Differences of Sex Development: A Study of 420 Patients from a Single Tertiary Pediatric Endocrinology Center
Abstract
1. Introduction
2. Materials and Methods
Patient Enrollment
3. Molecular Genetic Studies
4. Results
- -
- A novel hemizygous variant of the androgen receptor (AR) gene was identified in a patient with 46,XY DSD who was assigned female at birth and referred in infancy for bilateral inguinal hernias containing gonads: NM_000044.3: c.2424G>T, p.Met808Ile. This missense variant segregated from the mother and has not yet been reported in the scientific literature; it can be considered a Variant of Uncertain Significance (VUS), meaning a sequence variant with unknown functional and clinical impact, but family history revealed one family member (mother’s sister) clinically affected by CAIS in the absence of a definitive genetic diagnosis.
- -
- A novel variant of the NR5A1 gene was found in a boy with 46,XY DSD who presented with penoscrotal transposition, hypospadias, and cryptorchidism. This boy carried a de novo heterozygous variant: NM_004959: c.[1096C>T];[=] (p.[(Q366*)];[(=)]). At the protein level, the variant resulted in p.Gln366Ter, leading to the formation of a premature stop codon. This variant has not been reported in the scientific literature; however, its potential impact on protein function suggests a possible association with the clinical indication for testing.
- -
- The third novel variant was found in a girl with a 46,XY pure gonadal dysgenesis. Analysis of the SRY gene revealed a de novo heterozygous variant: NM_003140.3 (SRY): c.[359A>G];[0] p.[(His120Arg)];[0] at the level of the HMG-box region. There is no evidence in the literature or major databases (e.g., ClinVar) confirming this variant as pathogenic. It has not been reported as benign either. Therefore, based on current knowledge, it remains a VUS—a missense variant with uncertain clinical and functional impact. From a clinical perspective, this result was compatible with the clinical picture of pure gonadal dysgenesis.
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosure Statement
References
- Flück, C.E.; Güran, T. Ambiguous Genitalia in the Newborn. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. [Google Scholar]
- Sax, L. How common is intersex? A response to Anne Fausto-Sterling. J. Sex Res. 2002, 39, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.A.; Houk, C.P.; Ahmed, S.F.; Hughes, I.A. International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 2006, 118, e488–e500. [Google Scholar] [CrossRef] [PubMed]
- Cools, M.; Nordenström, A.; Robeva, R.; Hall, J.; Westerveld, P.; Flück, C.; Köhler, B.; Berra, M.; Springer, A.; Schweizer, K.; et al. Caring for individuals with a difference of sex development (DSD): A Consensus Statement. Nat. Rev. Endocrinol. 2018, 14, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Bashamboo, A.; Lucas-Herald, A.; McElreavey, K. Understanding the genetic aetiology in patients with XY DSD. Br. Med. Bull. 2013, 106, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Gürbüz, F.; Alkan, M.; Çelik, G.; Bişgin, A.; Çekin, N.; Ünal, I.; Topaloğlu, A.K.; Zorludemir, Ü.; Avcı, A.; Yüksel, B. Gender Identity and Assignment Recommendations in Disorders of Sex Development Patients: 20 Years’ Experience and Challenges. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 347–357. [Google Scholar] [CrossRef]
