False-Positive and False-Negative MRD Results in Children with Acute Lymphoblastic Leukemia: Navigating Between Scylla and Charybdis (Brief Review and Clinical Experience)
Abstract
1. Introduction
2. Methods
3. Results
3.1. Minimal Residual Disease
3.2. Methods for MRD Detection
3.3. MRD Detection and Clinical Effectiveness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ALL | Acute lymphoblastic leukemia |
AML | Acute myeloid leukemia |
B-ALL | B-lineage acute lymphoblastic leukemia |
CAR-T | Chimeric antigen receptors (chimeric T-cell receptors) |
CNS | Central nervous system |
DfN | Difference from normal |
dPCR | Digital PCR |
EFS | Event-free survival |
FC | Flow cytometry |
FISH | Fluorescence in situ hybridization |
HSCT | Hematopoietic stem cell transplantation |
I-BFM-SG | International Berlin–Frankfurt–Münster Study Group |
IgH | Immunoglobulin H |
LAIPs | Leukemia-associated immunophenotypes |
MFC | Multicolor flow cytometry |
MRD | Minimal residual disease |
MRD-HR | Minimal residual disease—high risk |
MRD-IR | Minimal residual disease—intermediate risk |
MRD-SR | Minimal residual disease—standard risk |
NGS | Next-generation sequencing |
OS | Overall survival |
PAS | Periodic acid Schiff |
PCR | Polymerase chain reaction |
qPCR | Quantitative PCR |
RFS | Relapse-free survival |
T-ALL | T-lineage acute lymphoblastic leukemia |
TCR | T-cell receptor |
References
- Chen, J.; Gale, R.P.; Hu, Y.; Yan, W.; Wang, T.; Zhang, W. Measurable residual disease (MRD)-testing in haematological and solid cancers. Leukemia 2024, 38, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, N.; Boddu, D.; John, R.; Korrapolu, R.S.A.; Balasubramanian, P.; Arunachalam, A.K.; Joseph, L.L.; Srinivasan, H.N.; Mathew, L.G.; Totadri, S. The Outcome of Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Experience from a Referral Center in South India. Indian J. Hematol. Blood Transfus. 2024, 40, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Atout, M.; Elwaheidi, H.; Maarouf, R.; Albabtain, A.A.; Alhayli, S.; Alshaibani, A.; Aljurf, M.; El Fakih, R. Minimal Residual Disease Testing for Diffuse Large B Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2025, in press. [CrossRef] [PubMed]
- Athale, U.H.; Gibson, P.J.; Bradley, N.M.; Malkin, D.M.; Hitzler, J. Minimal residual disease and childhood leukemia: Standard of care recommendations from the Pediatric Oncology Group of Ontario MRD Working Group. Pediatr. Blood Cancer 2016, 63, 973–982. [Google Scholar] [CrossRef]
- Terwijn, M.; van Putten, W.L.; Kelder, A.; van der Velden, V.H.; Brooimans, R.A.; Pabst, T.; Maertens, J.; Boeckx, N.; de Greef, G.E.; Valk, P.J.; et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J. Clin. Oncol. 2013, 31, 3889–3897. [Google Scholar] [CrossRef]
- Freeman, S.D.; Virgo, P.; Couzens, S.; Grimwade, D.; Russell, N.; Hills, R.K.; Burnett, A.K. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J. Clin. Oncol. 2013, 31, 4123–4131. [Google Scholar] [CrossRef]
- Freeman, S.D.; Hills, R.K.; Virgo, P.; Khan, N.; Couzens, S.; Dillon, R.; Gilkes, A.; Upton, L.; Nielsen, O.J.; Cavenagh, J.D.; et al. Measurable Residual Disease at Induction Redefines Partial Response in Acute Myeloid Leukemia and Stratifies Outcomes in Patients at Standard Risk Without NPM1 Mutations. J. Clin. Oncol. 2018, 36, 1486–1497. [Google Scholar] [CrossRef]
- Dillon, L.W.; Gui, G.; Page, K.M.; Ravindra, N.; Wong, Z.C.; Andrew, G.; Mukherjee, D.; Zeger, S.L.; El Chaer, F.; Spellman, S.; et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA 2023, 329, 745–755. [Google Scholar] [CrossRef]
