Risk Factors for Early Neonatal Hypocalcemia in Preterm Neonates Born After 32 Weeks Gestation
Abstract
Highlights
- Fetal growth restriction reduces and cesarean delivery increases the probability of early neonatal hypocalcemia in moderate and late neonates.
- Cardiotocography (three-tiered fetal heart rate categorization) and neonatal intensive care (NICU) admission acid base and blood gas analysis are not risk factors for early neonatal hypocalcemia.
- Neonates born by cesarean delivery should be screened for early neonatal hypocalcemia.
- Fetal growth restriction could modulate the effect of perinatal hypoxia on neonatal calcium levels.
Abstract
1. Introduction
2. Materials and Methods
2.1. Early Neonatal Hypocalcemia and Neonatal Hypoglycemia
2.2. Inclusion Criteria
2.3. Statistical Analysis
3. Results
3.1. Difference in Early Neonatal Hypocalcemia, Hypoglycemia, Acid Base and Blood Gas Analysis Between Neonates with and Without FGR
3.2. Logistic Regression Analysis of Predictors of Early Neonatal Hypocalcemia
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FGR | Fetal growth restriction |
FHR | Fetal heart rate |
NICU | Neonatal intensive care unit |
BE | Base excess |
PTH | Parathyroid hormone |
ATPase | Adenosine triphosphatase |
References
- Behrman, R.E.; Tsang, R.C.; Chen, I.; Hayes, W.; Atkinson, W.; Atherton, H.; Edwards, N. Neonatal hypocalcemia in infants with birth asphyxia. J. Pediatr. 1974, 84, 428–433. [Google Scholar] [CrossRef]
- Jajoo, D.; Kumar, A.; Shankar, R.; Bhargava, V. Effect of birth asphyxia on serum calcium levels in neonates. Indian J. Pediatr. 1995, 62, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Tsang, R.C.; Kleinman, L.I.; Sutherland, J.M.; Light, I.J. Hypocalcemia in infants of diabetic mothers. Studies in calcium, phosphorus, and magnesium metabolism and parathormone responsiveness. J. Pediatr. 1972, 80, 384–395. [Google Scholar] [CrossRef]
- Rai, S.; Bhatiyani, K.K.; Kaur, S. Effect of Birth Asphyxia on Serum Calcium and Glucose Level: A Prospective Study. Int. J. Sci. Study 2015, 3, 3–6. [Google Scholar]
- Basu, P.; Som, S.; Das, H.; Choudhuri, N. Electrolyte status in birth asphyxia. Indian J. Pediatr. 2010, 77, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Swain, B.; Pradhan, S.; Jena, P.K.; Mohakud, N.K.; Swain, A.; Mohanty, N. Clinico-Biochemical Correlation in Birth Asphyxia and Its Effects on Outcome. Cureus 2020, 12, e11407. [Google Scholar] [CrossRef]
- Singh, B.B.; Chandwani, C.; Mahajan, K.; Singh, G. Total Serum Calcium and Ionic Calcium Levels in Birth Asphyxia: A Prospective Study. J. Clin. Diagn. Res. 2020, 14, SC01–SC02. [Google Scholar] [CrossRef]
- Vuralli, D. Clinical Approach to Hypocalcemia in Newborn Period and Infancy: Who Should Be Treated? Int. J. Pediatr. 2019, 2019, 4318075. [Google Scholar] [CrossRef]
- Venkararaman, P.S.; Tsang, R.C.; Chen, I.W.; Sperling, M.A. Pathogenesis of early neonatal hypocalcemia: Studies of serum calcitonin, gastrin, and plasma glucagon. J. Pediatr. 1987, 110, 599–603. [Google Scholar] [CrossRef]