- Hughes, L.A.; McKay-Bounford, K.; Webb, E.A.; Dasani, P.; Clokie, S.; Chandran, H.; McCarthy, L.; Mohamed, Z.; Kirk, J.M.W.; Krone, N.P.; et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocr. Connect. 2019, 8, 100–110. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, X.; Wang, L.; Wang, R.; Huang, Z.; Sun, Y.; Yao, R.; Huang, X.; Ye, J.; Han, L.; et al. Diagnostic Application of Targeted Next-Generation Sequencing of 80 Genes Associated with Disorders of Sexual Development. Sci. Rep. 2017, 7, 44536. [Google Scholar] [CrossRef]
- Man, E.; Mushtaq, I.; Barnicoat, A.; Carmichael, P.; Hughes, C.R.; Davies, K.; Aitkenhead, H.; Amin, R.; Buchanan, C.R.; Cherian, A.; et al. A Single-Center, Observational Study of 607 Children and Young People Presenting with Differences of Sex Development (DSD). J. Endocr. Soc. 2022, 7, bvac165. [Google Scholar] [CrossRef]
- Erdoğan, S.; Kara, C.; Uçaktürk, A.; Aydın, M. Etiological classification and clinical assessment of children and adolescents with disorders of sex development. J. Clin. Res. Pediatr. Endocrinol. 2011, 3, 77–83. [Google Scholar] [CrossRef]
- Mazen, I.; Hiort, O.; Bassiouny, R.; El Gammal, M. Differential diagnosis of disorders of sex development in Egypt. Horm. Res. Paediatr. 2008, 70, 118–123. [Google Scholar] [CrossRef]
- Ganie, Y.; Aldous, C.; Balakrishna, Y.; Wiersma, R. Disorders of sex development in children in KwaZulu-Natal Durban South Africa: 20-year experience in a tertiary centre. J. Pediatr. Endocrinol. Metab. 2017, 30, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Walia, R.; Singla, M.; Vaiphei, K.; Kumar, S.; Bhansali, A. Disorders of sex development: A study of 194 cases. Endocr. Connect. 2018, 7, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Shamma, R.A.; Atef, S.; Arafa, N. Etiological classification and clinical spectrum of Egyptian pediatric patients with disorder of sex development, single center experience. Endokrynol. Pol. 2021, 72, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Jaruratanasirikul, S.; Engchaun, V. Management of children with disorders of sex development: 20-year experience in southern Thailand. World J. Pediatr. 2013, 10, 168–174. [Google Scholar] [CrossRef]
- Auer, M.K.; Nordenström, A.; Lajic, S.; Reisch, N. Congenital adrenal hyperplasia. Lancet 2023, 401, 227–244. [Google Scholar] [CrossRef]
- Claahsen-van der Grinten, H.L.; Speiser, P.W.; Ahmed, S.F.; Arlt, W.; Auchus, R.J.; Falhammar, H.; E Flück, C.; Guasti, L.; Huebner, A.; Kortmann, B.B.M.; et al. Congenital Adrenal Hyperplasia—Current Insights in Pathophysiology, Diagnostics, and Management. Endocr. Rev. 2022, 43, 91–159. [Google Scholar] [CrossRef]
- Uslar, T.; Olmos, R.; Martínez-Aguayo, A.; Baudrand, R. Clinical Update on Congenital Adrenal Hyperplasia: Recommendations from a Multidisciplinary Adrenal Program. J. Clin. Med. 2023, 12, 3128. [Google Scholar] [CrossRef]
