Air Pollution and Adolescent Development: Evidence from a 3-Year Longitudinal Study in China
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.3. Measurements
2.3.1. Positive Youth Development Scale
2.3.2. Internalizing Disorders Scale
2.3.3. Socio-Demographic Characteristics
2.3.4. Independent Variables—Air Pollution
2.4. Statistical Model
3. Results
3.1. Descriptive Analysis
3.2. Main Effect
3.3. Mediation Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shek, D.T.L.; Yu, L. A review of validated youth prevention and positive youth development programs in Asia. Int. J. Adolesc. Med. Health 2011, 23, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, P.L.; Mannes, M.; Pittman, K.; Ferber, T. Youth development and public policy. In Handbook of Adolescent Psychology; Lerner, R.M., Steinberg, L., Eds.; John Wiley: Hoboken, NJ, USA, 2004; pp. 781–814. [Google Scholar]
- Damon, W. What is positive youth development? Ann. Am. Acad. Political Soc. Sci. 2004, 591, 13–24. [Google Scholar] [CrossRef]
- Taylor, C.S.; Smith, P.R.; Taylor, V.A.; von Eye, A.; Lerner, R.M.; Balsano, A.B. Individual and ecological assets and thriving among African American adolescent male gang and community-based organization members: A report from Wave 3 of the “Overcoming the Odds” study. J. Early Adolesc. 2005, 25, 72–93. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design; Harvard University Press: London, UK, 1979. [Google Scholar]
- Evans, G.W. Child Development and the physical environment. Annu. Rev. Psychol. 2005, 57, 423–451. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, K.T.; Cassells, R.C.; Macallister, J.W.; Evans, G.W. The physical environment and child development: An international review. Int. J. Psychol. 2013, 48, 437–468. [Google Scholar] [CrossRef] [Green Version]
- Evans, G.W. The physical context of child development. Curr. Dir. Psychol. Sci. 2021, 30, 41–48. [Google Scholar] [CrossRef]
- UNICEF. Healthy Air for Every Child: A Call for National Action. 2018. Available online: https://www.unicef.org.uk/clean-air-child-health-air-pollution/ (accessed on 12 March 2021).
- World Health Organization. 2016. Available online: https://www.who.int/news-room/spotlight/how-air-pollution-is-destroying-our-health (accessed on 6 April 2021).
- Chen, J.F.; Wu, X.J.; Tao, R.; Zhao, N.; Li, S.; Zheng, R. Effects of air pollution on individuals’ direct and spillover behaviors. Adv. Psychol. Sci. 2020, 28, 1293–1306. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Salvo, A. Severe air pollution and labor productivity: Evidence from industrial towns in China. Am. Econ. J. Appl. Econ. 2019, 11, 173–201. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Massa, M.; Zhang, H.; Zhang, J. Air pollution, behavioral bias, and the disposition effect in China. J. Financ. Econ. 2021, 142, 641–673. [Google Scholar] [CrossRef]
- Dong, R.; Fisman, R.; Wang, Y.; Xu, N. Air pollution, affect, and forecasting bias: Evidence from Chinese financial analysts. J. Financ. Econ. 2021, 139, 971–984. [Google Scholar] [CrossRef]
- Wang, L.; Xing, F.; Yu, Y.; Dai, Y. Does severe air pollution affect firm innovation: Evidence from China. Appl. Econ. Lett. 2021, 28, 551–558. [Google Scholar] [CrossRef]
