Evaluation of First-Week Fluid Intake and Maximal Weight Loss Percentage with In-Hospital Adverse Outcomes Among Moderately and Very Preterm Newborns in Ethiopia
Abstract
1. Introduction
2. Subjects and Methods
2.1. Overview of Database and Quality Control Assessments
2.2. Time Period, Inclusion and Exclusion Criteria
2.3. Defining Exposures and Outcomes
2.4. Statistical Analyses
3. Results
3.1. Determining Categories of MWL, TFI, Parenteral and Enteral Intake for Outcome Assessment
3.2. MWL Differs Across Gestational Age Categories
3.3. Association of Percent MWL and Adverse In-Hospital Outcomes
3.4. Association of Total Fluid Intake and Adverse In-Hospital Outcomes
3.5. Association of Parenteral and Enteral Intake and Adverse In-Hospital Outcomes
4. Discussion
4.1. Relative Contributions of Enteral and Parenteral Intake on Outcomes
4.2. Percent MWL and Associations with Adverse Health Outcomes
4.3. Weight Loss Patterns of Moderately and Very Preterm Newborns at SPHMMC Differ from Those in High-Resourced Settings
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGA | Appropriate for gestational age |
BPD | Bronchopulmonary dysplasia |
CI | Confidence interval |
ELBW | Extremely low birthweight |
EP | Extremely preterm |
GA | Gestational age |
GEE | Generalized estimating equations |
ICH | Intracranial hemorrhage |
IV | Intravenous |
LOESS | Locally estimated scatterplot smoothing |
NEC | Necrotizing enterocolitis |
NICU | Neonatal intensive care unit |
OR | Odds ratio |
PDA | Patent ductus arteriosus |
SGA | Small for gestational age |
VLBW | Very low birthweight |
References
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef]
- Rambliere, L.; de Lauzanne, A.; Diouf, J.B.; Zo, A.Z.; Landau, M.; Herindrainy, P.; Hivernaud, D.; Sarr, F.D.; Sok, T.; Vray, M.; et al. Stillbirths and neonatal mortality in LMICs: A community-based mother-infant cohort study. J. Glob. Health 2023, 13, 04031. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.M.; Kandefer, S.; Walsh, M.C.; Bell, E.F.; Carlo, W.A.; Laptook, A.R.; Sanchez, P.J.; Shankaran, S.; Van Meurs, K.P.; Ball, M.B.; et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N. Engl. J. Med. 2015, 372, 331–340. [Google Scholar] [CrossRef]
- Valentine, G.C.; Umoren, R.A.; Perez, K.M. Early inadequate or excessive weight loss: A potential contributor to mortality in premature newborns in resource-scarce settings? Pediatr. Neonatol. 2021, 62, 237–239. [Google Scholar] [CrossRef]
- Akindolire, A.; Talbert, A.; Sinha, I.; Embleton, N.; Allen, S.; Neonatal Nutrition, N. Evidence that informs feeding practices in very low birthweight and very preterm infants in sub-Saharan Africa: An overview of systematic reviews. BMJ Paediatr. Open 2020, 4, e000724. [Google Scholar] [CrossRef]
- Imam, Z.O.; Nabwera, H.M.; Tongo, O.O.; Andang’o, P.E.A.; Abdulkadir, I.; Ezeaka, C.V.; Ezenwa, B.N.; Fajolu, I.B.; Mwangome, M.K.; Umoru, D.D.; et al. Time to full enteral feeds in hospitalised preterm and very low birth weight infants in Nigeria and Kenya. PLoS ONE 2024, 19, e0277847. [Google Scholar] [CrossRef]