- Cheng, E.; George, A.A.; Bansal, S.K.; Nicoski, P.; Amin, S. Neonatal Hypocalcemia: Common, Uncommon, and Rare Etiologies. NeoReviews 2023, 24, e217–e228. [Google Scholar] [CrossRef]
- Kramer, M.S.; Olivier, M.; McLean, F.H.; Willis, D.M.; Usher, R.H. Impact of Intrauterine Growth Retardation and Body Proportionality on Fetal and Neonatal Outcome. Pediatrics 1990, 86, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Spinillo, A.; Capuzzo, E.; Egbe, T.O.; Fazzi, E.; Colonna, L.; Nicola, S. Pregnancies complicated by idiopathic intrauterine growth retardation. Severity of growth failure, neonatal morbidity and two-year infant neurodevelopmental outcome. J. Reprod. Med. 1995, 40, 209–215. [Google Scholar]
- Tsang, R.C.; Gigger, M.; Oh, W.; Brown, D.R. Studies in calcium metabolism in infants with intrauterine growth retardation. J. Pediatr. 1975, 86, 936–941. [Google Scholar] [CrossRef]
- Sawyer, T. Avery’s Diseases of the Newborn, 11th ed.; Elsevier: Philadelphia, PA, USA, 2023; 1187p. [Google Scholar]
- Meneghelli, M.; Peruzzo, A.; Priante, E.; Cavicchiolo, M.E.; Bonadies, L.; Moschino, L.; De Terlizzi, F.; Verlato, G. Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction. Nutrients 2023, 15, 4753. [Google Scholar] [CrossRef]
- Kolsi, N.; Chaabene, M.; Rregaieg, C.; Bouraoui, A.; Charfi, M.; Ben Hamad, A.; Regaieg, R.; Hmida, N.; Ben Thabet, A.; Gargouri, A. PP178 [Other]: EARLY ONSET NEONATAL HYPOCALCEMIA. Pediatr. Crit. Care Med. 2022, 23 (Suppl. 1 11S). [Google Scholar] [CrossRef]
- Zullo, F.; Di Mascio, D.; Raghuraman, N.; Wagner, S.; Brunelli, R.; Giancotti, A.; Mendez-Figueroa, H.; Cahill, A.G.; Gupta, M.; Berghella, V.; et al. Three-tiered fetal heart rate interpretation system and adverse neonatal and maternal outcomes: A systematic review and meta-analysis. Am. J. Obstest. Gynecol. 2023, 229, 377–387. [Google Scholar] [CrossRef]
- Eenkhoorn, C.; Wildenberg Svan den Goos, T.G.; Dankelman, J.; Franx, A.; Eggink, A.J. A systematic catalog of studies on fetal heart rate pattern and neonatal outcome variables. J. Perinat Med. 2024, 53, 94–109. [Google Scholar] [CrossRef]
- Macones, G.A.; Hankins, G.D.V.; Spong, C.Y.; Hauth, J.; Moore, T. The 2008 National Institute of Child Health and Human Development Workshop Report on Electronic Fetal Monitoring: Update on Definitions, Interpretation, and Research Guidelines. Obstest. Gynecol. 2008, 112, 661–666. [Google Scholar] [CrossRef] [PubMed]
- ACOG Practice Bulletin No. 106: Intrapartum Fetal Heart Rate Monitoring: Nomenclature, Interpretation, and General Management Principles. Obstest. Gynecol. 2009, 114, 192–202. [CrossRef] [PubMed]
- ACOG Committee on Obstetric Practice. ACOG Committee Opinion No. 348, November 2006: Umbilical cord blood gas and acid-base analysis. Obstest. Gynecol. 2006, 108, 1319–1322. [Google Scholar] [CrossRef]
- Sabljić, J.; Čogelja, K.; Runjić, E.; Markoski, B.; Barbača, M.; Modrić, T.; Bačić, B. Outcome of Preterm Neonates > 32 Weeks Gestation in Relation to Three-Tiered Fetal Heart Rate Categorization. Medicina 2025, 61, 1171. [Google Scholar] [CrossRef]
