Plasma Thrombospondin-1 in Etiology-Specific Associations with Proteinuria Events in Pediatric Chronic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical Assessments and Specimen Collection
2.2.1. Definition of CAKUT and Non-CAKUT
2.2.2. BP Monitoring and Criteria for Abnormality
2.2.3. Plasma TSP-1 Measurement
2.2.4. Study Outcome Definition
2.3. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Overview
3.2. Parameters Associated with Proteinuria Events
3.3. Predictors of Proteinuria Events
3.4. TSP-1 Differentiates Proteinuria Event Risk Among Non-CAKUT Patients
3.5. Predictive Value of Plasma TSP-1 for Proteinuria Events in Non-CAKUT Patients
3.6. Distinct Clinical Correlates of TSP-1 in CAKUT Versus Non-CAKUT Patients
3.7. Fisher’s z-Test Reveals Intergroup Differences in TSP-1–Clinical Correlations
3.8. Subgroup Analysis in Non-CAKUT Nephrotic Syndrome Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABPM | ambulatory blood pressure monitoring |
BMI | body mass index |
BP | blood pressure |
BUN | blood urea nitrogen |
CAKUT | congenital anomalies of the kidney and urinary tract |
CKD | chronic kidney disease |
eGFR | estimated glomerular filtration rate |
ESRD | end stage renal disease |
FSGS | focal segmental glomerulosclerosis |
HB | hemoglobin |
TGF-β | transforming growth factor beta |
TSP-1 | thrombospondin-1 |
UPCR | urine protein-to-creatinine ratio |
References
- Mudalige, N.L.; Sun, K.; Plumb, L.; Casula, A.; Evans, K.M.; Inward, C.; Marks, S.D. Increasing trends in hemodialysis and living donor kidney transplantation for children and young people in the United Kingdom. Pediatr. Transplant. 2022, 26, e14232. [Google Scholar] [CrossRef]
- Chou, H.H.; Lin, C.Y.; Chiou, Y.H.; Tain, Y.L.; Wang, Y.F.; Wang, H.H.; Chiou, Y.Y. Clinical characteristics and prevalence of complications of chronic kidney disease in children: The Taiwan Pediatric Renal Collaborative study. Pediatr. Nephrol. 2016, 31, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhang, L.; Di, J.; Wang, W.; Wu, Y.; Zhou, Y. Absence of progression risk of chronic kidney disease in patients with urine protein-creatinine ratio below 500 mg/g: A cohort study with competing risk analysis. Front. Med. 2025, 12, 1502597. [Google Scholar] [CrossRef]
- Iatridi, F.; Carrero, J.J.; Gall, E.C.; Kanbay, M.; Luyckx, V.; Shroff, R.; Ferro, C.J. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease in Children and Adults: A commentary from the European Renal Best Practice (ERBP). Nephrol. Dial. Transplant. 2025, 40, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kishor, S.; Chen, J.; Zhang, Y.; Liu, W.; Zhu, L.; Xu, J.; Wang, J. Interaction of proteinuria and diabetes on the risk of cardiovascular events: A prospective cohort CKD-ROUTE study. BMC Public Health 2024, 24, 3192. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Ullrich, J.E. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J. Histochem. Cytochem. 2019, 67, 683–699. [Google Scholar] [CrossRef]
- Stenina-Adognravi, O. Invoking the power of thrombospondins: Regulation of thrombospondins expression. Matrix Biol. 2014, 37, 69–82. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front. Cell Dev. Biol. 2022, 10, 898772. [Google Scholar] [CrossRef]