- Berry, D.A.; Zhou, S.; Higley, H.; Mukundan, L.; Fu, S.; Reaman, G.H.; Wood, B.L.; Kelloff, G.J.; Jessup, J.M.; Radich, J.P. Association of Minimal Residual Disease With Clinical Outcome in Pediatric and Adult Acute Lymphoblastic Leukemia: A Meta-analysis. JAMA Oncol. 2017, 3, e170580. [Google Scholar] [CrossRef]
- Appelbaum, F.R. Measurement of minimal residual disease before and after myeloablative hematopoietic cell transplantation for acute leukemia. Best Pract. Res. Clin. Haematol. 2013, 26, 279–284. [Google Scholar] [CrossRef]
- Kothari, S.; Hillengass, J.; McCarthy, P.L.; Holstein, S.A. Determination of minimal residual disease in multiple myeloma: Does it matter? Curr. Hematol. Malig. Rep. 2019, 14, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.J.; Gratwohl, A.; Schlenk, R.F.; Sierra, J.; Bornhäuser, M.; Juliusson, G.; Råcil, Z.; Rowe, J.M.; Russell, N.; Mohty, M.; et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: An integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 2012, 9, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Chen, M.; Huang, X.Y.; Wang, H.; Chang, Y.J. Challenges facing minimal residual disease testing for acute myeloid leukemia and promising strategies to overcome them. Expert Rev. Hematol. 2023, 16, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Gale, R.P.; Gormley, N.J.; Ossenkoppele, G.J.; Walter, R.B. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 2017, 31, 1482–1490. [Google Scholar] [CrossRef]
- Potter, M.N.; Steward, C.G.; Oakhill, A. The significance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 1993, 83, 412–418. [Google Scholar] [CrossRef]
- Pieters, R.; de Groot-Kruseman, H.; Van der Velden, V.; Fiocco, M.; van den Berg, H.; de Bont, E.; Egeler, R.M.; Hoogerbrugge, P.; Kaspers, G.; Van der Schoot, E.; et al. Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J. Clin. Oncol. 2016, 34, 2591–2601. [Google Scholar] [CrossRef]
- Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 108. [Google Scholar] [CrossRef]
- Zawitkowska, J.; Lejman, M.; Romiszewski, M.; Matysiak, M.; Ćwiklińska, M.; Balwierz, W.; Owoc-Lempach, J.; Kazanowska, B.; Derwich, K.; Wachowiak, J.; et al. Results of two consecutive treatment protocols in Polish children with acute lymphoblastic leukemia. Sci. Rep. 2020, 10, 20168. [Google Scholar] [CrossRef]
- Samardžić-Predojević, J.; Đurđević-Banjac, B.; Malčić-Zanić, D. Influence of Minimal Residual Disease at Day 15 of Induction Therapy on Survival of Children with Acute Lymphoblastic Leukemia. Acta Med. Acad. 2023, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.J.; Liao, N.; Mai, H.R.; Li, X.Y.; Wan, W.Q.; Yang, L.H.; Huang, L.B.; Luo, X.Q.; Tian, C.; Chen, Q.W.; et al. Multicenter evaluation of minimal residual disease monitoring in early induction therapy for treatment of childhood acute lymphoblastic leukemia. Chin. J. Pediatr. 2024, 62, 337–344. (In Chinese) [Google Scholar] [CrossRef]
- Shervashidze, M.A.; Valiev, T.T.; Batmanova, N.A. Modern immunological criteria for a stratification of risk groups forprecursor B-cell acute lymphoblastic leukemia in children. J. Mod. Oncol. 2019, 21, 22–26. [Google Scholar] [CrossRef]
- Othus, M.; Gale, R.P.; Hourigan, C.S.; Walter, R.B. Statistics and measurable residual disease (MRD) testing: Uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant. 2020, 55, 843–850. [Google Scholar] [CrossRef]
- Butturini, A.; Klein, J.; Gale, R.P. Modeling minimal residual disease (MRD)-testing. Leuk. Res. 2003, 27, 293–300. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: Consensus document from ELN MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef]