- Giouleka, S.; Gkiouleka, M.; Tsakiridis, I.; Daniilidou, A.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Diagnosis and Management of Neonatal Hypoglycemia: A Comprehensive Review of Guidelines. Children 2023, 10, 1220. [Google Scholar] [CrossRef]
- Bonsante, F.; Iacobelli, S.; Latorre, G.; Rigo, J.; Felice, C.D.; Robillard, P.Y.; Gouyon, J.B.; Chavatte-Palmer, P. Initial Amino Acid Intake Influences Phosphorus and Calcium Homeostasis in Preterm Infants—It Is Time to Change the Composition of the Early Parenteral Nutrition. PLoS ONE 2013, 8, e72880. [Google Scholar] [CrossRef] [PubMed]
- Blaga, L.D.; Matyas, M.; Leucuta, D.; Muresan, M.; Vidra, C.; Zaharie, G. Is Low Birth Weight a Risk Factor for Calcium and Magnesium Homeostasis Disturbances in Early Neonatal Period? In Proceedings of the 49th Annual Scientific Meeting of the European Society for Clinical Investigation, Cluj-Napoca, Romania, 27–30 May 2015; Dumitrascu, D.L., Portincasa, P., Eds.; Medimond: Bologna, Italy, 2015; pp. 37–43. [Google Scholar]
- Doménech Martínez, E.; Fuster Jorge, P.; León Quintana, C.; Cortabarría Bayona, C.; Castro Conde, J.R.; Méndez Pérez, A. Neonatal morbidity and mortality according to intrauterine growth pattern. Pediatr. Barc Spain 2005, 63, 300–306. [Google Scholar] [CrossRef]
- Hussain, S.; Sabir, M.U.D.; Ali, M.; Shah, S.A.U.H. Neonatal idiopathic primary hypoparathyroidism: A rare cause of neonatal seizures. Pak. J. Med. Sci. 2015, 31, 1277–1279. [Google Scholar] [CrossRef]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’AMato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet Gynecol. 2021, 137, e16–e28. [CrossRef] [PubMed]
- Malhotra, A.; Allison, B.J.; Castillo-Melendez, M.; Jenkin, G.; Polglase, G.R.; Miller, S.L. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front. Endocrinol. 2019, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-T.J.; Vo, K.C.T.; Lyell, D.J.; Faessen, G.H.; Tulac, S.; Tibshirani, R.; Giaccia, A.J.; Giudice, L.C. Developmental response to hypoxia. FASEB J. 2004, 18, 1348–1365. [Google Scholar] [CrossRef]
- Siragher, E.; Sferruzzi-Perri, A.N. Placental hypoxia: What have we learnt from small animal models? Placenta 2021, 113, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; An, B.S.; Choi, K.C.; Jeung, E.B. Change of Genes in Calcium Transport Channels Caused by Hypoxic Stress in the Placenta, Duodenum, and Kidney of Pregnant Rats1. Biol. Reprod. 2013, 88, 30. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.E.; Renshall, L.J.; Sibley, C.P.; Greenwood, S.L.; Dilworth, M.R. Adaptations in Maternofetal Calcium Transport in Relation to Placental Size and Fetal Sex in Mice. Front. Physiol. 2017, 8, 1050. [Google Scholar] [CrossRef]
- Strid, H.; Powell, T.L. ATP-Dependent Ca2+ Transport Is Up-Regulated during Third Trimester in Human Syncytiotrophoblast Basal Membranes. Pediatr. Res. 2000, 48, 58–63. [Google Scholar] [CrossRef]
- Kovacs, C.S.; Ward, L.M. Physiology of Calcium, Phosphorus, and Bone Metabolism During Fetal and Neonatal Development. In Maternal-Fetal and Neonatal Endocrinology; Elsevier: New York, NY, USA, 2020; pp. 573–586. [Google Scholar]