- Tuszynski, G.P.; Nicosia, R.F. The role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 1996, 18, 71–76. [Google Scholar] [CrossRef]
- van der Wekken, R.J.; Kemperman, H.; Roest, M.; de Lange, D.W. Baseline thrombospondin-1 concentrations are not associated with mortality in septic patients: A single-center cohort study on the intensive care unit. Intensive Care Med. Exp. 2017, 5, 7. [Google Scholar] [CrossRef]
- Lopez-Dee, Z.; Pidcock, K.; Gutierrez, L.S. Thrombospondin-1: Multiple paths to inflammation. Mediators Inflamm. 2011, 2011, 296069. [Google Scholar] [CrossRef]
- Varma, V.; Yao-Borengasser, A.; Bodles, A.M.; Rasouli, N.; Phanavanh, B.; Nolen, G.T.; Kern, E.M.; Nagarajan, R.; Spencer, H.J., III; Lee, M.-J.; et al. Thrombospondin-1 Is an Adipokine Associated with Obesity, Adipose Inflammation, and Insulin Resistance. Diabetes 2008, 57, 432–439. [Google Scholar] [CrossRef]
- Roberts, D.D.; Isenberg, J.S. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am. J. Physiol. Cell Physiol. 2021, 321, C201–C213. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Chen, J.; Xu, Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J. Diabetes Res. 2020, 2020, 8043135. [Google Scholar] [CrossRef]
- Lu, A.; Miao, M.; Schoeb, T.R.; Agarwal, A.; Murphy-Ullrich, J.E. Blockade of TSP1-Dependent TGF-β Activity Reduces Renal Injury and Proteinuria in a Murine Model of Diabetic Nephropathy. Am. J. Pathol. 2011, 178, 2573–2586. [Google Scholar] [CrossRef]
- Daniel, C.; Wiede, J.; Krutzsch, H.C.; Ribeiro, S.M.; Roberts, D.D.; Murphy-Ullrich, J.E.; Hugo, C. Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int. 2004, 65, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Julovi, S.M.; Sanganeria, B.; Minhas, N.; Ghimire, K.; Nankivell, B.; Rogers, N.M. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis. Lab. Investig. 2020, 100, 1184–1196. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Dong, S.; Xia, Y.; Yang, X.; Lei, Q.; Xu, F.; Liang, D.; Liang, S.; Zhang, M.; Yang, F.; et al. Role of TSP-1 and its receptor ITGB3 in the renal tubulointerstitial injury of focal segmental glomerulosclerosis. J. Biol. Chem. 2024, 300, 107516. [Google Scholar] [CrossRef] [PubMed]
- K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266.
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Urbina, E.M.; Brady, T.M.; Baker-Smith, C.; Daniels, S.R.; Hayman, L.L.; Mitsnefes, M.; Tran, A.; Zachariah, J.P. Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement From the American Heart Association. Hypertension 2022, 79, e114–e124. [Google Scholar] [CrossRef]
- Lee, H.J.; Liao, W.T.; Hsu, C.N.; Tain, Y.L.; Lu, P.C. Plasma Calmodulin as a Biomarker of Subclinical Cardiovascular Disease in Pediatric Chronic Kidney Disease. Children 2025, 12, 599. [Google Scholar] [CrossRef]