- Hanekamp, D.; Bachas, C.; van de Loosdrecht, A.; Ossenkoppele, G.; Cloos, J. Re: Myeloblasts in normal bone marrows expressing leukaemia-associated immunophenotypes. Pathology 2020, 52, 289–291. [Google Scholar] [CrossRef]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of Measurable Residual Disease with Survival Outcomes in Patients With Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef]
- Kruse, A.; Abdel-Azim, N.; Kim, H.N.; Phan, V.; Ogana, H.; Wang, W.; Lee, R.; Gang, E.J.; Khazal, S.; Kim, Y.M. Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 1054. [Google Scholar] [CrossRef]
- van der Velden, V.H.; Joosten, S.A.; Willemse, M.J.; van Wering, E.R.; Lankester, A.W.; van Dongen, J.J.; Hoogerbrugge, P.M. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001, 15, 1485–1487. [Google Scholar] [CrossRef]
- Sedek, L.; Theunissen, P.; da Costa, E.S.; Van der Sluijs-Gelling, A.; Mejstrikova, E.; Gaipa, G.; Sonsala, A.; Twardoch, M.; Oliveira, E.; Novakova, M.; et al. Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. J. Immunol. Methods 2019, 475, 112429. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, T.; Mallhi, R.S.; Venkatesan, S. Minimal residual disease detection using flow cytometry: Applications in acute leukemia. Med. J. Armed Forces India 2016, 72, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, M.W.C.; van der Velden, V.H.J. The Evolving Landscape of Flowcytometric Minimal Residual Disease Monitoring in B-Cell Precursor Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2024, 25, 4881. [Google Scholar] [CrossRef] [PubMed]
- Irving, J.; Jesson, J.; Virgo, P.; Case, M.; Minto, L.; Eyre, L.; Noel, N.; Johansson, U.; Macey, M.; Knotts, L.; et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica 2009, 94, 870–874. [Google Scholar] [CrossRef]
- van Wering, E.R.; van der Linden-Schrever, B.E.; Szczepanski, T.; Willemse, M.J.; Baars, E.A.; van Wijngaarde-Schmitz, H.M.; Kamps, W.A.; van Dongen, J.J. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: Implications for monitoring of minimal residual disease. Br. J. Haematol. 2000, 110, 139–146. [Google Scholar] [CrossRef]
- Coustan-Smith, E.; Song, G.; Clark, C.; Key, L.; Liu, P.; Mehrpooya, M.; Stow, P.; Su, X.; Shurtleff, S.; Pui, C.H.; et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011, 117, 6267–6276. [Google Scholar] [CrossRef]
- Theunissen, P.; Mejstrikova, E.; Sedek, L.; van der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; da Costa, E.S.; Kotrová, M.; Novakova, M.; Sonneveld, E.; et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2017, 129, 347–357. [Google Scholar] [CrossRef]
- Lebecque, B.; Besombes, J.; Dannus, L.T.; De Antonio, M.; Cacheux, V.; Grèze, V.; Montagnon, V.; Veronese, L.; Tchirkov, A.; Tournilhac, O.; et al. Faster clinical decisions in B-cell acute lymphoblastic leukaemia: A single flow cytometric 12-colour tube improves diagnosis and minimal residual disease follow-up. Br. J. Haematol. 2024, 204, 1872–1881. [Google Scholar] [CrossRef]
- Coustan-Smith, E.; Sancho, J.; Hancock, M.L.; Boyett, J.M.; Behm, F.G.; Raimondi, S.C.; Sandlund, J.T.; Rivera, G.K.; Rubnitz, J.E.; Ribeiro, R.C.; et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000, 96, 2691–2696. [Google Scholar] [CrossRef]
- Dworzak, M.N.; Froschl, G.; Printz, D.; Mann, G.; PötSchger, U.; MühLegger, N.; Fritsch, G.; Gadner, H. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002, 99, 1952–1958. [Google Scholar] [CrossRef]
- Borowitz, M.J.; Devidas, M.; Hunger, S.P.; Bowman, W.P.; Carroll, A.J.; Carroll, W.L.; Linda, S.; Martin, P.L.; Pullen, D.J.; Viswanatha, D.; et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors. a Children’s Oncology Group study. Blood 2008, 111, 5477–5485. [Google Scholar] [CrossRef] [PubMed]