- Stancampiano, M.R.; Meroni, S.L.C.; Bucolo, C.; Russo, G. 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: Pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes. Front. Endocrinol. 2024, 15, 1402579. [Google Scholar] [CrossRef]
- González, R.; Ludwikowski, B.M. Should CAH in Females Be Classified as DSD? Front. Pediatr. 2016, 4, 48. [Google Scholar] [CrossRef]
- Al-Jurayyan, N.A.M. Disorders of Sex Development (DSD): A more than three Decades of Experience at a Major Teaching Hospital. Int. J. Clin. Endocrinol. Metab. 2024, 10, 014–017. [Google Scholar] [CrossRef]
- Diaz, A.; Lioman-Diaz, E.G. Disorders of sex development. Pediatr. Rev. 2021, 42, 414–426. [Google Scholar] [CrossRef]
- Mota, B.C.; Oliveira, L.M.B.; Lago, R.; Brito, P.; Canguçú-Campinho, A.K.; Barroso, U.; Toralles, M.B.P. Clinical profile of 93 cases of 46, XY disorders of sexual development in a referral center. Int. Braz. J. Urol. 2015, 41, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Melo, K.F.; Mendonça, B.B.; Billerbeck, A.E.C.; Costa, E.M.; Latronico, A.C.; Arnhold, I.J. Síndrome de insensibilidade aos andrógenos: Análise clínica, hormonal e molecular de 33 casos [Androgen insensitivity syndrome: clinical, hormonal and molecular analysis of 33 cases]. Arq. Bras. Endocrinol. Metabol. 2005, 49, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Batista, R.L.; Costa, E.M.F.; Rodrigues, A.d.S.; Gomes, N.L.; Faria, J.A.; Nishi, M.Y.; Arnhold, I.J.P.; Domenice, S.; de Mendonca, B.B. Androgen insensitivity syndrome: A review. Arch. Endocrinol. Metab. 2018, 62, 227–235. [Google Scholar] [CrossRef]
- Achermann, J.C.; Hughes, I.A. Pediatric disorders of sex differentiation. In Williams Textbook of Endocrinology, 13th ed.; Melmed, S., Polonsky, K.S., Larsen, P.R., Kronenberg, H.M., Eds.; Elsevier: Philadelphia, PA, USA, 2016; pp. 893–963. [Google Scholar]
- Fisher, A.D.; Ristori, J.; Fanni, E.; Castellini, G.; Forti, G.; Maggi, M. Gender identity, gender assignment and reassignment in individuals with disorders of sex development: A major of dilemma. J. Endocrinol. Investig. 2016, 39, 1207–1224. [Google Scholar] [CrossRef] [PubMed]
- Cools, M. Gonadectomy in DSD. Rev. Esp. Endocrinol. Pediatr. 2023, 14 (Suppl. S2), 48–53. [Google Scholar]
- Cools, M.; Pleskacova, J.; Stoop, H.; Hoebeke, P.; Van Laecke, E.; Drop, S.L.S.; Lebl, J.; Oosterhuis, J.W.; Looijenga, L.H.J.; Wolffenbuttel, K.P.; et al. Gonadal pathology and tumor risk in relation to clinical characteristics in patients with 45,X/46,XY mosaicism. J. Clin. Endocrinol. Metab. 2011, 96, E1171–E1180. [Google Scholar] [CrossRef]
- Weidler, E.M.; Pearson, M.; van Leeuwen, K.; Garvey, E. Clinical management in mixed gonadal dysgenesis with chromosomal mosaicism: Considerations in newborns and adolescents. Semin. Pediatr. Surg. 2019, 28, 150841. [Google Scholar] [CrossRef]
- Deans, R.; Creighton, S.M.; Liao, L.; Conway, G.S. Timing of gonadectomy in adult women with complete androgen insensitivity syndrome (CAIS): Patient preferences and clinical evidence. Clin. Endocrinol. 2012, 76, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.M. The syndrome of testicular feminization in male pseudohermaphrodites. Am. J. Obstet. Gynecol. 1953, 65, 1192–1211. [Google Scholar] [CrossRef] [PubMed]