- Nangia, S.; Vadivel, V.; Thukral, A.; Saili, A. Early Total Enteral Feeding versus Conventional Enteral Feeding in Stable Very-Low-Birth-Weight Infants: A Randomised Controlled Trial. Neonatology 2019, 115, 256–262. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Wang, H.; Chen, X.; Yang, C.; ChaoMu, L.; Cao, A.; Xiong, X. Human milk and bronchopulmonary dysplasia have a dose-dependent effect: A cohort study. BMJ Paediatr. Open 2025, 9, e002727. [Google Scholar] [CrossRef]
- Valentine, G.C.; Perez, K.; Hair, A.B. Early Fluid and Nutritional Management of Extremely Preterm Newborns During the Fetal-To-Neonatal Transition. Clin. Perinatol. 2023, 50, 545–556. [Google Scholar] [CrossRef]
- Valentine, G.C.; Perez, K.M.; Wood, T.R.; Mayock, D.E.; Comstock, B.A.; Puia-Dumitrescu, M.; Heagerty, P.J.; Juul, S.E. Postnatal maximal weight loss, fluid administration, and outcomes in extremely preterm newborns. J. Perinatol. 2022, 42, 1008–1016. [Google Scholar] [CrossRef]
- Chitale, R.; Ferguson, K.; Talej, M.; Yang, W.C.; He, S.; Edmond, K.M.; Smith, E.R. Early Enteral Feeding for Preterm or Low Birth Weight Infants: A Systematic Review and Meta-analysis. Pediatrics 2022, 150, e2022057092E. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Kermorvant-Duchemin, E.; Johnson, M.; Saenz de Pipaon, M.; Smith, L.E.; Hard, A.L. Nutritional interventions to prevent retinopathy of prematurity. Pediatr. Res. 2024, 96, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gong, X.; Yu, L.; Song, F.; Li, D.; Fan, Q.; Zhang, T.; Yan, X. Early enteral nutrition with exclusive donor milk instead of formula milk affects the time of full enteral feeding for very low birth weight infants. Front. Nutr. 2024, 11, 1345768. [Google Scholar] [CrossRef]
- Oh, W.; Poindexter, B.B.; Perritt, R.; Lemons, J.A.; Bauer, C.R.; Ehrenkranz, R.A.; Stoll, B.J.; Poole, K.; Wright, L.L.; Neonatal Research, N. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 2005, 147, 786–790. [Google Scholar] [CrossRef]
- Soullane, S.; Patel, S.; Claveau, M.; Wazneh, L.; Sant’Anna, G.; Beltempo, M. Fluid status in the first 10 days of life and death/bronchopulmonary dysplasia among preterm infants. Pediatr. Res. 2021, 90, 353–358. [Google Scholar] [CrossRef]
- Perez, K.M.; Strobel, K.M.; Hendrixson, D.T.; Brandon, O.; Hair, A.B.; Workneh, R.; Abayneh, M.; Nangia, S.; Hoban, R.; Kolnik, S.; et al. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin. Perinatol. 2024, 48, 151927. [Google Scholar] [CrossRef]
- Valentine, G.C.; Perez, K.M.; Wood, T.R.; Mayock, D.E.; Law, J.B.; Kolnik, S.; Strobel, K.M.; Brandon, O.C.; Comstock, B.A.; Heagerty, P.J.; et al. Time to regain birthweight and association with neurodevelopmental outcomes among extremely preterm newborns. J. Perinatol. 2024, 44, 554–560. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 June 2025).
- Cheah, I.G.S. Economic assessment of neonatal intensive care. Transl. Pediatr. 2019, 8, 246–256. [Google Scholar] [CrossRef]
- WHO; UNICEF; UNFPA; PMNCH. Born Too Soon: Decade of Action on Preterm Birth; World Health Organization: Geneva, Switzerland, 2023.
