Impact of a Transition from Respiratory Virus Shell Vial to Multiplex PCR on Clinical Outcomes and Cost in Hospitalized Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction
2.2. Respiratory Viral Testing
2.3. Statistical Methods
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bonzel, L.; Tenenbaum, T.; Schroten, H.; Schildgen, O.; Schweitzer-Krantz, S.; Adams, O. Frequent detection of viral coinfection in children hospitalized with acute respiratory tract infection using a real-time polymerase chain reaction. Pediatr. Infect. Dis. J. 2008, 27, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Echenique, I.A.; Chan, P.A.; Chapin, K.C.; Andrea, S.B.; Fava, J.L.; Mermel, L.A. Clinical characteristics and outcomes in hospitalized patients with respiratory viral co-infection during the 2009 H1N1 influenza pandemic. PLoS ONE 2013, 8, e60845. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, M.L.; Calvo, C.; Pozo, F.; Villadangos, P.A.; Perez-Brena, P.; Casas, I. Spectrum of respiratory viruses in children with community-acquired pneumonia. Pediatr. Infect. Dis. J. 2012, 31, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Kinoshita, F.; Yoshida, L.M.; le Minh, N.; Suzuki, M.; Morimoto, K.; Toku, Y.; Tomimasu, K.; Moriuchi, H.; Ariyoshi, K. Does respiratory virus coinfection increases the clinical severity of acute respiratory infection among children infected with respiratory syncytial virus? Pediatr. Infect. Dis. J. 2013, 32, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Iwane, M.K.; Edwards, K.M.; Szilagyi, P.G.; Walker, F.J.; Griffin, M.R.; Weinberg, G.A.; Coulen, C.; Poehling, K.A.; Shone, L.P.; Balter, S.; et al. Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. Pediatrics 2004, 113, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Henrickson, K.J.; Hall, C.B. Diagnostic assays for respiratory syncytial virus disease. Pediatr. Infect. Dis. J. 2007, 26 (Suppl. 11), S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, L. Counterpoint: Is the era of viral culture over in the clinical microbiology laboratory? J. Clin. Microbiol. 2013, 51, 4–8. [Google Scholar] [PubMed]
- McAdam, A.J.; Riley, A.M. Developments in tissue culture detection of respiratory viruses. Clin. Lab. Med. 2009, 29, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Barenfanger, J.; Drake, C.; Leon, N.; Mueller, T.; Troutt, T. Clinical and financial benefits of rapid detection of respiratory viruses: An outcomes study. J. Clin. Microbiol. 2000, 38, 2824–2828. [Google Scholar] [PubMed]
- Bonner, A.B.; Monroe, K.W.; Talley, L.I.; Klasner, A.E.; Kimberlin, D.W. Impact of the rapid diagnosis of influenza on physician decision-making and patient management in the pediatric emergency department: Results of a randomized, prospective, controlled trial. Pediatrics 2003, 112, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.W.; Heo, J.Y.; Park, J.S.; Kim, W.J. Effect of the influenza virus rapid antigen test on a Physician’s decision to prescribe antibiotics and on patient length of stay in the emergency department. PLoS ONE 2014, 9, e110978. [Google Scholar] [CrossRef] [PubMed]
- Ozkaya, E.; Cambaz, N.; Coskun, Y.; Mete, F.; Geyik, M.; Samanci, N. The effect of rapid diagnostic testing for influenza on the reduction of antibiotic use in paediatric emergency department. Acta Paediatr. 2009, 98, 1589–1592. [Google Scholar] [CrossRef] [PubMed]
- St George, K.; Patel, N.M.; Hartwig, R.A.; Scholl, D.R.; Jollick, J.A., Jr.; Kauffmann, L.M.; Evans, M.R.; Rinaldo, C.R., Jr. Rapid and sensitive detection of respiratory virus infections for directed antiviral treatment using R-Mix cultures. J. Clin. Virol. 2002, 24, 107–115. [Google Scholar] [CrossRef]
