) | 49 (1–129) | 38 (4–129) | 0.018 |
PDA | 16 (31.3) | 26 (32.9) | 0.855 |
ROP | 2 (3.9) | 6 (7.6) | 0.480 |
NEC | 2 (3.9) | 8 (10.1) | 0.314 |
IVH ≥ grade III | 3 (5.9) | 5 (6.3) | 1.000 |
PVL | 3 (5.9) | 7 (8.9) | 0.739 |
CMV infection # | 4 (18.2) | 3 (21.4) | 0.567 |
Odds Ratio | 95% CI | p Value | |
---|---|---|---|
GA (increase 1 week) | 1.099 | 0.777, 1.555 | 0.592 |
Intermediate to advanced HCAM (yes vs. no) | 1.857 | 0.784, 4.398 | 0.159 |
Oxygen usage duration (increase 1 day) | 1.023 | 0.996, 1.050 | 0.098 |
Clinical Parameters | LSV Absent n = 79 | Early Onset LSV n = 6 | Late Onset LSV n = 45 | Early † vs. Late Onset LSV p Value | Early † Onset vs. LSV (-) p Value | Late * Onset vs. LSV (-) p Value |
---|---|---|---|---|---|---|
Male | 42 (53.2) | 2 (33.3) | 28 (62.2) | 0.214 | 0.432 | 0.328 |
GA (weeks) | 28.49 (2.3) | 30 (25–32) | 27.6 (2.2) | 0.073 | 0.283 | 0.061 |
BBW (g) | 1114 (243) | 1253 (836–1455) | 1051 (254) | 0.165 | 0.272 | 0.173 |
Vaginal delivery | 10 (12.7) | 1 (16.7) | 3 (7.7) | 0.404 | 0.576 | 0.265 * |
Twin gestation | 21 (32.9) | 0 | 15 (33.3) | 0.162 | 0.171 | 0.962 |
SGA | 19 (24.1) | 2 (33.3) | 4 (8.9) | 0.141 | 0.644 | 0.037 |
LGA | 3 (3.8) | 0 | 2 (4.4) | 1.000 | 1 | 1 * |
Antenatal steroid usage | 58 (73.4) | 4 (66.7) | 33 (73.3) | 0.661 | 0.660 | 0.992 |
Antenatal MgSO4 usage | 23 (29.1) | 1 (16.7) | 9 (20) | 1.000 | 0.671 | 0.265 |
Pre-eclampsia | 18 (19.6) | 3 (5) | 7 (15.6) | 0.081 | 0.157 | 0.335 |
GDM | 14 (13.7) | 1 (16.7) | 6 (13.3) | 1.000 | 1 | 0.523 |
PPROM | 21 (35.3) | 1 (16.7) | 17 (37.8) | 0.405 | 1 | 0.194 |
HCAM ‡ | 35 (50.7) | 3 (60) | 21 (56.8) | 1 | 1 | 0.553 |
Funisitis ‡ | 8 (11.6) | 1 (20) | 3 (8.1) | 0.410 | 0.487 | 0.744 |
Apgar score <7 at 5 min | 19 (24.1) | 1 (16.7) | 14 (31.1) | 0.657 | 1 | 0.392 |
RDS | 34 (43) | 2 (33.3) | 25 (55.6) | 0.402 | 1 | 0.180 |
Sepsis | 16 (20.3) | 2 (33.3) | 15 (33.3) | 1.000 | 0.604 | 0.115 |
PDA | 26 (32.9) | 2 (33.3) | 14 (31.1) | 1.000 | 1 | 0.837 |
BPD | 15 (18.9) | 3 (50) | 14 (31.1) | 0.387 | 0.106 | 0.125 |
ROP | 6 (7.6) | 1 (16.7) | 1 (2.2) | 0.224 | 0.413 | 0.400 |
NEC | 8 (10.2) | 0 | 2 (4.4) | 1.000 | 1 | 0.264 |
CMV § | 3/14 (21.4) | 0 | 4/19 (21) | 1.000 | 1 | 1 |
Mechanical ventilator usage duration (days) | 4.4 (6.8) | 0 (0–21) | 8.7 (14.3) | 0.138 | 0.359 | 0.061 |
Oxygen usage duration (days) | 38 (4–129) | 32.5 (8–101) | 49 (1–129) | 0.430 | 0.945 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, Y.-L.; Shen, C.-M.; Hung, K.-L.; Hsieh, W.-S. Lenticulostriate Vasculopathy in Very-Low-Birth-Weight Preterm Infants: A Longitudinal Cohort Study. Children 2021, 8, 1166. https://doi.org/10.3390/children8121166
Hung Y-L, Shen C-M, Hung K-L, Hsieh W-S. Lenticulostriate Vasculopathy in Very-Low-Birth-Weight Preterm Infants: A Longitudinal Cohort Study. Children. 2021; 8(12):1166. https://doi.org/10.3390/children8121166
Chicago/Turabian StyleHung, Yi-Li, Chung-Min Shen, Kun-Long Hung, and Wu-Shiun Hsieh. 2021. "Lenticulostriate Vasculopathy in Very-Low-Birth-Weight Preterm Infants: A Longitudinal Cohort Study" Children 8, no. 12: 1166. https://doi.org/10.3390/children8121166
APA StyleHung, Y.-L., Shen, C.-M., Hung, K.-L., & Hsieh, W.-S. (2021). Lenticulostriate Vasculopathy in Very-Low-Birth-Weight Preterm Infants: A Longitudinal Cohort Study. Children, 8(12), 1166. https://doi.org/10.3390/children8121166