Optimizing Vagus Nerve Stimulation Parameters in Pediatric Drug-Resistant Epilepsy: A Retrospective Two-Center Study
Abstract
Highlights
- In a pediatric cohort with drug-resistant epilepsy, 76.9% of patients achieved ≥50% seizure reduction following vagus nerve stimulation (VNS).
- Optimal clinical response was observed at an output current of ~1.5 mA and a duty cycle of 10%, beyond which additional increases did not improve outcomes.
- Children may respond to lower-intensity VNS settings than adults, suggesting a need for age-specific programming protocols.
- Early stabilization at effective thresholds may reduce unnecessary stimulation and improve treatment tolerability in pediatric epilepsy care.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Patient Selection
2.3. VNS Programming and Stimulation Parameters
2.4. Data Collection and Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Stimulation Parameters and Programming Progression
3.3. Clinical Outcomes
3.4. Predictors of Clinical Response
3.5. Model Performance and Discrimination
3.6. Visualization of Stimulation-Response Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRE | Drug-resistant epilepsy |
VNS | Vagus nerve stimulation |
ASMs | Antiseizure medications |
ILAE | International League Against Epilepsy |
SUDEP | Sudden unexpected death in epilepsy |
µs | Microseconds |
GLMM | Generalized linear mixed model |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
OR | Odds ratio |
CI | Confidence intervals |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
References
- Camfield, P.; Camfield, C. Incidence, prevalence and aetiology of seizures and epilepsy in children. Epileptic Disord. 2015, 17, 117–123. [Google Scholar] [CrossRef]
- Wilmshurst, J.M.; Berg, A.T.; Lagae, L.; Newton, C.R.; Cross, J.H. The challenges and innovations for therapy in children with epilepsy. Nat. Rev. Neurol. 2014, 10, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G. Definition of drug-resistant epilepsy. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Perucca, P.; Gilliam, F.G. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012, 11, 792–802. [Google Scholar] [CrossRef]
- Begley, C.; Wagner, R.G.; Abraham, A.; Beghi, E.; Newton, C.; Kwon, C.S.; Labiner, D.; Winkler, A.S. The global cost of epilepsy: A systematic review and extrapolation. Epilepsia 2022, 63, 892–903. [Google Scholar] [CrossRef]
- Ben-Menachem, E.; Manon-Espaillat, R.; Ristanovic, R.; Wilder, B.J.; Stefan, H.; Mirza, W.; Tarver, W.B.; Wernicke, J.F.; First International Vagus Nerve Stimulation Study Group. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 1994, 35, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, M.; Rigby, A.; Weston, J.; Marson, A.G. Vagus nerve stimulation for partial seizures. Cochrane Database Syst. Rev. 2015, CD002896. [Google Scholar] [CrossRef]
- Elliott, R.E.; Morsi, A.; Kalhorn, S.P.; Marcus, J.; Sellin, J.; Kang, M.; Silverberg, A.; Rivera, E.; Geller, E.; Carlson, C.; et al. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: Long-term outcomes and predictors of response. Epilepsy Behav. 2011, 20, 57–63. [Google Scholar] [CrossRef]
- Krahl, S.E. Vagus nerve stimulation for epilepsy: A review of the peripheral mechanisms. Surg. Neurol. Int. 2012, 3 (Suppl. S1), S47. [Google Scholar] [CrossRef]