- Pierce, V.M.; Hodinka, R.L. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children. J. Clin. Microbiol. 2012, 50, 3458–3465. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Stockmann, C.; Hersh, A.L.; Pavia, A.T.; Korgenksi, K.; Daly, J.A.; Couturier, M.R.; Ampofo, K.; Thorell, E.A.; Doby, E.H.; et al. Economic analysis of rapid and sensitive polymerase chain reaction testing in the emergency department for influenza infections in children. Pediatr. Infect. Dis. J. 2015, 34, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Al-Tawfiq, J.A.; Enne, V.I.; Kidd, M.; Drosten, C.; Breuer, J.; Muller, M.A.; Hui, D.; Maeurer, M.; Bates, M.; et al. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections--needs, advances, and future prospects. Lancet Infect. Dis. 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Shetty, A.K.; Treynor, E.; Hill, D.W.; Gutierrez, K.M.; Warford, A.; Baron, E.J. Comparison of conventional viral cultures with direct fluorescent antibody stains for diagnosis of community-acquired respiratory virus infections in hospitalized children. Pediatr. Infect. Dis. J. 2003, 22, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chun, J.K.; Kim, D.S.; Park, Y.; Choi, J.R.; Kim, H.S. Identification of adenovirus, influenza virus, parainfluenza virus, and respiratory syncytial virus by two kinds of multiplex polymerase chain reaction (PCR) and a shell vial culture in pediatric patients with viral pneumonia. Yonsei Med. J. 2010, 51, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Van de Pol, A.C.; van Loon, A.M.; Wolfs, T.F.; Jansen, N.J.; Nijhuis, M.; Breteler, E.K.; Schuurman, R.; Rossen, J.W. Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms. J. Clin. Microbiol. 2007, 45, 2260–2262. [Google Scholar] [CrossRef] [PubMed]
- Thibeault, R.; Gilca, R.; Cote, S.; De Serres, G.; Boivin, G.; Dery, P. Antibiotic use in children is not influenced by the result of rapid antigen detection test for the respiratory syncytial virus. J. Clin. Virol. 2007, 39, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Oosterheert, J.J.; van Loon, A.M.; Schuurman, R.; Hoepelman, A.I.; Hak, E.; Thijsen, S.; Nossent, G.; Schneider, M.M.; Hustinx, W.M.; Bonten, M.J. Impact of rapid detection of viral and atypical bacterial pathogens by real-time polymerase chain reaction for patients with lower respiratory tract infection. Clin. Infect. Dis. 2005, 41, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Wishaupt, J.O.; Russcher, A.; Smeets, L.C.; Versteegh, F.G.; Hartwig, N.G. Clinical impact of RT-PCR for pediatric acute respiratory infections: A controlled clinical trial. Pediatrics 2011, 128, e1113–e1120. [Google Scholar] [CrossRef] [PubMed]
- Beekmann, S.E.; Engler, H.D.; Collins, A.S.; Canosa, J.; Henderson, D.K.; Freifeld, A. Rapid identification of respiratory viruses: Impact on isolation practices and transmission among immunocompromised pediatric patients. Infect. Control Hosp. Epidemiol. 1996, 17, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Schulert, G.S.; Hain, P.D.; Williams, D.J. Utilization of viral molecular diagnostics among children hospitalized with community acquired pneumonia. Hosp. Pediatr. 2014, 4, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Schulert, G.S.; Lu, Z.; Wingo, T.; Tang, Y.W.; Saville, B.R.; Hain, P.D. Role of a respiratory viral panel in the clinical management of pediatric inpatients. Pediatr. Infect. Dis. J. 2013, 32, 467–472. [Google Scholar] [CrossRef] [PubMed]
RVPP (n = 354) | SV (n = 112) | p-Value | |
---|---|---|---|
Age (%) | 0.015 | ||
2–23 months | 187 (52.8) | 74 (66.1) | |
2–5 years | 102 (28.8) | 24 (21.4) | |
6–10 years | 30 (8.5) | 5 (4.5) | |
11–18 years | 35 (9.9) | 9 (8.0) | |
Male sex (%) | 187 (52.8) | 56 (50.0) | 0.47 |
Race/ethnicity (%) | 0.93 | ||
White | 214 (62.8) | 68 (61.2) | |
Black | 67 (19.7) | 16 (15.1) | |
Hispanic | 24 (7.0) | 12 (11.3) | |
Other | 36 (10.6) | 10 (9.4) | |