- Sass, V.; Kravitz-Wirtz, N.; Karceski, S.M.; Hajat, A.; Crowder, K.; Takeuchi, D. The effects of air pollution on individual psychological distress. Health Place 2017, 48, 72–79. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.-A.; Power, M.C.; Hart, J.E.; Okereke, O.I.; Coull, B.A.; Laden, F.; Weisskopf, M.G. The association between air pollution and onset of depression among middle-aged and older women. Am. J. Epidemiol. 2017, 185, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Pun, V.C.; Manjourides, J.; Suh, H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: Results from the NSHAP study. Environ. Health Perspect. 2017, 125, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liu, Y.; Xue, D.; Yao, Y.; Liu, P.; Helbich, M. Cross-sectional associations between long-term exposure to particulate matter and depression in China: The mediating effects of sunlight, physical activity, and neighborly reciprocity. J. Affect. Disord. 2019, 249, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Jung, S.H.; Kang, D.R.; Kim, H.C.; Moon, K.T.; Hur, N.W.; Shin, D.C.; Suh, I. Ambient particulate matter as a risk factor for suicide. Am. J. Psychiatry 2010, 167, 1100–1107. [Google Scholar] [CrossRef]
- Nuyts, V.; Nawrot, T.S.; Scheers, H.; Nemery, B.; Casas, L. Air pollution and self-perceived stress and mood: A one-year panel study of healthy elderly persons. Environ. Res. 2019, 177, 108644. [Google Scholar] [CrossRef] [PubMed]
- Burbank, A.J.; Peden, D.B. Assessing the impact of air pollution on childhood asthma morbidity: How, when, and what to do. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Lercher, P. Ambient neighbourhood noise and children’s mental health. Occup. Environ. Med. 2002, 59, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Stafford, T.M. Indoor air quality and academic performance. J. Environ. Econ. Manag. 2015, 70, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Marcon, A.; Pesce, G.; Girardi, P.; Marchetti, P.; Blengio, G.; de Zolt Sappadina, S.; Falcone, S.; Frapporti, G.; Predicatori, F.; de Marco, R. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy. Int. J. Hyg. Environ. Health 2014, 217, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Rotton, J.; Frey, J. Air pollution, weather, and violent crimes: Concomitant time-series analysis of archival data. J. Personal. Soc. Psychol. 1985, 49, 1207–1220. [Google Scholar] [CrossRef]
- Currie, J.; Graff Zivin, J.G.; Mullins, J.; Neidell, M. What do we know about short- and long-term effects of early-life exposure to pollution? Annu. Rev. Resour. Econ. 2014, 6, 217–247. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Guo, C.; Huang, X. Air pollution, student health, and school absences: Evidence from China. J. Environ. Econ. Manag. 2018, 92, 465–497. [Google Scholar] [CrossRef]
- Zu, D.; Zhai, K.; Qiu, Y.; Pei, P.; Zhu, X.; Han, D. The impacts of air pollution on mental health: Evidence from the Chinese university students. Int. J. Environ. Res. Public Health 2020, 17, 6734. [Google Scholar] [CrossRef] [PubMed]
