Breakfast Dietary Pattern Is Inversely Associated with Overweight/Obesity in European Adolescents: The HELENA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric Measurements
2.3. Dietary Assessment
2.4. Physical Activity Measurement
2.5. Socioeconomic Status
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Falconer, C.; Viner, R.M.; Kinra, S. The impact of childhood obesity on morbidity and mortality in adulthood: A systematic review. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2012, 13, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Pulgarón, E.R. Childhood obesity: A review of increased risk for physical and psychological comorbidities. Clin. Ther. 2013, 35, A18–A32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, J.; Matthews, L.; Cobley, S.; Han, A.; Sanders, R.; Wiltshire, H.D.; Baker, J.S. Psychological consequences of childhood obesity: Psychiatric comorbidity and prevention. Adolesc. Health Med. Ther. 2016, 7, 125–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland-Cachera, M.F. Childhood obesity: Current definitions and recommendations for their use. Int. J. Pediatric Obes. IJPO Off. J. Int. Assoc. Study Obes. 2011, 6, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Stampfer, M.J.; Rimm, E.B.; Willett, W.; Hu, F.B. Perspective: Are Large, Simple Trials the Solution for Nutrition Research? Adv. Nutr. 2018, 9, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Gorgulho, B.; Castro, M.; Fisberg, R.; Marchioni, D.; Baltar, V. Principal Component Analysis and Factor Analysis: Differences and similarities in Nutritional Epidemiology application. Rev. Bras. Epidemiol. 2019, 22, e190041. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Alves, M.; Retondario, A.; Bricarello, L.P.; Fernandes, R.; de Moura Souza, A.; Zeni, L.A.Z.R.; de Moraes Trindade, E.B.S.; de Assis Guedes de Vasconcelos, F. Association between dietary patterns and overweight/obesity: A Brazilian national school-based research (ERICA 2013–2014). J. Public Health 2020, 28, 163–171. [Google Scholar] [CrossRef]
- Huybrechts, I.; Lioret, S.; Mouratidou, T.; Gunter, M.J.; Manios, Y.; Kersting, M.; Gottrand, F.; Kafatos, A.; De Henauw, S.; Cuenca-García, M.; et al. Using reduced rank regression methods to identify dietary patterns associated with obesity: A cross-country study among European and Australian adolescents. Br. J. Nutr. 2017, 117, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Park, M.J.; Paik, H.Y.; Joung, H. Secular trends in dietary patterns and obesity-related risk factors in Korean adolescents aged 10–19 years. Int. J. Obes. 2010, 34, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, G.L.; Huang, R.C.; Mori, T.A.; Hands, B.P.; O’Sullivan, T.A.; de Klerk, N.H.; Beilin, L.J.; Oddy, W.H. Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr. Metab. Cardiovasc. Dis. NMCD 2010, 20, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Neves, M.E.A.; Souza, M.R.d.; Gorgulho, B.M.; Cunha, D.B.; Muraro, A.P.; Rodrigues, P.R.M. Association of dietary patterns with blood pressure and body adiposity in adolescents: A systematic review. Eur. J. Clin. Nutr. 2021, 75, 1440–1453. [Google Scholar] [CrossRef]