Comorbidity (%) | |||
Total number, mean (range) | 2.44 (0–8) | 2.69 (0–8) | 0.14 |
Any comorbidity | 314 (88.7) | 95 (84.8) | 0.32 |
Respiratory virus(es) isolated (%) | |||
Adenovirus | 32 (9.0) | 12 (10.7) | 0.58 |
Human metapneumovirus (hMPV) | 40 (11.3) | 0 (0) | <0.0001 |
Human rhinovirus (HRV) | 197 (55.7) | 0 (0) | <0.0001 |
Influenza A | 14 (4.0) | 6 (5.4) | 0.55 |
Influenza B | 10 (2.8) | 3 (2.7) | 0.93 |
Parainfluenza 1 | 3 (0.9) | 11 (9.8) | 0.002 |
Parainfluenza 2 | 6 (1.7) | 3 (2.7) | 0.56 |
Parainfluenza 3 | 23 (6.5) | 8 (7.1) | 0.81 |
Respiratory syncytial virus (RSV) | 77 (21.8) | 62 (55.4) | <0.0001 |
>1 respiratory virus isolated | 45 (12.7) | 0 (0) | <0.0001 |
RVPP (n = 156) | SV (n = 112) | p-Value | |
---|---|---|---|
Age (%) | 0.22 | ||
2–23 months | 92 (59) | 74 (66) | |
2–5 years | 39 (25) | 24 (21) | |
6–10 years | 10 (6) | 5 (4) | |
11–18 years | 15 (10) | 9 (8) | |
Male sex (%) | 80 (51) | 56 (50) | 0.78 |
Race/ethnicity (%) | 0.65 | ||
White | 98 (65) | 68 (64) | |
Black | 30 (20) | 16 (15) | |
Hispanic | 10 (7) | 12 (11) | |
Other | 12 (8) | 10 (9) | |
Comorbidity (%) | |||
Total number, mean (range) | 2.2 (0–8) | 2.7 (0–8) | 0.04 |
Any comorbidity | 137 (88) | 95 (85) | 0.47 |
Respiratory virus(es) isolated (%) | |||
Adenovirus | 33 (21) | 12 (11) | 0.022 |
Influenza A | 14 (9) | 6 (5) | 0.25 |
Influenza B | 10 (6) | 3 (3) | 0.1 |
Parainfluenza 1 | 3 (2) | 11 (10) | 0.011 |
Parainfluenza 2 | 6 (4) | 3 (3) | 0.59 |
Parainfluenza 3 | 23 (15) | 8 (7) | 0.047 |
Respiratory syncytial virus | 77 (49) | 62 (55) | 0.34 |
Medications | |||
Received antivirals | |||
Oseltamivir | 16 (10) | 13 (12) | 0.76 |
Ribavirin | 1 (1) | 6 (5) | 0.035 |
Received antibacterials | |||
Vancomycin | 31 (20) | 38 (34) | 0.13 |
Ceftriaxone/Cefotaxime | 26 (17) | 20 (18) | 0.78 |
Penicillin/Ampicillin | 2 (1) | 1 (1) | 0.76 |
Clinical course and management | |||
Required mechanical ventilation (%) | 69 (44) | 44 (39) | 0.42 |
Median length of hospital stay (LOS) *, (range) | 3.6 (0.1–133.0) | 3.9 (0.7–304.3) | 0.05 |
LOS in log scale, mean (SD) | 1.40 (0.98) | 1.65 (1.23) | 0.062 |
Readmission within 14 days (%) | 7 (4) | 7 (6) | 0.53 |
Mortality (%) | 2 (1) | 10 (9) | 0.008 |
Hospital charges | |||
Median, dollars (range) | 33,796 (2953–4,015,593) | 27,373 (1099–4,068,499) | |
Charges in log scale, mean (SD) | 10.57 (1.16) | 10.74 (1.58) | 0.29 |
Outcome | OR (95% CI) | p-Value |
---|---|---|
Required mechanical ventilation | 1.24 (0.72, 2.14) | 0.43 |
Log LOS | −0.14 (−0.39, 0.11) * | 0.27 |
Readmission within 14 days | 1.05 (0.32, 3.44) | 0.94 |
Mortality | 0.21 (0.04, 1.16) | 0.074 |
Antiviral usage | 0.64 (0.28, 1.47) | 0.29 |
Antibacterial usage | 0.71 (0.40,1.25) | 0.23 |
Log (hospital charges) | 0.001 (−0.33, 0.33) * | 0.99 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iroh Tam, P.-Y.; Zhang, L.; Cohen, Z. Impact of a Transition from Respiratory Virus Shell Vial to Multiplex PCR on Clinical Outcomes and Cost in Hospitalized Children. Children 2017, 4, 3. https://doi.org/10.3390/children4010003
Iroh Tam P-Y, Zhang L, Cohen Z. Impact of a Transition from Respiratory Virus Shell Vial to Multiplex PCR on Clinical Outcomes and Cost in Hospitalized Children. Children. 2017; 4(1):3. https://doi.org/10.3390/children4010003
Chicago/Turabian StyleIroh Tam, Pui-Ying, Lei Zhang, and Zohara Cohen. 2017. "Impact of a Transition from Respiratory Virus Shell Vial to Multiplex PCR on Clinical Outcomes and Cost in Hospitalized Children" Children 4, no. 1: 3. https://doi.org/10.3390/children4010003
APA StyleIroh Tam, P. -Y., Zhang, L., & Cohen, Z. (2017). Impact of a Transition from Respiratory Virus Shell Vial to Multiplex PCR on Clinical Outcomes and Cost in Hospitalized Children. Children, 4(1), 3. https://doi.org/10.3390/children4010003