- Guo, N.; Yang, L.; Wan, X.; Qiu, D.; Sun, W.; Ma, H. Relationship between elevated circulating thrombospondin-1 levels and vascular complications in diabetes mellitus. J. Diabetes Investig. 2024, 15, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Wakiyama, T.; Shinohara, T.; Shirakusa, T.; John, A.S.; Tuszynski, G.P. The localization of thrombospondin-1 (TSP-1), cysteine-serine-valine-threonine-cysteine-glycine (CSVTCG) TSP receptor, and matrix metalloproteinase-9 (MMP-9) in colorectal cancer. Histol. Histopathol. 2001, 16, 345–351. [Google Scholar] [CrossRef]
- Nakayama, T.; Azegami, T.; Yamaguchi, S.; Hirano, K.; Komatsu, M.; Fujii, K.; Futatsugi, K.; Urai, H.; Kawaguchi, T.; Itoh, T.; et al. Clinical relevance of proteinuria selectivity index and fractional excretion of sodium in patients with nephrotic syndrome. Sci. Rep. 2024, 14, 23755. [Google Scholar] [CrossRef]
- Bökenkamp, A. Proteinuria—Take a closer look! Pediatr. Nephrol. 2020, 35, 533–541. [Google Scholar] [CrossRef]
- Nair, L.; George, G.; Menon, J.; Sathiandranathan, G. Urine protein electrophoresis as a prognostic factor in childhood nephrotic syndrome relapse—An observational study in govt. medical college, Mulankunnathukavu, Thrissur. Panacea J. Med. Sci. 2022, 12, 471–476. [Google Scholar] [CrossRef]
- Walawender, L.; Becknell, B.; Matsell, D.G. Congenital anomalies of the kidney and urinary tract: Defining risk factors of disease progression and determinants of outcomes. Pediatr. Nephrol. 2023, 38, 3963–3973. [Google Scholar] [CrossRef]
- Matsell, D.G.; Catapang, M. Predicting outcomes and improving care in children with congenital kidney anomalies. Pediatr. Nephrol. 2020, 35, 1811–1814. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, B.A.; Burt, L.E.; Chen, C.; Forbes, M.S.; Chevalier, R.L. Variable chronic partial ureteral obstruction in the neonatal rat: A new model of ureteropelvic junction obstruction. Kidney Int. 2005, 67, 42–52. [Google Scholar] [CrossRef]
- Fattah, H.; Layton, A.; Vallon, V. How Do Kidneys Adapt to a Deficit or Loss in Nephron Number? Physiology 2019, 34, 189–197. [Google Scholar] [CrossRef]
- Hata, A.; Chen, Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef]
- Lee, M.K.; Pardoux, C.; Hall, M.C.; Lee, P.S.; Warburton, D.; Qing, J.; Smith, S.M.; Derynck, R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. Embo J. 2007, 26, 3957–3967. [Google Scholar] [CrossRef]
- Zhang, Y.E. Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb. Perspect. Biol. 2017, 9, a022129. [Google Scholar] [CrossRef] [PubMed]
- Gui, T.; Sun, Y.; Shimokado, A.; Muragaki, Y. The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition. J. Signal Transduct. 2012, 2012, 289243. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Maimaitiyiming, H.; Zhou, Q.; Norman, H.; Zhou, C.; Wang, S. Interaction of thrombospondin1 and CD36 contributes to obesity-associated podocytopathy. Biochim. Biophys. Acta 2015, 1852, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, X.; Tong, X.; Wang, S. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell. Mol. Immunol. 2013, 10, 506–512. [Google Scholar] [CrossRef]
- Sun, D.; Ma, Y.; Han, H.; Yin, Z.; Liu, C.; Feng, J.; Zhou, X.; Li, X.; Xiao, A.; Yu, R. Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury. Kidney Blood Press. Res. 2012, 35, 35–47. [Google Scholar] [CrossRef]