- Badr, H.E.; Lakha, S.F.; Pennefather, P. Differences in physical activity, eating habits and risk of obesity among Kuwaiti adolescent boys and girls: A population-based study. Int. J. Adolesc. Med. Health 2019, 31, 20160138. [Google Scholar] [CrossRef]
- Askovic, B.; Kirchengast, S. Gender differences in nutritional behavior and weight status during early and late adolescence. Anthropol. Anz. Ber. Über Die Biol.-Anthropol. Lit. 2012, 69, 289–304. [Google Scholar] [CrossRef]
- Moreno, L.A.; De Henauw, S.; González-Gross, M.; Kersting, M.; Molnár, D.; Gottrand, F.; Barrios, L.; Sjöström, M.; Manios, Y.; Gilbert, C.C.; et al. Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int. J. Obes. 2008, 32 (Suppl. S5), S4–S11. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.A.; Gottrand, F.; Huybrechts, I.; Ruiz, J.R.; González-Gross, M.; DeHenauw, S. Nutrition and lifestyle in european adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 2014, 5, 615s–623s. [Google Scholar] [CrossRef] [Green Version]
- De Henauw, S.; Gottrand, F.; De Bourdeaudhuij, I.; Gonzalez-Gross, M.; Leclercq, C.; Kafatos, A.; Molnar, D.; Marcos, A.; Castillo, M.; Dallongeville, J.; et al. Nutritional status and lifestyles of adolescents from a public health perspective. The HELENA Project—Healthy Lifestyle in Europe by Nutrition in Adolescence. J. Public Health 2007, 15, 187–197. [Google Scholar] [CrossRef]
- Béghin, L.; Castera, M.; Manios, Y.; Gilbert, C.C.; Kersting, M.; De Henauw, S.; Kafatos, A.; Gottrand, F.; Molnar, D.; Sjöström, M.; et al. Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int. J. Obes. 2008, 32, S12–S18. [Google Scholar] [CrossRef] [Green Version]
- Nagy, E.; Vicente-Rodriguez, G.; Manios, Y.; Béghin, L.; Iliescu, C.; Censi, L.; Dietrich, S.; Ortega, F.B.; De Vriendt, T.; Plada, M.; et al. Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int. J. Obes. 2008, 32, S58–S65. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ (Clin. Res. Ed.) 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, C.A.; Covents, M.; Sichert-Hellert, W.; Alvira, J.M.F.; Le Donne, C.; De Henauw, S.; De Vriendt, T.; Phillipp, M.K.; Béghin, L.; Manios, Y.; et al. Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int. J. Obes. 2008, 32, S26–S34. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, C.A.; Covents, M.; Matthys, C.; Maes, L. Young adolescents’ nutrition assessment on computer (YANA-C). Eur. J. Clin. Nutr. 2005, 59, 658–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, L.F.; Lioret, S.; Brants, H.; Kaic-Rak, A.; de Boer, E.J.; Amiano, P.; Trolle, E.; EFCOVAL Consortium. Recommendations for a trans-European dietary assessment method in children between 4 and 14 years. Eur. J. Clin. Nutr. 2011, 65, S58–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julián-Almárcegui, C.; Bel-Serrat, S.; Kersting, M.; Vicente-Rodriguez, G.; Nicolas, G.; Vyncke, K.; Vereecken, C.; De Keyzer, W.; Beghin, L.; Sette, S.; et al. Comparison of different approaches to calculate nutrient intakes based upon 24-h recall data derived from a multicenter study in European adolescents. Eur. J. Nutr. 2016, 55, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; EFCOVAL Consortium. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haubrock, J.; Nöthlings, U.; Volatier, J.L.; Dekkers, A.; Ocké, M.; Harttig, U.; Illner, A.K.; Knüppel, S.; Andersen, L.F.; Boeing, H. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cocker, K.; Ottevaere, C.; Sjöström, M.; Moreno, L.A.; Wärnberg, J.; Valtueña, J.; Manios, Y.; Dietrich, S.; Mauro, B.; Artero, E.G.; et al. Self-reported physical activity in European adolescents: Results from the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Public Health Nutr. 2011, 14, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef]