- Salanova, V.; Sperling, M.R.; Gross, R.E.; Irwin, C.P.; Vollhaber, J.A.; Giftakis, J.E.; Fisher, R.S.; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021, 62, 1306–1317. [Google Scholar] [CrossRef]
- Sigrist, C.; Torki, B.; Bolz, L.O.; Jeglorz, T.; Bolz, A.; Koenig, J. Transcutaneous auricular Vagus nerve stimulation in pediatric patients: A systematic review of clinical treatment protocols and stimulation parameters. Neuromodul. Technol. Neural Interface 2023, 26, 507–517. [Google Scholar] [CrossRef]
- Germany, E.; Danthine, V.; Torres, A.; Delbeke, J.; Nonclercq, A.; El Tahry, R. Longitudinal follow-up of vagus nerve stimulation-induced LMEPs dose-response curve for VNS parameters optimization. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2025, 18, 378. [Google Scholar] [CrossRef]
- Paus, T.; Keshavan, M.; Giedd, J.N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008, 9, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Suller Marti, A. Vagus Nerve Stimulation in Medically-Resistant Epilepsy: Efficacy and Tolerance. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2022. [Google Scholar]
- Chen, S.; Li, M.; Huang, M. Vagus nerve stimulation for the therapy of Dravet syndrome: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1402989. [Google Scholar] [CrossRef]
- Fahoum, F.; Boffini, M.; Kann, L.; Faini, S.; Gordon, C.; Tzadok, M.; El Tahry, R. VNS parameters for clinical response in Epilepsy. Brain Stimul. 2022, 15, 814–821. [Google Scholar] [CrossRef]
- Englot, D.J.; Chang, E.F.; Auguste, K.I. Vagus nerve stimulation for epilepsy: A meta-analysis of efficacy and predictors of response: A review. J. Neurosurg. 2011, 115, 1248–1255. [Google Scholar] [CrossRef]
- Lyons, P.; Wheless, J.; Verner, R.; Ferreira, J.; Liow, K.; Valeriano, J.; Motamedi, G.; Giannicola, G.; Nichol, K. Vagus nerve stimulation in Lennox–Gastaut syndrome: Twenty-four-month data and experience from the CORE-VNS study. Epilepsia 2025, 66, 1540–1549. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, T.; Kuang, S.; Wang, J.; Liang, S. Effectiveness of vagus nerve stimulation in patients with Dravet syndrome: A case series and meta-analysis. Pediatr. Neurol. 2025, 164, 105–114. [Google Scholar] [CrossRef]
- Morace, R.; Di Gennaro, G.; Quarato, P.P.; D’Aniello, A.; Mascia, A.; Grammaldo, L.; De Risi, M.; Sparano, A.; Di Cola, F.; De Angelis, M.; et al. Vagal nerve stimulation for drug-resistant epilepsy: Adverse events and outcome in a series of patients with long-term follow-up. Trends Reconstr. Neurosurg. Neurorehabilit. Restor. Reconstr. 2017, 124, 49–52. [Google Scholar]
- Drees, C.; Afra, P.; Verner, R.; Kaye, L.; Keith, A.; Jiang, M.; Szaflarski, J.P.; Nichol, K.; McDermott, D.; Brown, M.G.; et al. Feasibility study of microburst VNS therapy in drug-resistant focal and generalized epilepsy. Brain Stimul. 2024, 17, 382–391. [Google Scholar] [CrossRef]
- Jain, P.; Arya, R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: Systematic review and meta-analysis. Neurology 2021, 96, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Kieling, C.; Buchweitz, C.; Caye, A.; Silvani, J.; Ameis, S.H.; Brunoni, A.R.; Cost, K.T.; Courtney, D.B.; Georgiades, K.; Merikangas, K.R.; et al. Worldwide prevalence and disability from mental disorders across childhood and adolescence: Evidence from the global burden of disease study. JAMA Psychiatry 2024, 81, 347–356. [Google Scholar] [CrossRef]