- Canter, D.V.; Craik, K.H. Environmental psychology. J. Environ. Psychol. 1981, 1, 1–11. [Google Scholar] [CrossRef]
- Bai, J. Development of Chinese Adolescents’ Risk Behaviors Scale; Shanxi University: Taiyuan, China, 2007. (In Chinese) [Google Scholar]
- Wilkinson, P. Conceptualization about internalizing problems in children and adolescents. Ciência Saúde Coletiva 2009, 14, 373–381. [Google Scholar] [CrossRef]
- Shek, D.T.L.; Ma, C.M.S. Dimensionality of the Chinese positive youth development scale: Confirmatory factor analyses. Soc. Indic. Res. 2010, 98, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Zhai, S.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.; Gui, K.; Zhao, T.; Liao, H. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar] [CrossRef] [Green Version]
- Heyes, A.; Zhu, M. Air pollution as a cause of sleeplessness: Social media evidence from a panel of Chinese cities. J. Environ. Econ. Manag. 2019, 98, 102247. [Google Scholar] [CrossRef]
- Clifford, A.; Lang, L.; Chen, R.; Anstey, K.J.; Seaton, A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016, 147, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tan, X.; Cao, Q. Air pollution, auditors’ pessimistic bias and audit quality: Evidence from China. Sustain. Account. Manag. Policy J. 2021, 12, 74–104. [Google Scholar]
- Tam, K.P.; Milfont, T.L. Towards cross-cultural environmental psychology: A state-of-the-art review and recommendations. J. Environ. Psychol. 2020, 71, 101474. [Google Scholar] [CrossRef]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, 4490. [Google Scholar] [CrossRef] [Green Version]
Scales | Χ2 | df | CFI | TLI | RMSEA | SRMR | Cronbach’s α |
---|---|---|---|---|---|---|---|
CBC-W1 | 4141.522 | 36 | 0.992 | 0.975 | 0.046 | 0.015 | 0.861 |
CBC-W2 | 4582.095 | 36 | 0.997 | 0.989 | 0.032 | 0.012 | 0.871 |
CBC-W3 | 8326.689 | 36 | 0.995 | 0.986 | 0.049 | 0.010 | 0.932 |
PA-W1 | 1882.882 | 10 | 0.999 | 0.995 | 0.026 | 0.007 | 0.796 |
PA-W2 | 2110.620 | 15 | 0.998 | 0.993 | 0.028 | 0.007 | 0.780 |
PA-W3 | 5441.852 | 15 | 0.996 | 0.978 | 0.078 | 0.014 | 0.906 |
PIT-W1 | 3612.898 | 15 | 0.995 | 0.983 | 0.056 | 0.000 | 0.870 |
PIT-W2 | 3872.282 | 15 | 0.992 | 0.970 | 0.077 | 0.014 | 0.881 |
PIT-W3 | 6005.443 | 15 | 0.999 | 0.997 | 0.030 | 0.004 | 0.922 |
GPYDQ-W1 | 10,425.744 | 190 | 0.933 | 0.917 | 0.059 | 0.042 | 0.913 |
GPYDQ-W2 | 11,772.895 | 190 | 0.935 | 0.916 | 0.063 | 0.043 | 0.921 |
GPYDQ-W3 | 19,814.318 | 190 | 0.968 | 0.959 | 0.057 | 0.029 | 0.957 |
Scales | Χ2 | df | CFI | TLI | RMSEA | SRMR | Cronbach’s α |
---|---|---|---|---|---|---|---|
Anxiety-W1 | 2038.381 | 15 | 0.978 | 0.963 | 0.062 | 0.023 | 0.802 |
Anxiety-W2 | 2330.065 | 15 | 0.969 | 0.948 | 0.079 | 0.027 | 0.818 |
Anxiety-W3 | 3363.749 | 15 | 0.982 | 0.966 | 0.076 | 0.022 | 0.868 |
Depression-W1 | 3847.853 | 36 | 0.959 | 0.941 | 0.069 | 0.034 | 0.852 |
Depression-W2 | 4506.363 | 36 | 0.966 | 0.951 | 0.068 | 0.030 | 0.870 |
Depression-W3 | 6868.074 | 36 | 0.980 | 0.970 | 0.066 | 0.024 | 0.902 |
Nervousness-W1 | 957.858 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.756 |
Nervousness-W2 | 850.984 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.737 |