- Basso, G.; Veltroni, M.; Valsecchi, M.G.; Dworzak, M.N.; Ratei, R.; Silvestri, D.; Benetello, A.; Buldini, B.; Maglia, O.; Masera, G.; et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J. Clin. Oncol. 2009, 27, 5168–5174. [Google Scholar] [CrossRef] [PubMed]
- Krampera, M.; Vitale, A.; Vincenzi, C.; Perbellini, O.; Guarini, A.; Annino, L.; Todeschini, G.; Camera, A.; Fabbiano, F.; Fioritoni, G.; et al. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2003, 120, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, R.; Böttcher, S. Flow Cytometric MRD Detection in Selected Mature B-Cell Malignancies. Methods Mol. Biol. 2025, 2865, 145–188. [Google Scholar] [CrossRef]
- Wood, B.L. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytom. B Clin. Cytom. 2016, 90, 47–53. [Google Scholar] [CrossRef]
- Kotrova, M.; van der Velden, V.H.J.; van Dongen, J.M.; Formankova, R.; Sedlacek, P.; Brüggemann, M.; Zuna, J.; Stary, J.; Trka, J.; Fronkova, E. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017, 52, 962–968. [Google Scholar] [CrossRef]
- Schumich, A.; Maurer-Granofszky, M.; Attarbaschi, A.; Potschger, U.; Buldini, B.; Gaipa, G.; Karawajew, L.; Printz, D.; Ratei, R.; Conter, V.; et al. Flow-cytometric minimal residual disease monitoring in blood predicts relapse risk in pediatric B-cell precursor acute lymphoblastic leukemia in trial AIEOP-BFM-ALL 2000. Pediatr. Blood Cancer 2019, 66, e27590. [Google Scholar] [CrossRef]
- Wright, G.; Watt, E.; Inglott, S.; Brooks, T.; Bartram, J.; Adams, S.P. Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia. Pediatr. Blood Cancer 2019, 66, e27787. [Google Scholar] [CrossRef]
- Buccisano, F.; Maurillo, L.; Schuurhuis, G.J.; Del Principe, M.I.; Di Veroli, A.; Gurnari, C.; Venditti, A. The emerging role of measurable residual disease detection in AML in morphologic remission. Semin. Hematol. 2019, 56, 125–130. [Google Scholar] [CrossRef]
- Bruggemann, M.; Kotrova, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; Grioni, A.; et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Niu, T.; Chen, J.; Li, H.; Xiong, H.; Ke, Z.; Xin, B.; Zhu, K.; Tang, Y. Prognostic relevance of immunoglobulin heavy chain rearrangement and immunoglobulin kappa light chain rearrangement in patients with diffuse large B cell lymphoma. Oncologist 2025, 30, oyaf016. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Reigl, T.; Kotrova, M.; Appelt, F.; Stewart, P.; Bystry, V.; Krejci, A.; Grioni, A.; Pal, K.; Stranska, K.; et al. Quality control and quantification in IG/TR next-generation sequencing marker identification: Protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia 2019, 33, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Pulsipher, M.A.; Carlson, C.; Langholz, B.; Wall, D.A.; Schultz, K.R.; Bunin, N.; Kirsch, I.; Gastier-Foster, J.M.; Borowitz, M.; Desmarais, C.; et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood 2015, 125, 3501–3508. [Google Scholar] [CrossRef] [PubMed]
- Flohr, T.; Schrauder, A.; Cazzaniga, G.; Panzer-Grümayer, R.; van der Velden, V.; Fischer, S.; Stanulla, M.; Basso, G.; Niggli, F.K.; Schafer, B.W.; et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008, 22, 771–782. [Google Scholar] [CrossRef]
- Dubravčić, K.; Lasan, T.R.; Bilić, E.; Konja, J.; Rajić, L.; Femenić, R.; Pavlović, M.; Gjadrov, K.K.; Ries, S.; Sučić, M.; et al. Disease characteristics and outcomes of Croatian pediatric patients with acute lymphoblastic leukemia: Pretreatment immunophenotypic predictors of high bone marrow minimal residual disease on day 15 of treatment. Croat. Med. J. 2025, 66, 100–114. [Google Scholar] [CrossRef]