- Cools, M.; Drop, S.L.; Wolffenbuttel, K.P.; Oosterhuis, J.W.; Looijenga, L.H. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr. Rev. 2006, 27, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Casey, R.K.; Gomez-Lobo, V. Timing of Gonadectomy in Patients with Complete Androgen Insensitivity Syndrome–Current Recommendations and Future Directions. J. Pediatr. Adolesc. Gynecol. 2016, 29, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Fraccascia, B.; Sodero, G.; Pane, L.C.; Malavolta, E.; Gola, C.; Pane, L.; Paradiso, V.F.; Nanni, L.; Rigante, D.; Cipolla, C. Complete Androgen Insensitivity Syndrome in a Young Girl with Primary Amenorrhea and Suspected Delayed Puberty: A Case-Based Review of Clinical Management, Surgical Follow-Up, and Oncological Risk. Diseases 2024, 12, 235. [Google Scholar] [CrossRef]
- Uyama, T.; Koh, I.; Komoshita, T.; Matsushima, A.; Ohara, R.; Nomura, A.; Enokizono, Y.; Sato, Y.; Nakamoto, K.; Morioka, H.; et al. Mixed gonadal dysgenesis with gonadoblastoma diagnosed by prophylactic laparoscopic gonadectomy: A case report. Exp. Ther. Med. 2024, 28, 1–7. [Google Scholar] [CrossRef]
- Cox, K.; Bryce, J.; Jiang, J.; Rodie, M.; Sinnott, R.; Alkhawari, M.; Arlt, W.; Audi, L.; Balsamo, A.; Bertelloni, S.; et al. Novel associations in disorders of sex development: findings from the I-DSD Registry. J. Clin. Endocrinol. Metab. 2014, 99, E348–E355. [Google Scholar] [CrossRef]
- Dong, Y.; Yi, Y.; Yao, H.; Yang, Z.; Hu, H.; Liu, J.; Gao, C.; Zhang, M.; Zhou, L.; Asan, N.; et al. Targeted next-generation sequencing identification of mutations in patients with disorders of sex development. BMC Med. Genet. 2016, 17, 23. [Google Scholar] [CrossRef]
- Kayed, H.F.; Mansour, R.T.; Aboulghar, M.A.; Serour, G.I.; Amer, A.E.; Abdrazik, A. Screening for chromosomal abnormalities in 2650 infertile couples undergoing ICSI. Reprod. Biomed. Online 2006, 12, 359–370. [Google Scholar] [CrossRef]
- Veeramani, M.; Balachandren, N.; Hong, Y.H.; Lee, J.; Corno, A.F.; Mavrelos, D.; Kastora, S.L. Assisted reproduction and congenital malformations: A systematic review and meta-analysis. Congenit. Anom. 2024, 64, 107–115. [Google Scholar] [CrossRef]
- Qin, J.-Z.; Pang, L.-H.; Li, M.-Q.; Xu, J.; Zhou, X.; Yan, W. Risk of chromosomal abnormalities in early spontaneous abortion after assisted reproductive technology: A meta-analysis. PLoS ONE 2013, 8, e75953. [Google Scholar] [CrossRef]
- Morel, F.; Douet-Guilbert, N.; Le Bris, M.; Amice, V.; Le Martelot, M.T.; Roche, S.; Valéri, A.; Derrien, V.; Amice, J.; De Braekeleer, M. Chromosomal abnormalities in couples undergoing intracytoplasmic sperm injection. A study of 370 couples and review of the literature. Int. J. Androl. 2004, 27, 178–182. [Google Scholar] [CrossRef]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Achermann, J.; Alderson, J.; Crouch, N.S.; Elford, S.; Hughes, I.A.; Krone, N.; McGowan, R.; Mushtaq, T.; O’tOole, S.; et al. Society for Endocrinology UK Guidance on the initial evaluation of a suspected difference or disorder of sex development (Revised 2021). Clin. Endocrinol. 2021, 95, 818–840. [Google Scholar] [CrossRef] [PubMed]