- Kang, D.H.; Anderson, S.; Kim, Y.G.; Mazzalli, M.; Suga, S.; Jefferson, J.A.; Gordon, K.L.; Oyama, T.T.; Hughes, J.; Hugo, C.; et al. Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and thrombospondin-1 in renal disease. Am. J. Kidney Dis. 2001, 37, 601–611. [Google Scholar] [CrossRef]
- Isenberg, J.S.; Roberts, D.D. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr. Nephrol. 2019, 34, 2479–2494. [Google Scholar] [CrossRef]
- Rogers, N.M.; Zhang, Z.J.; Wang, J.J.; Thomson, A.W.; Isenberg, J.S. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion. Kidney Int. 2016, 90, 334–347. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Banan, B.; Chirumbole, D.L.; Garcia-Aroz, S.; Balakrishnan, A.; Nayak, D.K.; Zhang, Z.; Jia, J.; Upadhya, G.A.; et al. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death. Am. J. Transplant. 2018, 18, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Thrombospondins: A Role in Cardiovascular Disease. Int. J. Mol. Sci. 2017, 18, 1540. [Google Scholar] [CrossRef] [PubMed]
- Grenier, C.; Caillon, A.; Munier, M.; Grimaud, L.; Champin, T.; Toutain, B.; Fassot, C.; Blanc-Brude, O.; Loufrani, L. Dual Role of Thrombospondin-1 in Flow-Induced Remodeling. Int. J. Mol. Sci. 2021, 22, 12086. [Google Scholar] [CrossRef] [PubMed]
- Nardini, B.; La Scola, C.; Corrado, C.; Edefonti, A.; Giordano, M.; Pillon, R.; Mastrangelo, A.P.; Materassi, M.; Alberici, I.; Morello, W.; et al. Time to remission in childhood steroid sensitive nephrotic syndrome: A change in perspective. Eur. J. Pediatr. 2025, 184, 262. [Google Scholar] [CrossRef] [PubMed]
- Alex, R.; Press, E.; Sanchez, L.; Whitson, J.; Marder, B.; Tumlin, J.A. Comparative Levels of Urinary Biomarkers of Renal Injury and Inflammation Among Patients With Diabetic Nephropathy With or Without Hyperuricemia. JCR J. Clin. Rheumatol. 2024, 30, 110–116. [Google Scholar] [CrossRef]
- Kang, D.H.; Nakagawa, T. Uric acid and chronic renal disease: Possible implication of hyperuricemia on progression of renal disease. Semin. Nephrol. 2005, 25, 43–49. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Nakagawa, T.; Zharikov, S.; Johnson, R.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 2007, 293, C584–C596. [Google Scholar] [CrossRef]
- Mazzali, M.; Kanellis, J.; Han, L.; Feng, L.; Xia, Y.Y.; Chen, Q.; Kang, D.H.; Gordon, K.L.; Watanabe, S.; Nakagawa, T.; et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal. Physiol. 2002, 282, F991–F997. [Google Scholar] [CrossRef]
- Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Nakagawa, T.; Jalal, D.; Sánchez-Lozada, L.G.; Kang, D.H.; Ritz, E. Uric acid and chronic kidney disease: Which is chasing which? Nephrol. Dial. Transplant. 2013, 28, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, M.; Yan, L.; Luo, J.; Liu, Z.; Liu, T.; Jiang, Y. Evaluation of thrombospondin 1 as a novel biomarker in pediatric-onset systemic lupus erythematosus. BMC Pediatr. 2025, 25, 190. [Google Scholar] [CrossRef] [PubMed]
Total Participants | n = 60 | |
---|---|---|
Baseline Characteristics | Median [IQR] | Unit |
Age | 10.07 [7.413, 13.9] | years |
Male | 36 (60%) | n (%) |
BMI | 17.54 [15.27, 21.16] | kg/m2 |