- Kovacs, C.S. Bone Development and Mineral Homeostasis in the Fetus and Neonate: Roles of the Calciotropic and Phosphotropic Hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar] [CrossRef]
- Chassen, S.; Jansson, T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2020, 1866, 165373. [Google Scholar] [CrossRef] [PubMed]
- Strid, H.; Bucht, E.; Jansson, T.; Wennergren, M.; Powell, T.L. ATP Dependent Ca2+ Transport Across Basal Membrane of Human Syncytiotrophoblast in Pregnancies Complicated by Intrauterine Growth Restriction or Diabetes. Placenta 2003, 24, 445–452. [Google Scholar] [CrossRef]
- Strid, H.; Care, A.; Jansson, T.; Powell, T. Parathyroid hormone-related peptide (38-94) amide stimulates ATP-dependent calcium transport in the Basal plasma membrane of the human syncytiotrophoblast. J. Endocrinol. 2002, 175, 517–524. [Google Scholar] [CrossRef]
- Lear, C.A.; Ugwumadu, A.; Bennet, L.; Gunn, A.J. An Update of Our Understanding of Fetal Heart Rate Patterns in Health and Disease. Semin. Pediatr. Neurol. 2023, 47, 101072. [Google Scholar] [CrossRef]
- Pinas, A.; Chandraharan, E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract Res. Clin. Obstet. Gynaecol. 2016, 30, 33–47. [Google Scholar] [CrossRef]
- Vanspranghels, R.; Houfflin-Debarge, V.; Deken, V.; Rakza, T.; Maboudou, P.; Storme, L.; Ghesquiere, L.; Garabedian, C. Umbilical cord arterial and venous gases, ionogram, and glucose level for predicting neonatal morbidity at term. Eur. J. Obstest. Gynecol. Reprod. Biol. 2020, 252, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, V.; Straface, G.; Sandri, A.; Severino, L.; Crivellaro, C.; Garani, G.; Simbi, A. Calcium and lactate in the fetal-to-neonatal transition. J. Matern-Fetal Neonatal Med. 2022, 35, 8118–8122. [Google Scholar] [CrossRef]
- Bagnoli, F.; Bruchi, S.; Garosi, G.; Pecciarini, L.; Bracci, R. Relationship between mode of delivery and neonatal calcium homeostasis. Eur. J. Pediatr. 1990, 149, 800–803. [Google Scholar] [CrossRef]
- Papandreou, L.; Chasiotis, G.; Seferiadis, K.; Thanasoulias, N.C.; Dousias, V.; Tsanadis, G.; Stefos, T. Calcium levels during the initiation of labor. Eur. J. Obstest. Gynecol. Reprod. Biol. 2004, 115, 17–22. [Google Scholar] [CrossRef]
- Jeong, J.M.; Lee, E.H.; Heo, J.S.; Choi, E.K.; Park, K.H.; Choi, B.M. Perinatal Risk Factors for Early Onset Hypocalcemia in Moderate-to-Late Preterm Infants. Perinatology 2019, 30, 208–213. [Google Scholar] [CrossRef]
- Tsang, R.C.; Light, I.J.; Sutherland, J.M.; Kleinman, L.I. Possible pathogenetic factors in neonatal hypocalcemia of prematurity. The role of gestation, hyperphosphatemia, hypomagnesemia, urinary calcium loss, and parathormone responsiveness. J. Pediatr. 1973, 82, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Picone, S.; Paolillo, P. Neonatal outcomes in a population of late-preterm infants. J. Matern Fetal Neonatal Med. 2010, 23, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Muhammad Safwan, Q.; Shad, H.; Shah, A.; Johar, A.; Rasool, P.; Khan, Y.; Shah, S.H.; Khan, A.; E Hassan, R. The Frequency of Hypoglycemia and Its Symptoms in Preterm Neonates in the First 24 Hours. Cureus 2024, 16, e62356. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.L.; Weston, P.J.; Harding, J.E. Incidence of Neonatal Hypoglycemia in Babies Identified as at Risk. J. Pediatr. 2012, 161, 787–791. [Google Scholar] [CrossRef]