- Jiménez Pavón, D.; Ortega, F.P.; Ruiz, J.R.; España Romero, V.; García Artero, E.; Moliner Urdiales, D.; Gómez Martínez, S.; Vicente Rodríguez, G.; Manios, Y.; Béghin, L.; et al. Socioeconomic status influences physical fitness in European adolescents independently of body fat and physical activity: The HELENA study. Nutr. Hosp. 2010, 25, 311–316. [Google Scholar]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Borges, C.A.; Slater, B.; Santaliestra-Pasías, A.M.; Mouratidou, T.; Huybrechts, I.; Widhalm, K.; Gottrand, F.; Manios, Y.; Jimenez-Pavón, D.; Valtueña, J.; et al. Dietary Patterns in European and Brazilian Adolescents: Comparisons and Associations with Socioeconomic Factors. Nutrients 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Legarre, N.; Santaliestra-Pasías, A.M.; Beghin, L.; Dallongeville, J.; de la, O.A.; Gilbert, C.; González-Gross, M.; De Henauw, S.; Kafatos, A.; Kersting, M.; et al. Dietary Patterns and Their Relationship With the Perceptions of Healthy Eating in European Adolescents: The HELENA Study. J. Am. Coll. Nutr. 2019, 38, 703–713. [Google Scholar] [CrossRef]
- González-Gil, E.; Martínez-Olivan, B.; Widhalm, K.; Lambrinou, C.-P.; De Henauw, S.; Gottrand, F.; Kafatos, A.; Béghin, L.; Molnár, D.; Kersting, M.; et al. Healthy eating determinants and dietary patterns in European adolescents: The HELENA study. Child Adolesc. Obes. 2019, 2, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Santaliestra-Pasías, A.M.; Mouratidou, T.; Huybrechts, I.; Beghin, L.; Cuenca-García, M.; Castillo, M.J.; Galfo, M.; Hallstrom, L.; Kafatos, A.; Manios, Y.; et al. Increased sedentary behaviour is associated with unhealthy dietary patterns in European adolescents participating in the HELENA study. Eur. J. Clin. Nutr. 2014, 68, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Legarre, N.; Miguel-Berges, M.L.; Flores-Barrantes, P.; Santaliestra-Pasías, A.M.; Moreno, L.A. Breakfast Characteristics and Its Association with Daily Micronutrients Intake in Children and Adolescents–A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3201. [Google Scholar] [CrossRef]
- Giménez-Legarre, N.; Flores-Barrantes, P.; Miguel-Berges, M.L.; Moreno, L.A.; Santaliestra-Pasías, A.M. Breakfast Characteristics and Their Association with Energy, Macronutrients, and Food Intake in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2460. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Byrd-Bredbenner, C.; Hayes, D.; Jana, L.; Klinger, S.E.; Stephenson-Martin, S. The role of breakfast in health: Definition and criteria for a quality breakfast. J. Acad. Nutr. Diet. 2014, 114, S8–S26. [Google Scholar] [CrossRef]