- Abdullahi, A.; Etoom, M.; Badaru, U.M.; Elibol, N.; Abuelsamen, A.A.; Alawneh, A.; Zakari, U.U.; Saeys, W.; Truijen, S. Vagus nerve stimulation for the treatment of epilepsy: Things to note on the protocols, the effects and the mechanisms of action. Int. J. Neurosci. 2024, 134, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Mariani, P.P. Seizure outcome during bilateral, continuous, thalamic centromedian nuclei deep brain stimulation in patients with generalized epilepsy: A prospective, open-label study. Seizure 2020, 81, 304–309. [Google Scholar] [CrossRef]
- Vonck, K.; Thadani, V.; Gilbert, K.; Dedeurwaerdere, S.; De Groote, L.; De Herdt, V.; Goossens, L.; Gossiaux, F.; Achten, E.; Thiery, E.; et al. Vagus nerve stimulation for refractory epilepsy: A transatlantic experience. J. Clin. Neurophysiol. 2004, 21, 283–289. [Google Scholar] [CrossRef] [PubMed]
Variable | Value (Mean ± SD or n (%)) |
---|---|
Number of patients | 52 |
Age at implantation (years) | 9.2 ± 4.5 |
Epilepsy duration (years) | 5.8 ± 3.1 |
Male sex | 30 (57.7%) |
Female sex | 22 (42.3%) |
Etiology | Genetic: 17 (32.7%), Structural: 11 (21.2%), Infectious: 3 (5.8%), Other: 21 (40.3%) |
Seizure type | Focal: 24 (46.1%), Generalized: 28 (53.9%) |
Baseline seizure frequency (per month) | 54.7 ± 21.3 |
Initial output current (mA) | 0.25 |
Initial duty cycle (%) | 10 |
Stimulation frequency (Hz) | 30 |
Pulse width (μs) | 250 |
Parameter | Initial Value | Final Value (12 Months) |
---|---|---|
Output current (mA) | 0.25 | 1.5 (range 0.75–2.25) |
Duty cycle (%) | 10 | 20 (range 10–30) |
Frequency (Hz) | 30 | 30 |
Pulse width (μs) | 250 | 250 |
Outcome Category | Patients (n) | Proportion (%) |
---|---|---|
≥50% seizure reduction | 40 | 76.9% |
≥90% seizure reduction | 17 | 32.7% |
Seizure freedom | 6 | 11.5% |
Predictor | OR | 95% CI | p-Value |
---|---|---|---|
Output current (mA) | 4.48 | 2.29–8.76 | <0.001 |
Duty cycle (%) | 1.11 | 1.04–1.27 | 0.002 |
Age at implantation (yrs) | 1.02 | 0.95–1.10 | 0.571 |
Epilepsy duration (yrs) | 0.95 | 0.84–1.08 | 0.446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baykan, M.; Baykan Çopuroğlu, Ö.; Didinmez Taşkırdı, E.; Gençpınar, P.; Olgaç Dündar, N. Optimizing Vagus Nerve Stimulation Parameters in Pediatric Drug-Resistant Epilepsy: A Retrospective Two-Center Study. Children 2025, 12, 1222. https://doi.org/10.3390/children12091222
Baykan M, Baykan Çopuroğlu Ö, Didinmez Taşkırdı E, Gençpınar P, Olgaç Dündar N. Optimizing Vagus Nerve Stimulation Parameters in Pediatric Drug-Resistant Epilepsy: A Retrospective Two-Center Study. Children. 2025; 12(9):1222. https://doi.org/10.3390/children12091222
Chicago/Turabian StyleBaykan, Müge, Özge Baykan Çopuroğlu, Elif Didinmez Taşkırdı, Pınar Gençpınar, and Nihal Olgaç Dündar. 2025. "Optimizing Vagus Nerve Stimulation Parameters in Pediatric Drug-Resistant Epilepsy: A Retrospective Two-Center Study" Children 12, no. 9: 1222. https://doi.org/10.3390/children12091222
APA StyleBaykan, M., Baykan Çopuroğlu, Ö., Didinmez Taşkırdı, E., Gençpınar, P., & Olgaç Dündar, N. (2025). Optimizing Vagus Nerve Stimulation Parameters in Pediatric Drug-Resistant Epilepsy: A Retrospective Two-Center Study. Children, 12(9), 1222. https://doi.org/10.3390/children12091222