FGR (n = 24) | Control (n = 124) | p Value | |
---|---|---|---|
Early neonatal hypocalcemia | 1 (4.4%) | 53 (42.8%) | <0.001 a |
Neonatal hypoglycemia | 5 (20.8%) | 35 (28.2%) | 0.455 a |
Total serum Ca level (mmol/L) | 2.178 (SD 0.180) | 2.042 (SD 0.208) | 0.004 b |
Serum glucose level (mmol/L) | 3.350 (IQR 2.600–3.775) | 3.000 (IQR 2.400–3.900) | 0.334 c |
FGR (n = 24) | Control (n = 124) | p Value a | |
---|---|---|---|
pH | 7.215 (7.173–7.258) | 7.232 (7.190–7.280) | 0.228 |
pCO2 (kPa) | 7.086 (6.105–7.785) | 6.720 (6.030–7.595) | 0.660 |
HCO3 (mmol/L) | 18.950 (17.125–20.600) | 18.800 (17.400–20.375) | 0.954 |
BE (mmol/L) | −7.050 (−8.950–(−4.200)) | −5.950 (−8.100–3.900) | 0.441 |
sO2 (%) | 86.500 (80.600–91.550) | 82.650 (76.875–89.850) | 0.152 |
Parameter | t | p | 95% CI | ||
---|---|---|---|---|---|
Model | (Constant) | 0.497 | 8.159 | 0.002 | |
Fetal growth restriction | 0.037 | 9.679 | 0.001 | 1.29–5.65 | |
Mode of delivery | 2.702 | 6.963 | 0.004 | 0.00–2.30 | |
Gestational age | 0.920 | 0.210 | 0.323 | 0.64–1.31 | |
Birth weight | 1.000 | 0.021 | 0.442 | 1.00–1.00 | |
Sex | 0.563 | 2.254 | 0.067 | 0.27–1.19 | |
3-tiered fetal heart rate categorization | 0.864 | 0.281 | 0.298 | 0.50–1.49 | |
pH | 0.214 | 0.037 | 0.424 | 0–15.21 | |
pCO2 | 0.914 | 0.378 | 0.269 | 0.69–1.22 | |
HCO3 | 0.934 | 0.816 | 0.183 | 0.81–1.08 | |
BE(ef) | 1.032 | 0.373 | 0.271 | 0.93–1.14 | |
Hypertensive disorders in pregnancy | 2.977 | 1.435 | 0.116 | 0.50–17.73 | |
Diabetes mellitus in pregnancy | 0.734 | 0.134 | 0.358 | 0.14–3.85 | |
PPROM * > 16 h | 0.433 | 2.423 | 0.217 | 0.15–1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabljić, J.; Runjić, E.; Čogelja, K.; Markoski, B.; Barbača, M.; Bačić, B. Risk Factors for Early Neonatal Hypocalcemia in Preterm Neonates Born After 32 Weeks Gestation. Children 2025, 12, 1213. https://doi.org/10.3390/children12091213
Sabljić J, Runjić E, Čogelja K, Markoski B, Barbača M, Bačić B. Risk Factors for Early Neonatal Hypocalcemia in Preterm Neonates Born After 32 Weeks Gestation. Children. 2025; 12(9):1213. https://doi.org/10.3390/children12091213
Chicago/Turabian StyleSabljić, Jelena, Edita Runjić, Klara Čogelja, Blagoja Markoski, Marijana Barbača, and Boris Bačić. 2025. "Risk Factors for Early Neonatal Hypocalcemia in Preterm Neonates Born After 32 Weeks Gestation" Children 12, no. 9: 1213. https://doi.org/10.3390/children12091213
APA StyleSabljić, J., Runjić, E., Čogelja, K., Markoski, B., Barbača, M., & Bačić, B. (2025). Risk Factors for Early Neonatal Hypocalcemia in Preterm Neonates Born After 32 Weeks Gestation. Children, 12(9), 1213. https://doi.org/10.3390/children12091213