- Forkert, E.C.O.; Moraes, A.C.F.D.; Carvalho, H.B.; Manios, Y.; Widhalm, K.; González-Gross, M.; Gutierrez, A.; Kafatos, A.; Censi, L.; De Henauw, S.; et al. Skipping breakfast is associated with adiposity markers especially when sleep time is adequate in adolescents. Sci. Rep. 2019, 9, 6380. [Google Scholar] [CrossRef] [Green Version]
- Gibney, M.J.; Barr, S.I.; Bellisle, F.; Drewnowski, A.; Fagt, S.; Livingstone, B.; Masset, G.; Varela Moreiras, G.; Moreno, L.A.; Smith, J.; et al. Breakfast in Human Nutrition: The International Breakfast Research Initiative. Nutrients 2018, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Mielgo-Ayuso, J.; Valtueña, J.; Cuenca-García, M.; Gottrand, F.; Breidenassel, C.; Ferrari, M.; Manios, Y.; De Henauw, S.; Widhalm, K.; Kafatos, A.; et al. Regular breakfast consumption is associated with higher blood vitamin status in adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2017, 20, 1393–1404. [Google Scholar] [CrossRef] [Green Version]
- Moreno Aznar, L.A.; Vidal Carou, M.d.C.; López Sobaler, A.M.; Varela Moreiras, G.; Moreno Villares, J.M. Papel del desayuno y su calidad en la salud de los niños y adolescentes en España. Nutr. Hosp. 2021, 38, 396–409. [Google Scholar]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the Association of Skipping Breakfast with Weight and Cardiometabolic Risk Factors in Children and Adolescents. What Should We Better Investigate in the Future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Szajewska, H.; Ruszczynski, M. Systematic review demonstrating that breakfast consumption influences body weight outcomes in children and adolescents in Europe. Crit. Rev. Food Sci. Nutr. 2010, 50, 113–119. [Google Scholar] [CrossRef]
- Hallström, L.; Labayen, I.; Ruiz, J.R.; Patterson, E.; Vereecken, C.A.; Breidenassel, C.; Gottrand, F.; Huybrechts, I.; Manios, Y.; Mistura, L.; et al. Breakfast consumption and CVD risk factors in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2013, 16, 1296–1305. [Google Scholar] [CrossRef] [Green Version]
- Martínez Arroyo, A.; Corvalán Aguilar, C.; Palma Molina, X.; Ceballos Sanchez, X.; Fisberg, R.M. Dietary Patterns of Adolescents from the Chilean Growth and Obesity Cohort Study Indicate Poor Dietary Quality. Nutrients 2020, 12, 2083. [Google Scholar] [CrossRef]
- Borges, C.A.; Marchioni, D.M.L.; Levy, R.B.; Slater, B. Dietary patterns associated with overweight among Brazilian adolescents. Appetite 2018, 123, 402–409. [Google Scholar] [CrossRef]
- Howe, A.S.; Black, K.E.; Wong, J.E.; Parnell, W.R.; Skidmore, P.M.L. Dieting status influences associations between dietary patterns and body composition in adolescents: A cross-sectional study. Nutr. J. 2013, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, H.; Wang, Y.; Xue, H.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Zhai, F.; et al. Dietary patterns and their associations with childhood obesity in China. Br. J. Nutr. 2015, 113, 1978–1984. [Google Scholar] [CrossRef] [Green Version]