Total(n) | Male Social Sex(n) | Mean Age at First Endocrinology Visit (Months) | Associated Malformations n (%) | Gonadectomy n (%) | ||
---|---|---|---|---|---|---|
46,XY DSD | NR5A1 variant (SF1 deficiency) | 6 | 1 | 15.17 | 0 (0) | 4 (80.00) |
Complete androgen insensitivity (CAIS) | 9 | 0 | 17 | 0 (0) | 6 (60.00) | |
Partial androgen insensitivity (PAIS) | 4 | 4 | 9.25 | 1 (25.00) | 1 (25.00) | |
Congenital adrenal hyperplasia (CAH) | 2 | 2 | 0 | 0 | 0 | |
17β-HSD3 deficiency | 3 | 1 | 54 | 0 | 2 (66.67) | |
SRD5A2 variant (5α-reductase deficiency) | 8 | 3 | 8.1 | 0 | 2 (28.57) | |
SRY variant | 2 | 0 | 192 | 0 | 1 (50.00) | |
Severe hypospadias of unknown origin | 28 | 28 | 0 | 0 | 0 | |
46,XY DSD of unknown origin | 13 | 8 | 77 | 1 (7.69) | 2 (15.38) | |
46,XX DSD | Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome | 10 | 0 | 152.63 | 4 (40.00) | 0 |
Congenital adrenal hyperplasia (CAH) | 110 | 0 | 0 | 0 | 0 | |
SRY translocation on X chromosome | 5 | 5 | 0 | 0 | 0 | |
WT1 variant | 1 | 0 | 120 | 0 | 1 (100) | |
WNT4 variant | 1 | 0 | 192 | 0 | 0 | |
46,XX DSD of unknown origin | 8 | 3 | 115.7 | 2 (25.00) | 1 (12.50) | |
Sex chromosomal DSD | Turner syndrome | 65 | 0 | 70 | 1 (1.54) | 0 |
Klinefelter syndrome | 73 | 73 | 51 | 1 (1.37) | 0 | |
Turner syndrome mosaicism | 42 | 0 | 82 | 0 | 0 | |
Mixed gonadal dysgenesis | 30 | 16 | 24 | 3 (10.00) | 7 (23.33) |
Tot | 46,XY DSD of Unknown Origin | SF1 Defect | CAIS | PAIS | CAH (3β-HSD2 Deficiency) | 17β-HSD3 Deficiency | 5α-Reductase Deficiency | SRY Variant | Severe Hypospadias of Unknown Origin | |
---|---|---|---|---|---|---|---|---|---|---|
n (%) | 75 | 13 (17.33) | 6 (8.00) | 9 (12.00) | 4 (5.00) | 2 (2.67) | 3 (4.00) | 8 (10.67) | 2 (2.67) | 28 (37.33) |
Genetic variant | - | NR5A1 | AR | AR | HSD3β2 | 17β−HSD3 | SRD5A2 | SRY | - | |
No molecular diagnosis (%) | 41 (54.67) | 13 (100) | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 28 (100) |
Neonatal genital phenotype | 3 female 8 atypical genitalia 2 male | 1 atypical genitalia 4 females 1 male | 9 female | 4 atypical genitalia | 2 atypical genitalia | 2 female 1 male | 4 female 3 male 1 atypical genitalia | 2 female | 26 atypical genitalia 2 male | |
Male social sex | 47 | 8 (61.54) | 1 (16.67) | 0 (0) | 4 (100) | 2 (100) | 1 (33.33) | 3 (37.5) | 0 (0) | 28 (100) |
Mean age at first endocrinology visit | 77 months | 15.17 months | 17 months | 9.25 months | 0 months | 54 months | 8.1 months | 192 months | 0 months | |
Mean age at molecular diagnosis | - | 62.00 months | 38.5 months | 16 months | 2.4 months | 57.33 months | 11.1 months | 192 months | NA | |
Spontaneous puberty | 3 yes 3 no 7 NA | 3 no 3 NA | 1 yes 2 NA 6 no | 3 no 1 NA | 2 NA | 1 NA 2 no | 3 no 5 NA | 1 yes 1 no | 26 NA 2 yes | |
Genital phenotype at puberty | 6 female 7 NA | 3 NA 3 female | 7 female 2 NA | 3 male 1 NA | 2 NA | 2 female 1 NA | 3 female 5 NA | 2 female | 26 NA 2 male | |
Gonads | 6 testicles 2 ovary/ testicle 4 streak gonads 1 ovaries | 4 testicles 2 streak gonads | 9 testicles | 4 testicles | 2 testicles | 3 testicles | 8 testicles | 2 streak gonads | 28 testicles |