CAKUT (%) | 41 (68.3%) | n (%) |
eGFR | 101.7 [87.46, 117] | mL/min/1.73 m2 |
UPCR | 89.80 [52.20, 279.2] | mg/g |
Abnormal BP Profile | 38 (63.3%) | n (%) |
Fasting Plasma Glucose | 89 [84.75, 92.25] | mg/dL |
LDL-C | 96 [77, 121] | mg/dL |
Triglycerides | 75 [55, 116] | mg/dL |
Uric Acid | 5 [4.2, 6.4] | mg/dL |
Hemoglobin | 13.5 [13, 14.38] | g/dL |
WBC | 6.85 [5.6, 8.175] | ×103/µL |
Sodium | 139 [138, 141] | mEq/L |
Potassium | 4.4 [4.125, 4.5] | mEq/L |
Calcium | 9.9 [9.6, 10.1] | mg/dL |
Inorganic Phosphorus | 4.8 [4.5, 5.1] | mg/dL |
TSP-1 | 34.95 [26.02, 48.19] | μg/mL |
Total Participants (n = 60) | |||
---|---|---|---|
Diagnosis | Non-CAKUT Event 1 (n = 5) | Non-CAKUT Event 0 (n = 14) | CAKUT Event 0 (n = 41) |
Nephrotic syndrome | 3 | 9 | - |
Isolated proteinuria | 2 | 1 | - |
Isolated hematuria | - | 2 | - |
Proteinuria + hematuria | - | 2 | - |
Renal agenesis, unilateral | - | - | 31 |
Renal hypoplasia | - | - | 4 |
Reflux nephropathy | - | - | 1 |
Hydronephrosis | - | - | 2 |
Renal cyst | - | - | 1 |
Obstructive nephropathy | - | - | 2 |
Event 1 (n = 5) | Event 0 (n = 55) | p Value | |
---|---|---|---|
Age (years) | 14 [11.5, 14.47] | 9.55 [7.244, 13.53] | 0.0772 |
Male (%) | 100% | 56.4% | 0.0768 |
BMI (kg/m2) | 21.27 [16.15, 23] | 17.15 [15.27, 21.1] | 0.2476 |
CAKUT (%) | 0% | 72.7% | 0.0028 (**) |
eGFR (mL/min/1.73 m2) | 97.66 [31.84, 123.3] | 102.1 [87.5, 116.9] | 0.7359 |
UPCR (mg/g) | 1386 [789, 3143] | 84.7 [46.43, 240.3] | 0.0002 (***) |
Abnormal BP Profile (%) | 80% | 61.8% | 0.6432 |
Fasting Plasma Glucose (mg/dL) | 92 [87.75, 96.25] | 89 [83.75, 91.25] | 0.2388 |
LDL-C (mg/dL) | 133 [90.5, 243] | 95.5 [76.75, 114.3] | 0.0829 |
Triglycerides (mg/dL) | 213 [57.5, 311.5] | 74 [54, 115.3] | 0.1215 |
Uric Acid (mg/dL) | 9.1 [6.15, 12.1] | 4.9 [4.2, 6.25] | 0.0019 (**) |
Hb(g/dL) | 13.3 [12.95, 14.75] | 13.5 [13, 14.4] | 0.7600 |
WBC (×103/µL) | 9.4 [6.95, 10.9] | 6.5 [5.5, 8.1] | 0.0358 (*) |
Sodium (mEq/L) | 141 [139.5, 141] | 139 [138, 141] | 0.1438 |
Potassium (mEq/L) | 4.7 [4.15, 4.95] | 4.3 [4.1, 4.5] | 0.0735 |
Calcium (mg/dL) | 9.7 [8.25, 10.05] | 9.9 [9.675, 10.1] | 0.2776 |
Inorganic Phosphorus (mg/dL) | 4.9 [4.45, 5.9] | 4.75 [4.475, 5.1] | 0.4517 |
TSP-1 (μg/mL) | 21.18 [8.355, 36.08] | 36.28 [26.83, 48.97] | 0.0364 (*) |
Univariable | Multivariable | ||||||
---|---|---|---|---|---|---|---|
Variable | OR | 95% CI | p Value | Note | Adjusted OR | 95% CI | p Value |
Age (years) | 1.201 | 0.9438 to 1.580 | 0.1367 | ||||
eGFR | 0.9815 | 0.9536 to 1.011 | 0.2074 | ||||
UPCR (mg/g) | 1.000 | 0.9998 to 1.001 | 0.2355 | ||||
CAKUT (vs. non-CAKUT) | - | - | 0.0028 (**) | Fisher’s exact test | 0.0233 | 1.5 × 10−10 to 0.3953 | 0.0056 (**) |
Uric Acid (mg/dL) | 2.176 | 1.402 to 4.216 | 0.0002 (***) | 1.8563 | 1.11 to 52.4 | 0.0139 (*) | |
WBC (×103/µL) | 0.6576 | 0.06111 to 4.829 | 0.6967 | ||||
TSP-1 (μg/mL) | 0.9138 | 0.8304 to 0.9832 | 0.0136 (*) | 0.9613 | 0.8645 to 1.0247 | 0.2704 |
Total Participants | n = 19 | ||
---|---|---|---|
Parameter | r | 95% CI | p Value |
Age | −0.2456 | −0.6383 to 0.2484 | 0.3108 |
eGFR | 0.08070 | −0.4000 to 0.5265 | 0.7426 |