- Biazzi Leal, D.; Altenburg de Assis, M.A.; Hinnig, P.d.F.; Schmitt, J.; Soares Lobo, A.; Bellisle, F.; Di Pietro, P.F.; Vieira, F.K.; De Moura Araujo, P.H.; De Andrade, D.F. Changes in Dietary Patterns from Childhood to Adolescence and Associated Body Adiposity Status. Nutrients 2017, 9, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, G.J.; Flood, A.; Hannan, P.J.; Slavin, J.L.; Neumark-Sztainer, D. Association between major patterns of dietary intake and weight status in adolescents. Br. J. Nutr. 2011, 108, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, A.; Heidemann, C.; Schulze, M.B.; Roosen, J.; Thiele, S.; Mensink, G.B.M. Dietary patterns of adolescents in Germany—Associations with nutrient intake and other health related lifestyle characteristics. BMC Pediatr. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Boys (n = 1075) | Girls (n = 1252) | p-Value | |
---|---|---|---|
Age (years), mean (95% CI) | 14.8 (14.7:14.9) | 14.7 (14.6:14.7) | 0.096 |
FAS, n (%) | 0.081 | ||
Low | 101 (39.6) | 154 (60.4) | |
Medium | 606 (46.9) | 687 (53.1) | |
High | 362 (47.3) | 404 (52.7) | |
Overweight/obesity, n (%) | <0.001 | ||
No | 810 (44.2) | 1010 (55.8) | |
Yes | 270 (53.7) | 233 (46.3) | |
BMI (kg/m2), mean (95% CI) | 21.3 (21.1:21.6) | 21.2 (21.0:21.4) | 0.227 |
Energy intake (kcal), mean (95% CI) | 2526.4 (2475.1:2577.8) | 1929.6 (1895.8:1963.4) | <0.001 |
Physical Activity (min/week), mean (95% CI) | 1368.1 (1295.6:1440.6) | 1196.6 (1136.5:1256.7) | <0.001 |
Boys | Girls | ||||||
---|---|---|---|---|---|---|---|
Food Groups | Snacking and Bread | Mediterranean Diet | Breakfast | Convenience | Plant-Based and Eggs | Western | Breakfast |
Breads | 0.58 | 0.30 | 0.09 | 0.63 | 0.12 | 0.17 | 0.04 |
Breakfast cereals | 0.17 | −0.13 | 0.55 | 0.10 | 0.04 | −0.02 | 0.57 |
Cereals (pasta, rice, and other) | 0.09 | 0.46 | −0.07 | 0.36 | 0.26 | −0.30 | −0.35 |
Bakery products | −0.04 | 0.27 | 0.06 | −0.04 | 0.18 | 0.31 | −0.09 |
Snacks | 0.38 | −0.02 | −0.21 | −0.05 | 0.20 | 0.47 | −0.22 |
Sugar (sugar, honey, and other) | 0.32 | 0.01 | 0.24 | 0.44 | 0.05 | 0.01 | 0.15 |
Vegetables oils, nuts and seeds | −0.03 | 0.76 | −0.09 | −0.04 | 0.72 | −0.03 | 0.01 |
Butter and margarine | 0.56 | −0.06 | 0.22 | 0.62 | −0.19 | 0.06 | 0.17 |
Sauces | 0.38 | −0.04 | −0.11 | 0.30 | −0.13 | 0.19 | −0.05 |
Pulses | −0.18 | 0.40 | 0.05 | −0.20 | 0.30 | −0.06 | 0.13 |
Vegetables | 0.08 | 0.63 | 0.15 | 0.09 | 0.62 | 0.01 | 0.07 |
Tubers | 0.17 | −0.24 | 0.18 | −0.04 | −0.09 | 0.40 | 0.28 |
Fruit | 0.04 | 0.19 | 0.42 | 0.19 | 0.12 | 0.03 | 0.47 |
Soups | −0.01 | 0.01 | 0.26 | −0.16 | 0.09 | 0.25 | 0.05 |
Coffee and tea | 0.34 | 0.03 | −0.20 | 0.43 | −0.06 | 0.02 | 0.05 |
Juices | 0.21 | −0.03 | 0.05 | 0.07 | −0.02 | 0.17 | 0.05 |
SSBs | 0.46 | −0.13 | −0.42 | 0.18 | −0.08 | 0.60 | −0.10 |
Alcohol | 0.20 | 0.04 | −0.27 | −0.01 | −0.01 | 0.15 | −0.21 |
Meat | 0.22 | 0.19 | 0.11 | 0.06 | 0.08 | 0.33 | 0.08 |
Fish | −0.20 | 0.15 | 0.25 | −0.18 | 0.25 | −0.09 | 0.15 |
Eggs | 0.04 | 0.15 | 0.17 | 0.05 | 0.41 | 0.03 | 0.09 |
Milk | −0.03 | −0.03 | 0.70 | 0.04 | 0.13 | −0.21 | 0.58 |
Dairy | 0.10 | −0.18 | 0.30 | −0.02 | −0.18 | 0.20 | 0.33 |
Cheese | 0.36 | 0.47 | −0.07 | 0.45 | 0.26 | −0.07 | −0.28 |
Mixed foods | −0.02 | −0.05 | −0.19 | −0.16 | 0.13 | 0.03 | −0.15 |
Desserts | 0.49 | −0.03 | −0.08 | 0.15 | −0.05 | 0.53 | 0.01 |
% variance | 7.8 | 7.7 | 6.9 | 7.1 | 6.2 | 6.2 | 5.9 |
% cumulative | 7.8 | 15.5 | 22.4 | 7.1 | 13.3 | 19.5 | 25.4 |
Crude | Adjusted£ | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Snacking and bread dietary pattern | ||||||