Tot | 46,XX DSD of Unknown Origin | MRKH Syndrome | CAH | SRY Translocation on X Chromosome | WT1 Variant | WNT4 Variant | |
n (%) | 135 | 8 (5.93) | 10 (7.41) | 110 (81.48) | 5 (3.70) | 1 (0.74) | 1 (0.74) |
Genetic variant | - | - | CYP21A2 | - | WT1 | WNT4 | |
No molecular diagnosis (%) | 18 (13.33) | 8 (100) | 10 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Neonatal genital phenotype | 3 female 1 male 4 atypical genitalia | 10 female | 110 atypical genitalia | 5 male | 1 female | 1 female | |
Male social sex (%) | 8 (5.93) | 3 (37.50) | 0 (0) | 0 (0) | 5 (100) | 0 (0) | 0 (0) |
Mean age at first endocrinology visit | 115.70 months | 152.63 months | 0 months | 0 months | 120 months | 192 months | |
Spontaneous puberty | 3 yes 4 no 1 NA | 10 no | 43 yes 67 NA | 3 yes 2 NA | 1 no | 1 yes | |
Genital phenotype at puberty | 3 female 4 male 1 NA | 10 female | 43 female 67 NA | 3 male 2 NA | 1 female | 1 female | |
Gonads | 4 testicles 1 ovaries 1 ovary/testicle 2 streak gonads | 10 ovaries | 110 ovaries | 5 testicles | 1 streak gonads | 1 ovaries |
Tot | Turner Syndrome | Turner Syndrome Mosaicism | Klinefelter Syndrome | Mixed Gonadal Dysgenesis | |
---|---|---|---|---|---|
n (%) | 210 | 65 (30.95) | 42 (20.00) | 73 (34.76) | 30 (14.29) |
Neonatal genital phenotype | 65 female | 42 female | 73 male | 11 atypical genitalia 12 female 7 male | |
Male social sex(%) | 89 (42.38) | 0 (0) | 0 (0) | 73 (100) | 16 (53.33) |
Mean age at first endocrinology visit | 70 months | 82 months | 51 months | 24 months | |
Spontaneous puberty | 2 yes 29 NA 34 no | 5 no 16 NA 21 yes | 15 NA 40 yes 18 no | 13 yes 12 NA 5 no | |
Genital phenotype at puberty | 65 female | 16 NA 26 female | 73 male | 13 female 12 NA 5 male | |
Gonads | 65 ovaries | 42 ovaries | 73 testicles | 9 testicles 14 ovaries 7 streak gonads |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventresca, S.; Chioma, L.; Ruta, R.; Mucciolo, M.; Parisi, P.; Suppiej, A.; Loche, S.; Cappa, M.; Bizzarri, C. Differences of Sex Development: A Study of 420 Patients from a Single Tertiary Pediatric Endocrinology Center. Children 2025, 12, 954. https://doi.org/10.3390/children12070954
Ventresca S, Chioma L, Ruta R, Mucciolo M, Parisi P, Suppiej A, Loche S, Cappa M, Bizzarri C. Differences of Sex Development: A Study of 420 Patients from a Single Tertiary Pediatric Endocrinology Center. Children. 2025; 12(7):954. https://doi.org/10.3390/children12070954
Chicago/Turabian StyleVentresca, Silvia, Laura Chioma, Rosario Ruta, Mafalda Mucciolo, Pasquale Parisi, Agnese Suppiej, Sandro Loche, Marco Cappa, and Carla Bizzarri. 2025. "Differences of Sex Development: A Study of 420 Patients from a Single Tertiary Pediatric Endocrinology Center" Children 12, no. 7: 954. https://doi.org/10.3390/children12070954
APA StyleVentresca, S., Chioma, L., Ruta, R., Mucciolo, M., Parisi, P., Suppiej, A., Loche, S., Cappa, M., & Bizzarri, C. (2025). Differences of Sex Development: A Study of 420 Patients from a Single Tertiary Pediatric Endocrinology Center. Children, 12(7), 954. https://doi.org/10.3390/children12070954