Nervousness-W3 | 1221.998 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.797 |
Withdrawal motivation-W1 | 519.411 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.520 |
Withdrawal motivation-W2 | 689.193 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.584 |
Withdrawal motivation-W3 | 722.762 | 3 | 1.000 | 1.000 | 0.000 | 0.000 | 0.675 |
Categorical Variables | N | % | N | % | |
---|---|---|---|---|---|
Gender | Mother_Degree | ||||
Male | 2016 | 51.65 | Junior high and below | 1537 | 39.38 |
Female | 1887 | 48.35 | High school or junior college | 1366 | 35.00 |
One_Child | Bachelor | 715 | 18.32 | ||
Yes | 1501 | 38.46 | Master’s degree or above | 285 | 7.30 |
No | 2402 | 61.54 | Family | ||
Local | Full | 3683 | 94.36 | ||
Yes | 3187 | 81.66 | Parental divorce | 124 | 3.18 |
No | 716 | 18.34 | Single parent family | 72 | 1.84 |
Growth_Place | Other | 24 | 0.61 | ||
Country | 475 | 12.17 | Income (family per-capita, in RMB) | ||
Shenzhen | 2908 | 74.51 | Below 1000 | 163 | 4.18 |
Other Cities | 520 | 13.32 | 1000~1999 | 332 | 8.51 |
Father_Degree | 2000~2999 | 493 | 12.63 | ||
Junior high and below | 1298 | 33.26 | 3000~3999 | 577 | 14.78 |
High school or junior college | 1430 | 36.64 | 4000~4999 | 447 | 11.45 |
Bachelor | 747 | 19.14 | 5000~5999 | 470 | 12.04 |
Master’s degree or above | 428 | 10.97 | Above 6000 | 1421 | 36.41 |
Continuous variables | N | mean | s.d. | p50 | range |
PYD_Total | 3903 | 4.872 | 0.738 | 4.929 | 1~6 |
AQI_School | 3903 | 38.65 | 3.887 | 37.864 | 33.942~47.407 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
PYD_Toal | CBC | PA | PIT | GPYDQ | |
AQI_School | −0.017 *** | −0.016 *** | −0.007 * | −0.009 ** | −0.016 *** |
(−4.94) | (−4.24) | (−1.73) | (−2.03) | (−4.53) | |
Gender | −0.057 ** | −0.123 *** | 0.044 | −0.170 *** | −0.02 |
(−2.43) | (−4.69) | (1.58) | (−5.49) | (−0.82) | |
Growth_Place | 0.024 | 0.04 | 0.011 | 0.049 | 0.01 |
(0.99) | (1.52) | (0.38) | (1.59) | (0.41) | |
One_Child | −0.021 | −0.033 | 0.011 | −0.053 | −0.009 |
(−0.80) | (−1.13) | (0.37) | (−1.55) | (−0.35) | |
Local | 0.047 | 0.042 | 0.048 | 0.039 | 0.047 |
(1.52) | (1.22) | (1.33) | (0.97) | (1.51) | |
Father_Degree | 0.054 *** | 0.056 *** | 0.035 * | 0.068 *** | 0.049 *** |
(3.32) | (3.10) | (1.84) | (3.14) | (2.91) | |
Mother_Degree | 0.068 *** | 0.068 *** | 0.073 *** | 0.074 *** | 0.060 *** |
(3.96) | (3.58) | (3.64) | (3.29) | (3.46) | |
Family | −0.169 *** | −0.075 | −0.229 *** | −0.301 *** | −0.166 *** |
(−3.31) | (−1.32) | (−3.82) | (−4.51) | (−3.19) | |
Income | 0.018 *** | 0.022 *** | 0.007 | 0.015 * | 0.019 *** |
(2.75) | (3.12) | (0.97) | (1.76) | (2.85) | |
_Cons | 5.335 *** | 5.283 *** | 5.069 *** | 5.039 *** | 5.352 *** |
(39.92) | (35.67) | (32.21) | (28.79) | (39.29) | |
N | 3903 | 3903 | 3903 | 3903 | 3903 |
Adj-R2 | 0.025 | 0.025 | 0.014 | 0.03 | 0.019 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Internalizing Disorders | Anxiety | Depression | Neuroticism | Withdrawal | |
AQI_School | 0.118 * | 0.042 * | 0.027 | 0.028 ** | 0.021 ** |
(1.70) | (1.81) | (0.85) | (2.21) | (2.10) | |
Gender | 2.530 *** | 1.164 *** | 1.127 *** | 0.151 * | 0.089 |
(5.41) | (7.50) | (5.22) | (1.75) | (1.35) | |