1st tertile | ref | |||||
2nd tertile | 0.71 | 0.49:1.03 | 0.071 | 0.90 | 0.60:1.35 | 0.600 |
3rd tertile | 0.43 | 0.28:0.65 | <0.001 | 0.80 | 0.46:1.39 | 0.436 |
Mediterranean diet dietary pattern | ||||||
1st tertile | ref | |||||
2nd tertile | 0.77 | 0.54:1.11 | 0.165 | 0.83 | 0.57:1.22 | 0.353 |
3rd tertile | 0.60 | 0.40:0.90 | 0.014 | 0.93 | 0.58:1.49 | 0.772 |
Breakfast dietary pattern | ||||||
1st tertile | ref | |||||
2nd tertile | 0.86 | 0.61:1.23 | 0.416 | 0.90 | 0.61:1.31 | 0.567 |
3rd tertile | 0.66 | 0.45:0.98 | 0.039 | 0.85 | 0.44:0.95 | 0.025 |
Crude | Adjusted£ | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Convenience dietary pattern | ||||||
1st tertile | Ref | |||||
2nd tertile | 0.86 | 0.59:1.24 | 0.414 | 1.16 | 0.78:1.75 | 0.463 |
3rd tertile | 0.74 | 0.49:1.10 | 0.133 | 1.38 | 0.86:2.20 | 0.181 |
Plant-based and eggs dietary pattern | ||||||
1st tertile | Ref | |||||
2nd tertile | 0.86 | 0.59:1.24 | 0.411 | 0.98 | 0.65:1.46 | 0.912 |
3rd tertile | 0.61 | 0.39:0.95 | 0.029 | 0.84 | 0.51:1.38 | 0.496 |
Western dietary pattern | ||||||
1st tertile | Ref | |||||
2nd tertile | 0.65 | 0.46:0.94 | 0.022 | 0.82 | 0.56:1.22 | 0.333 |
3rd tertile | 0.63 | 0.43:0.94 | 0.022 | 1.17 | 0.73:1.87 | 0.521 |
Breakfast dietary pattern | ||||||
1st tertile | Ref | |||||
2nd tertile | 0.87 | 0.61:1.24 | 0.451 | 0.74 | 0.51:1.07 | 0.118 |
3rd tertile | 0.54 | 0.36:0.81 | 0.003 | 0.61 | 0.40:0.94 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacau, L.T.; De Miguel-Etayo, P.; Santaliestra-Pasías, A.M.; Giménez-Legarre, N.; Marchioni, D.M.; Molina-Hidalgo, C.; Censi, L.; González-Gross, M.; Grammatikaki, E.; Breidenassel, C.; et al. Breakfast Dietary Pattern Is Inversely Associated with Overweight/Obesity in European Adolescents: The HELENA Study. Children 2021, 8, 1044. https://doi.org/10.3390/children8111044
Cacau LT, De Miguel-Etayo P, Santaliestra-Pasías AM, Giménez-Legarre N, Marchioni DM, Molina-Hidalgo C, Censi L, González-Gross M, Grammatikaki E, Breidenassel C, et al. Breakfast Dietary Pattern Is Inversely Associated with Overweight/Obesity in European Adolescents: The HELENA Study. Children. 2021; 8(11):1044. https://doi.org/10.3390/children8111044
Chicago/Turabian StyleCacau, Leandro Teixeira, Pilar De Miguel-Etayo, Alba M. Santaliestra-Pasías, Natalia Giménez-Legarre, Dirce Maria Marchioni, Cristina Molina-Hidalgo, Laura Censi, Marcela González-Gross, Evangelia Grammatikaki, Christina Breidenassel, and et al. 2021. "Breakfast Dietary Pattern Is Inversely Associated with Overweight/Obesity in European Adolescents: The HELENA Study" Children 8, no. 11: 1044. https://doi.org/10.3390/children8111044
APA StyleCacau, L. T., De Miguel-Etayo, P., Santaliestra-Pasías, A. M., Giménez-Legarre, N., Marchioni, D. M., Molina-Hidalgo, C., Censi, L., González-Gross, M., Grammatikaki, E., Breidenassel, C., De Ruyter, T., Kersting, M., Gottrand, F., Androutsos, O., Gómez-Martinez, S., Kafatos, A., Widhalm, K., Stehle, P., Molnár, D., ... Moreno, L. A., on behalf of the HELENA study group. (2021). Breakfast Dietary Pattern Is Inversely Associated with Overweight/Obesity in European Adolescents: The HELENA Study. Children, 8(11), 1044. https://doi.org/10.3390/children8111044