- Valiev, T.T.; Shervashidze, M.A.; Osipova, I.V.; Burlutskaya, T.I.; Popova, N.A.; Osmulskaya, N.S.; Aleskerova, G.A.; Sabantsev, S.L.; Gordeeva, Z.S.; Smirnov, V.Y.; et al. Protocol ALL-IC BFM 2002: Outcomes of Pediatric Acute Lymphoblastic Leukemia Treatment under Multi-Center Clinical Trial. Clin. Oncohematol. 2022, 15, 119–129. [Google Scholar] [CrossRef]
- Korkina, Y.S.; Valiev, T.T. The role of minimal residual disease in therapy of pediatric acute lymphoblastic leukemia: A prospective cohort study. Journal of Modern. Oncology 2023, 25, 73–77. [Google Scholar] [CrossRef]
- Ștefan, A.I.; Radu, L.E.; Jardan, D.; Coliță, A. The emerging role of next-generation sequencing in minimal residual disease assessment in acute lymphoblastic leukemia: A systematic review of current literature. Front. Med. 2025, 22, 1570041. [Google Scholar] [CrossRef]
- Giebel, S.; Marks, D.I.; Boissel, N.; Baron, F.; Chiaretti, S.; Ciceri, F.; Cornelissen, J.J.; Doubek, M.; Esteve, J.; Fielding, A.; et al. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: A position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2019, 54, 798–809. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Advani, A.S.; Bachanova, V.; Cassaday, R.D.; Deangelo, D.J.; Kebriaei, P.; Rowe, J.M.; Seftel, M.D.; Stock, W.; Tallman, M.S.; et al. Hematopoietic Cell Transplantation in the Treatment of Adult Acute Lymphoblastic Leukemia: Updated 2019 Evidence-Based Review from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2019, 25, 2113–2123. [Google Scholar] [CrossRef]
- Campana, D.; Pui, C.H. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood 2017, 129, 1913–1918. [Google Scholar] [CrossRef] [PubMed]
- Tomuleasa, C.; Selicean, C.; Cismas, S.; Jurj, A.; Marian, M.; Dima, D.; Pasca, S.; Petrushev, B.; Moisoiu, V.; Micu, W.-T.; et al. Minimal residual disease in chronic lymphocytic leukemia: A consensus paper that presents the clinical impact of the presently available laboratory approaches. Crit. Rev. Clin. Lab. Sci. 2018, 55, 329–345. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.J.; van der Velden, V.H.; Bruggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 2015, 125, 3996–4009. [Google Scholar] [CrossRef] [PubMed]
- Denys, B.; van der Sluijs-Gelling, A.J.; Homburg, C.; van der Schoot, C.E.; de Haas, V.; Philippé, J.; Pieters, R.; van Dongen, J.J.; van der Velden, V.H. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2013, 27, 635–641. [Google Scholar] [CrossRef]
- Yilmaz, M.; Kantarjian, H.; Wang, X.; Khoury, J.D.; Ravandi, F.; Jorgensen, J.; Short, N.J.; Loghavi, S.; Cortes, J.; Garcia-Manero, G.; et al. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. Am. J. Hematol. 2020, 95, 144–150. [Google Scholar] [CrossRef]
- Elorza, I.; Palacio, C.; Dapena, J.L.; Gallur, L.; de Toledo, J.S.; de Heredia, C.D. Relationship between minimal residual disease measured by multiparametric flow cytometry prior to allogeneic hematopoietic stem cell transplantation and outcome in children with acute lymphoblastic leukemia. Haematologica 2010, 95, 936–941. [Google Scholar] [CrossRef]
- Chen, H.; Gu, M.; Liang, J.; Song, H.; Zhang, J.; Xu, W.; Zhao, F.; Shen, D.; Shen, H.; Liao, C.; et al. Minimal residual disease detection by next-generation sequencing of different immunoglobulin gene rearrangements in pediatric B-ALL. Nat. Commun. 2023, 14, 7468. [Google Scholar] [CrossRef]
- Wu, D.; Emerson, R.O.; Sherwood, A.; Loh, M.L.; Angiolillo, A.; Howie, B.; Vogt, J.; Rieder, M.; Kirsch, I.; Carlson, C.; et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH. Clin. Cancer Res. 2014, 20, 4540–4548. [Google Scholar] [CrossRef]
- Momen, N.; Tario, J.; Fu, K.; Qian, Y.W. Multiparameter flow cytometry and ClonoSEQ correlation to evaluate precursor B-lymphoblastic leukemia measurable residual disease. J. Hematopathol. 2023, 16, 85–94. [Google Scholar] [CrossRef]