- Estimation UI-aGfCM. Levels & Trends in Child Mortality: Report 2022, Estimates Developed by the United Nations Inter-Agency Group for Child Mortality Estimation; UN Children’s Fund: New York, NY, USA, 2023. [Google Scholar]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Liang, X.; Lyu, Y.; Li, J.; Li, Y.; Chi, C. Global, regional, and national burden of preterm birth, 1990-2021: A systematic analysis from the global burden of disease study 2021. EClinicalMedicine 2024, 76, 102840. [Google Scholar] [CrossRef]
- Bell, E.F.; Warburton, D.; Stonestreet, B.S.; Oh, W. High-volume fluid intake predisposes premature infants to necrotising enterocolitis. Lancet 1979, 2, 90. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Warburton, D.; Stonestreet, B.S.; Oh, W. Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. N. Engl. J. Med. 1980, 302, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, 12, CD000503. [Google Scholar] [CrossRef]
- Perez, K.; Valentine, G.C.; Nangia, S.; Burrin, D.G.; Abayneh, M.; WOrkneh, R.; Jerome, M.; Dinersteine, N.A.; Salas, A. Advancement of enteral feeding in very-low-birth-weight infants: Global issues and challenges. Newborn 2022, 1, 306–313. [Google Scholar]
- Salas, A.A.; Li, P.; Parks, K.; Lal, C.V.; Martin, C.R.; Carlo, W.A. Early progressive feeding in extremely preterm infants: A randomized trial. Am. J. Clin. Nutr. 2018, 107, 365–370. [Google Scholar] [CrossRef]
- Razzaghy, J.; Shukla, V.V.; Gunawan, E.; Reeves, A.; Nguyen, K.; Salas, A.A. Early and exclusive enteral nutrition in infants born very preterm. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 109, 378–383. [Google Scholar] [CrossRef]
- Walsh, V.; Brown, J.V.E.; Copperthwaite, B.R.; Oddie, S.J.; McGuire, W. Early full enteral feeding for preterm or low birth weight infants. Cochrane Database Syst. Rev. 2020, 12, CD013542. [Google Scholar] [CrossRef] [PubMed]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755. [Google Scholar] [CrossRef]
- Ista, E.; van der Hoven, B.; Kornelisse, R.F.; van der Starre, C.; Vos, M.C.; Boersma, E.; Helder, O.K. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 724–734. [Google Scholar] [CrossRef]
- Ohlin, A.; Bjorkman Hjalmarsson, L. In neonatal sepsis every catheter matters. Pediatr. Res. 2021, 90, 506–507. [Google Scholar] [CrossRef]
- Hooven, T.A.; Polin, R.A. Healthcare-associated infections in the hospitalized neonate: A review. Early Hum. Dev. 2014, 90 (Suppl. S1), S4–S6. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics 2022, 150, e2022058813. [Google Scholar] [CrossRef]
- de Sousa, J.C.S.; de Carvalho, A.V.D.; Monte de Prada, L.C.; Marinho, A.P.; de Lima, K.F.; Macedo, S.K.O.; Santos, C.D.P.; da Camara, S.M.A.; Barreto, A.; Pereira, S.A. Nutritional Factors Associated with Late-Onset Sepsis in Very Low Birth Weight Newborns. Nutrients 2021, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.P.; Shibli, S.; Komaroff, E. Postnatal Transitional Weight Loss and Adverse Outcomes in Extremely Premature Neonates. Pediatr. Rep. 2017, 9, 6962. [Google Scholar] [CrossRef] [PubMed]
- Agren, J.; Sjors, G.; Sedin, G. Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr. 1998, 87, 1185–1190. [Google Scholar] [CrossRef]