Growth_Place | −0.271 | −0.03 | −0.147 | −0.037 | −0.057 |
(−0.57) | (−0.19) | (−0.68) | (−0.43) | (−0.86) | |
One_Child | 0.125 | −0.055 | 0.031 | 0.052 | 0.097 |
(0.24) | (−0.32) | (0.13) | (0.54) | (1.31) | |
Local | −0.731 | −0.214 | −0.419 | −0.061 | −0.037 |
(−1.20) | (−1.06) | (−1.49) | (−0.55) | (−0.42) | |
Father_Degree | −1.230 *** | −0.404 *** | −0.480 *** | −0.139 ** | −0.206 *** |
(−3.78) | (−3.75) | (−3.20) | (−2.32) | (−4.47) | |
Mother_Degree | −0.631 * | −0.189 * | −0.318 ** | −0.086 | −0.038 |
(−1.87) | (−1.69) | (−2.04) | (−1.38) | (−0.80) | |
Family | 4.386 *** | 1.222 *** | 2.133 *** | 0.556 *** | 0.474 *** |
(4.34) | (3.65) | (4.58) | (2.99) | (3.31) | |
Income | −0.199 | −0.046 | −0.072 | −0.044 * | −0.037 ** |
(−1.57) | (−1.10) | (−1.23) | (−1.88) | (−2.06) | |
_cons | 35.957 *** | 10.623 *** | 16.342 *** | 4.683 *** | 4.309 *** |
(13.58) | (12.10) | (13.38) | (9.60) | (11.46) | |
N | 3903 | 3903 | 3903 | 3903 | 3903 |
adj. R2 | 0.023 | 0.025 | 0.022 | 0.008 | 0.016 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
MV = Internalizing Disorders | MV = Anxiety | MV = Neuroticism | MV = Withdrawal | |
PYD_Toal | PYD_Toal | PYD_Toal | PYD_Toal | |
AQI_School | −0.014 *** | −0.014 *** | −0.014 *** | −0.014 *** |
(−4.76) | (−4.64) | (−4.44) | (−4.46) | |
MV | −0.027 *** | −0.073 *** | −0.099 *** | −0.153 *** |
(−38.77) | (−34.12) | (−24.20) | (−29.67) | |
Gender | 0.01 | 0.028 | −0.043 * | −0.044 ** |
(0.49) | (1.32) | (−1.93) | (−2.05) | |
Growth_Place | 0.016 | 0.021 | 0.02 | 0.015 |
(0.81) | (1.03) | (0.90) | (0.69) | |
One_Child | −0.018 | −0.025 | −0.016 | −0.006 |
(−0.79) | (−1.08) | (−0.64) | (−0.26) | |
Local | 0.027 | 0.031 | 0.04 | 0.041 |
(1.04) | (1.15) | (1.41) | (1.48) | |
Father_Degree | 0.022 | 0.025 * | 0.041 *** | 0.023 |
(1.55) | (1.73) | (2.65) | (1.54) | |
Mother_Degree | 0.051 *** | 0.054 *** | 0.059 *** | 0.062 *** |
(3.50) | (3.58) | (3.71) | (4.00) | |
Family | −0.052 | −0.079 * | −0.114 ** | −0.096 ** |
(−1.19) | (−1.77) | (−2.39) | (−2.09) | |
Income | 0.012 ** | 0.014 ** | 0.013 ** | 0.012 ** |
(2.26) | (2.53) | (2.22) | (2.06) | |
_cons | 6.292 *** | 6.111 *** | 5.799 *** | 5.992 *** |
(54.16) | (51.16) | (45.99) | (48.83) | |
N | 3903 | 3903 | 3903 | 3903 |
adj. R2 | 0.296 | 0.249 | 0.152 | 0.205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, N.; Chi, X.; Liu, W.; Cui, X. Air Pollution and Adolescent Development: Evidence from a 3-Year Longitudinal Study in China. Children 2021, 8, 987. https://doi.org/10.3390/children8110987
Ni N, Chi X, Liu W, Cui X. Air Pollution and Adolescent Development: Evidence from a 3-Year Longitudinal Study in China. Children. 2021; 8(11):987. https://doi.org/10.3390/children8110987
Chicago/Turabian StyleNi, Na, Xinli Chi, Wei Liu, and Xiumin Cui. 2021. "Air Pollution and Adolescent Development: Evidence from a 3-Year Longitudinal Study in China" Children 8, no. 11: 987. https://doi.org/10.3390/children8110987
APA StyleNi, N., Chi, X., Liu, W., & Cui, X. (2021). Air Pollution and Adolescent Development: Evidence from a 3-Year Longitudinal Study in China. Children, 8(11), 987. https://doi.org/10.3390/children8110987