Height | −0.2070 | −0.6135 to 0.2862 | 0.3951 |
Weight | −0.2651 | −0.6505 to 0.2287 | 0.2726 |
BMI | −0.2474 | −0.6394 to 0.2467 | 0.3072 |
Office SBP | −0.1390 | −0.5679 to 0.3492 | 0.5703 |
Office DBP | −0.2360 | −0.6322 to 0.2580 | 0.3307 |
LDL-C | 0.1187 | −0.3815 to 0.5651 | 0.6390 |
Triglyceride | −0.2632 | −0.6587 to 0.2463 | 0.2914 |
Fasting Plasma Glucose | −0.1995 | −0.6301 to 0.3249 | 0.4398 |
Uric acid | −0.1529 | −0.5883 to 0.3513 | 0.5447 |
BUN | −0.5937 | −0.8299 to −0.1770 | 0.0074 (**) |
Creatinine | −0.1502 | −0.5756 to 0.3392 | 0.5394 |
UPCR | 0.1561 | −0.3338 to 0.5796 | 0.5233 |
Hb | 0.3749 | −0.1099 to 0.7156 | 0.1138 |
WBC | 0.2443 | −0.2498 to 0.6374 | 0.3135 |
Platelet | 0.4088 | −0.07022 to 0.7346 | 0.0823 |
Sodium | −0.3434 | −0.6975 to 0.1455 | 0.1500 |
Potassium | −0.2135 | −0.6177 to 0.2800 | 0.3802 |
Calcium | 0.3436 | −0.1614 to 0.7060 | 0.1627 |
Inorganic Phosphate | −0.4475 | −0.7627 to 0.03947 | 0.0626 |
Total Participants | n = 41 | ||
---|---|---|---|
Parameter | r | 95% CI | p Value |
Age | 0.08981 | −0.2329 to 0.3947 | 0.5766 |
eGFR | 0.1454 | −0.1790 to 0.4412 | 0.3644 |
Height | 0.2070 | −0.1168 to 0.4910 | 0.1942 |
Weight | 0.2833 | −0.03607 to 0.5502 | 0.0727 |
BMI | 0.3856 | 0.07906 to 0.6255 | 0.0128 (*) |
Office SBP | 0.1276 | −0.2051 to 0.4338 | 0.4389 |
Office DBP | 0.1569 | −0.1763 to 0.4578 | 0.3402 |
LDL-C | 0.2505 | −0.07126 to 0.5251 | 0.1141 |
Triglyceride | 0.1702 | −0.1543 to 0.4615 | 0.2875 |
Fasting Plasma Glucose | 0.001179 | −0.3151 to 0.3172 | 0.9942 |
Uric acid | 0.2518 | −0.06985 to 0.5261 | 0.1122 |
BUN | −0.02100 | −0.3349 to 0.2971 | 0.8963 |
Creatinine | −0.04026 | −0.3519 to 0.2794 | 0.8026 |
UPCR | −0.001267 | −0.3212 to 0.3189 | 0.9938 |
Hb | 0.4637 | 0.1729 to 0.6801 | 0.0023 (**) |
WBC | 0.2102 | −0.1135 to 0.4935 | 0.1871 |
Platelet | 0.1415 | −0.1828 to 0.4381 | 0.3774 |
Sodium | −0.006923 | −0.3224 to 0.3099 | 0.9657 |
Potassium | 0.1387 | −0.1856 to 0.4357 | 0.3872 |
Calcium | 0.2634 | −0.05754 to 0.5350 | 0.0961 |
Inorganic Phosphate | 0.05474 | −0.2660 to 0.3646 | 0.7339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, P.-C.; Liao, W.-T.; Hsu, C.-N.; Tain, Y.-L.; Chou, C.-A. Plasma Thrombospondin-1 in Etiology-Specific Associations with Proteinuria Events in Pediatric Chronic Kidney Disease. Children 2025, 12, 1101. https://doi.org/10.3390/children12081101
Lu P-C, Liao W-T, Hsu C-N, Tain Y-L, Chou C-A. Plasma Thrombospondin-1 in Etiology-Specific Associations with Proteinuria Events in Pediatric Chronic Kidney Disease. Children. 2025; 12(8):1101. https://doi.org/10.3390/children12081101
Chicago/Turabian StyleLu, Pei-Chen, Wei-Ting Liao, Chien-Ning Hsu, You-Lin Tain, and Chia-An Chou. 2025. "Plasma Thrombospondin-1 in Etiology-Specific Associations with Proteinuria Events in Pediatric Chronic Kidney Disease" Children 12, no. 8: 1101. https://doi.org/10.3390/children12081101
APA StyleLu, P.-C., Liao, W.-T., Hsu, C.-N., Tain, Y.-L., & Chou, C.-A. (2025). Plasma Thrombospondin-1 in Etiology-Specific Associations with Proteinuria Events in Pediatric Chronic Kidney Disease. Children, 12(8), 1101. https://doi.org/10.3390/children12081101