- Agren, J.; Segar, J.L.; Soderstrom, F.; Bell, E.F. Fluid management considerations in extremely preterm infants born at 22–24 weeks of gestation. Semin. Perinatol. 2022, 46, 151541. [Google Scholar] [CrossRef]
Maternal or Infant Factor | ≤13% Maximum Weight Loss | >13% Maximum Weight Loss | p-Value * |
---|---|---|---|
Total Number of Infants | 328 | 162 | - |
Maternal Factors | |||
Maternal Age (years; median, IQR) | 27 (5) | 26 (7) | 0.66 |
Prenatal Care: Yes | 318 (97) | 156 (98) | 1.0 |
Antenatal Corticosteroids Provided: Yes | 205 (62) | 98 (62) | 0.92 |
HIV: Yes | 4 (1) | 0 (0) | 0.31 |
Syphilis: Yes | 2 (1) | 0 (0) | 1.0 |
Cesarean Delivery: Yes | 200 (62) | 80 (49) | 0.01 |
Number of Previous Pregnancies (median, IQR) | 1 (2) | 1 (2) | 0.52 |
History of Preterm Birth: Yes | 25 (8) | 15 (9) | 0.60 |
Urban: Yes | 118 (36) | 62 (38) | 0.69 |
Chorioamnionitis: Yes | 12 (4) | 4 (2) | 0.60 |
Pre-Eclampsia: Yes | 136 (41) | 51 (31) | 0.04 |
Eclampsia: Yes | 11 (3) | 7 (4) | 0.61 |
Oligohydramnios: Yes | 12 (4) | 2 (1) | 0.16 |
Polyhydramnios: Yes | 0 (0) | 2 (1) | 0.11 |
Gestational Diabetes: Yes | 0 (0) | 2 (1) | 0.11 |
Hypertension: Yes | 9 (3) | 5 (3) | 0.78 |
Tuberculosis: Yes | 0 (0) | 1 (1) | 0.33 |
Hepatitis B: Yes | 5 (2) | 0 (0) | 0.18 |
Infant Factors | |||
Gestational Age (weeks; median, IQR) | 33 (2) | 31 (2.8) | <0.001 |
Birthweight (g; median, IQR) | 1465 (340) | 1360 (371) | <0.001 |
5-min Apgar (median, IQR) | 7 (1) | 7 (1) | 0.748 |
Sex: Female | 150 (46) | 74 (46) | 1.00 |
Intrauterine Growth Restriction Diagnosis: Yes | 51 (16) | 10 (6) | 0.002 |
Inborn: Yes | 278 (85) | 140 (86) | 0.69 |
Singleton: Yes | 234 (72) | 88 (55) | <0.001 |
Received Respiratory Support Outside Delivery Room: Yes | 314 (96) | 159 (98) | 0.20 |
7-day Average Total Fluid Intake Category | 0.49 | ||
≤110 mL/kg birthweight/day | 29 (9) | 11 (7) | |
>110 mL/kg birthweight/day | 299 (91) | 151 (93) | |
7-day Average Total Fluid Intake (median, IQR) | 129 (18) | 136 (20) | 0.002 |
Known Congenital Anomalies: Yes | 5 (2) | 2 (1) | 1.0 |
Vitamin K administered: Yes | 322 (98) | 159 (98) | 1.0 |
n/N (%) | Adjusted * OR | p-Value | |
---|---|---|---|
In-hospital mortality # | |||
MWL ≤ 13% | 41/287 (14%) | 1.00 (ref) | - |
MWL > 13% | 42/120 (35%) | 1.30 (0.73, 2.32) | 0.37 |
Suspected NEC # | |||
MWL ≤ 13% | 11/317 (3%) | 1.00 (ref) | - |
MWL > 13% | 20/142 (14%) | 2.99 (1.28, 6.95) | 0.01 |
Culture-positive sepsis # | |||
MWL ≤ 13% | 68/260 (26%) | 1.00 (ref) | - |
MWL > 13% | 61/101 (60%) | 1.83 (1.14, 2.93) | 0.01 |
ROP # | |||
MWL ≤ 13% | 61/267 (23%) | 1.00 (ref) | - |
MWL > 13% | 63/99 (64%) | 2.09 (1.28, 3.41) | 0.003 |
Pulmonary hemorrhage # | |||
MWL ≤ 13% | 13/315 (4%) | 1.00 (ref) | - |
MWL > 13% | 5/157 (3%) | 0.42 (0.13, 1.42) | 0.17 |
LOS ** | |||
MWL ≤ 13% | Median 16 | 1.00 (ref) | - |
MWL > 13% | Median 36 | 1.37 (1.24, 1.52) | <0.001 |
n/N (%) | Adjusted * OR | p-Value | |
---|---|---|---|
In-hospital mortality # | |||
≤110 | 1/39 (3%) | 1.00 (ref) | - |
>110 | 82/368 (22%) | 3.75 (0.47, 29.61) | 0.21 |
Suspected NEC # | |||
≤110 | 0/40 (0%) | ∍ (See Footnote) | |
>110 | 31/419 (7%) | ||