- Mai, H.; Li, Q.; Wang, G.; Wang, Y.; Liu, S.; Tang, X.; Chen, F.; Zhou, G.; Liu, Y.; Li, T.; et al. Clinical application of next-generation sequencing-based monitoring of minimal residual disease in childhood acute lymphoblastic leukemia. J. Cancer Res. Clin. Oncol. 2023, 149, 3259–3266. [Google Scholar] [CrossRef]
- Hwang, S.M.; Oh, I.; Kwon, S.R.; Lee, J.S.; Seong, M.W. Comparison of Measurable Residual Disease in Pediatric B-Lymphoblastic Leukemia Using Multiparametric Flow Cytometry and Next-Generation Sequencing. Ann. Lab. Med. 2024, 44, 354–358. [Google Scholar] [CrossRef]
- Zhang, J.; Oak, J. Challenges of detecting measurable/minimal disease in acute leukemia. Semin. Diagn. Pathol. 2023, 40, 216–220. [Google Scholar] [CrossRef]
Parameter | Flow Cytometry | Polymerase Chain Reaction | Next-Generation Sequencing |
---|---|---|---|
Object of the study | Blasts with the aberrant immunophenotype | Tumor-specific transcript and molecular rearrangements | Multiple antigen receptor rearrangements |
Sensitivity | 10−3–10−5 | 10−4–10−6 | 10–5–10−7 |
Advantages | (1) The possibility of using in most cases (2) Fast execution (3) The possibility of obtaining additional data on a malignant or non-malignant cell population | (1) High sensitivity (2) DNA stability (3) A high level of standardization (4) Availability of the accumulated data to rely on when choosing a treatment strategy | (1) More sensitive than PCR (2) Better specificity after HSCT (3) Tracking multiple sequences with unprecedented sensitivity (4) Possibility for simultaneous monitoring of multiple leukemic subclones in the same patient |
Disadvantages | (1) The result can be affected by increasing the pool of cell precursors during regeneration, low cell content of the samples, or altered immunophenotype during/after induction therapy (2) Limited sensitivity | (1) Long-term processing (2) High cost (3) The result can be affected by clonal evolution | (1) Few studies of the NGS feasibility in terms of MRD detection (2) Excessive DNA input is necessary (3) The requirement to know the initial aberrations in the positive sample |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkina, Y.S.; Valiev, T.T.; Batmanova, N.A.; Kiselevskiy, M.V.; Shubina, I.Z.; Kirgizov, K.I.; Varfolomeeva, S.R. False-Positive and False-Negative MRD Results in Children with Acute Lymphoblastic Leukemia: Navigating Between Scylla and Charybdis (Brief Review and Clinical Experience). Children 2025, 12, 860. https://doi.org/10.3390/children12070860
Korkina YS, Valiev TT, Batmanova NA, Kiselevskiy MV, Shubina IZ, Kirgizov KI, Varfolomeeva SR. False-Positive and False-Negative MRD Results in Children with Acute Lymphoblastic Leukemia: Navigating Between Scylla and Charybdis (Brief Review and Clinical Experience). Children. 2025; 12(7):860. https://doi.org/10.3390/children12070860
Chicago/Turabian StyleKorkina, Yulia S., Timur T. Valiev, Natalia A. Batmanova, Mikhail V. Kiselevskiy, Irina Z. Shubina, Kirill I. Kirgizov, and Svetlana R. Varfolomeeva. 2025. "False-Positive and False-Negative MRD Results in Children with Acute Lymphoblastic Leukemia: Navigating Between Scylla and Charybdis (Brief Review and Clinical Experience)" Children 12, no. 7: 860. https://doi.org/10.3390/children12070860
APA StyleKorkina, Y. S., Valiev, T. T., Batmanova, N. A., Kiselevskiy, M. V., Shubina, I. Z., Kirgizov, K. I., & Varfolomeeva, S. R. (2025). False-Positive and False-Negative MRD Results in Children with Acute Lymphoblastic Leukemia: Navigating Between Scylla and Charybdis (Brief Review and Clinical Experience). Children, 12(7), 860. https://doi.org/10.3390/children12070860