Culture-positive sepsis # | |||
≤110 | 6/34 (18%) | 1.00 (ref) | - |
>110 | 123/327 (38%) | 2.11 (0.75, 6.94) | 0.16 |
ROP # | |||
≤110 | 2/38 (5%) | 1.00 (ref) | - |
>110 | 122/328 (37%) | 4.70 (1.06, 20.89) | 0.04 |
Pulmonary hemorrhage #,∍ | |||
≤110 | 0/40 (0%) | ∍ (See Footnote) | |
>110 | 18/432 (4%) | ||
LOS ** | |||
≤110 | 9.5 | 1.00 (ref) | - |
>110 | 21 | 1.39 (1.17, 1.65) | <0.001 |
Adverse In-Hospital Outcome | 7-Day Average Enteral Intake | 7-Day Average Parenteral Intake | ||||
---|---|---|---|---|---|---|
n/N (%) | Adjusted * OR | p-Value | n/N (%) | Adjusted * OR | p-Value | |
In-hospital mortality # | ||||||
≤60 | 76/260 (29%) | 1.00 (ref) | - | 4/151 (3%) | 1.00 (ref) | - |
>60 | 7/147 (5%) | 0.32 (0.14, 0.78) | 0.01 | 79/256 (31%) | 5.32 (1.79, 15.86) | 0.003 |
Suspected NEC # | ||||||
≤60 | 30/306 (10%) | 1.00 (ref) | - | 1/154 (1%) | 1.00 (ref) | - |
>60 | 1/153 (1%) | 0.12 (0.02, 0.91) | 0.04 | 30/305 (10%) | 6.91 (0.87, 54.96) | 0.07 |
Culture-positive sepsis # | ||||||
≤60 | 115/221 (52%) | 1.00 (ref) | - | 14/141 (10%) | 1.00 (ref) | - |
>60 | 14/140 (10%) | 0.22 (0.11, 0.42) | <0.001 | 115/220 (52%) | 4.37 (2.22, 8.60) | <0.001 |
ROP # | ||||||
≤60 | 109/227 (48%) | 1.00 (ref) | - | 12/143 (8%) | 1.00 (ref) | - |
>60 | 15/139 (11%) | 0.33 (0.17, 0.63) | <0.001 | 112/223 (50%) | 3.82 (1.89, 7.72) | <0.001 |
Pulmonary hemorrhage #,∍ | ||||||
≤60 | 18/318 (6%) | ∍ (see footnote) | 0/155 (0%) | ∍ (see footnote) | ||
>60 | 0/154 (0%) | 18/317 (6%) | ||||
LOS ** | ||||||
≤60 | 26 | 1.00 (ref) | - | 11 | 1.00 (ref) | - |
>60 | 11 | 0.74 (0.66, 0.82) | <0.001 | 26 | 1.48 (1.33, 1.65) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentine, G.C.; Rue, T.; Brandon, O.C.; Perez, K.M.; Wood, T.R.; Rent, S.; Barbut, G.; Abadi, M.; Workneh, R.; Metaferia, G.; et al. Evaluation of First-Week Fluid Intake and Maximal Weight Loss Percentage with In-Hospital Adverse Outcomes Among Moderately and Very Preterm Newborns in Ethiopia. Children 2025, 12, 872. https://doi.org/10.3390/children12070872
Valentine GC, Rue T, Brandon OC, Perez KM, Wood TR, Rent S, Barbut G, Abadi M, Workneh R, Metaferia G, et al. Evaluation of First-Week Fluid Intake and Maximal Weight Loss Percentage with In-Hospital Adverse Outcomes Among Moderately and Very Preterm Newborns in Ethiopia. Children. 2025; 12(7):872. https://doi.org/10.3390/children12070872
Chicago/Turabian StyleValentine, Gregory C., Tessa Rue, Olivia C. Brandon, Krystle M. Perez, Thomas R. Wood, Sharla Rent, Gal Barbut, Merhawit Abadi, Redeat Workneh, Gesit Metaferia, and et al. 2025. "Evaluation of First-Week Fluid Intake and Maximal Weight Loss Percentage with In-Hospital Adverse Outcomes Among Moderately and Very Preterm Newborns in Ethiopia" Children 12, no. 7: 872. https://doi.org/10.3390/children12070872
APA StyleValentine, G. C., Rue, T., Brandon, O. C., Perez, K. M., Wood, T. R., Rent, S., Barbut, G., Abadi, M., Workneh, R., Metaferia, G., & Abayneh, M. (2025). Evaluation of First-Week Fluid Intake and Maximal Weight Loss Percentage with In-Hospital Adverse Outcomes Among Moderately and Very Preterm Newborns in Ethiopia. Children, 12(7), 872. https://doi.org/10.3390/children12070872