Prevalence and Metabolic Characterization of Polycystic Ovary Syndrome in a Cohort of Patients Diagnosed with Spina Bifida: Study Protocol
Abstract
1. Introduction
1.1. Background
- (a)
- Oligo-ovulation and/or anovulation;
- (b)
- Clinical and/or biochemical signs of hyperandrogenism;
- (c)
- Ultrasound evidence of polycystic ovaries, excluding other etiologies.
1.2. Homocysteine (Hcy) and Cardiovascular Risk
1.3. PCOS Pathophysiology and Correlation with Spina Bifida
2. Materials and Methods
2.1. Objectives
- Characterizing the metabolic profile of patients with PCOS.
- Differentiating between various phenotypic forms of PCOS.
2.2. Study Design
2.3. Settings and Study Population
2.4. Inclusion Criteria
- Age between 12 and 18 years;
- Onset of pubertal development with the appearance of menarche and/or full pubertal stage;
- Documented diagnosis of spina bifida;
- Signed informed consent to participate in the study.
2.5. Exclusion Criteria
- Use of oral combined estrogen–progestin contraceptives within three months prior to evaluation;
- Use of insulin-sensitizing medications within three months prior to evaluation;
- Use of folic acid within three months prior to evaluation;
- Known endocrine disorders;
- Known immunologic disorders;
- Known infectious diseases;
- Known oncological condition, current or previous;
- Lack of signed informed consent.
3. Study Variables and Timeline
3.1. First Day Hospital Visit
- Medical History: A comprehensive medical history will be taken, covering both recent and past physiological and pathological aspects;
- Gynecological History: A general gynecological history will be collected;
- General Pediatric Assessment: Including a physical examination and blood pressure assessment;
- Endocrinological Assessment: This includes anthropometric measurements (BMI, waist-to-hip ratio, and abdominal circumference) and an evaluation of hypertrichosis and hirsutism risk factors using the modified Ferriman–Gallwey scale [37]. The auxological and laboratory parameters will be standardized according to Italian population percentiles or WHO percentiles for foreign patients [38];
- Blood Tests: Comprehensive blood exams will be conducted, including of complete blood count, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), anti-thyroglobulin and anti-thyroid peroxidase antibodies, anti-Müllerian hormone (AMH), vitamin D, glucose, insulin, glycated hemoglobin (HbA1c), creatinine, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), prolactin (PRL), dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, free testosterone index, sex hormone-binding globulin (SHBG), 17-hydroxyprogesterone, inositol, and homocysteine. Based on these results, indirect indices such as the homeostasis model assessment of insulin resistance (HOMA-IR) will be calculated;
- Pelvic Ultrasound (transvaginal/transabdominal): To assess ovarian morphology;
- Follow-up Blood Tests: To be conducted between days 3 and 10 of the spontaneous menstrual cycle, including of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), prolactin (PRL), dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, free testosterone index, sex hormone-binding globulin (SHBG), inositol, homocysteine, and 17-hydroxyprogesterone.
- Oligo/anovulation;
- Clinical (e.g., acne, hirsutism, or alopecia) and/or biochemical hyperandrogenism (elevated androgen levels);
- Polycystic ovarian morphology on ultrasound (bilaterally normal or enlarged ovaries with at least 10 follicles of 2–8 mm in diameter, with or without an increased stroma-to-total ovarian area ratio).
3.2. Second Day Hospital Visit
- General Pediatric Assessment.
- Endocrinological Assessment: Based on test results, confirmation of PCOS diagnosis and phenotype determination will be conducted. If deemed appropriate based on general bloodwork and glucose tolerance test results, treatment with insulin-sensitizing agents may be recommended.
4. Statistical Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, L.A.; Burton, J.M.; Evans, S.H. Spina Bifida Management. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Au, K.S.; Ashley-Koch, A.; Northrup, H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev. Disabil. Res. Rev. 2010, 16, 6–15. [Google Scholar] [CrossRef]
- Buonsenso, D.; Sodero, G.; Mariani, F.; Lazzareschi, I.; Proli, F.; Zampino, G.; Pierantoni, L.; Valentini, P.; Rendeli, C. Comparison between Short Therapy and Standard Therapy in Pediatric Patients Hospitalized with Urinary Tract Infection: A Single Center Retrospective Analysis. Children 2022, 9, 1647. [Google Scholar] [CrossRef] [PubMed]
- Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.M.; Holmbeck, G.N.; Shaw, G.M. Spina bifida. Nat. Rev. Dis. Primers 2015, 1, 15007. [Google Scholar] [CrossRef]
- Cockroft, D.L.; Brook, F.A.; Copp, A.J. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro. Teratology 1992, 45, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Paolacci, S.; Calogero, A.E.; Cannarella, R.; Di Renzo, G.C.; Gerli, S.; Della Morte, C.; Busetto, G.M.; De Berardinis, E.; Del Giudice, F.; et al. From Myo-inositol to D-chiro-inositol molecular pathways. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Bizzarri, M.; Benvenga, S.; D’Anna, R.; Lanzone, A.; Soulage, C.; Di Renzo, G.C.; Hod, M.; Cavalli, P.; Chiu, T.T.; et al. Results from the International Consensus Conference on Myo-Inositol and D-Chiro-Inositol in Obstetrics and Gynecology: The link between metabolic syndrome and PCOS. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 72–76. [Google Scholar] [CrossRef]
- Cogram, P.; Hynes, A.; Dunlevy, L.P.E.; Greene, N.D.E.; Copp, A.J. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Hum. Mol. Genet. 2004, 13, 7–14. [Google Scholar] [CrossRef]
- Asplin, I.; Galasko, G.; Larner, J. Chiro-Inositol Deficiency and Insulin Resistance: A Comparison of the Chiro-Inositol- and the Myo-Inositol-Containing Insulin Mediators Isolated from Urine, Hemodialysate, and Muscle of Control and Type II Diabetic Subjects. Proc. Natl. Acad. Sci. USA 2006, 90, 5924–5928. [Google Scholar] [CrossRef]
- Larner, J.; Huang, L.C.; Tang, G.; Suzuki, S.; Schwartz, C.F.; Romero, G.; Roulidis, Z.; Zeller, K.; Shen, T.Y.; Oswald, A.S.; et al. Insulin Mediators: Structure and Formation. Cold Spring Harb. Symp. Quant. Biol. 1988, 53, 965–971. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Osowski, A.; Jóźwik, M.; Górecki, R.; Rynkiewicz, A.; Wojtkiewicz, J. Inositols’ Importance in the Improvement of the Endocrine–Metabolic Profile in PCOS. Int. J. Mol. Sci. 2019, 20, 5787. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Lai, Z.; Sun, L.; Zhang, Z.; Yang, J.; Li, Z.; Lin, J.; Zhang, Z. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): A pilot study. Res. Microbiol. 2019, 170, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Kirke, P.N.; Mills, J.L.; Scott, J.M. Homocysteine metabolism in pregnancies complicated by neural tube defects. Nutrition 1997, 13, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Blom, H.J.; Smulders, Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 2011, 34, 75–81. [Google Scholar] [CrossRef]
- Hague, W.M. Homocysteine and pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2003, 17, 459–469. [Google Scholar] [CrossRef]
- Blom, H.J. Folic acid, methylation and neural tube closure in humans. Birth Defects Res. A Clin. Mol. Teratol. 2009, 85, 295–302. [Google Scholar] [CrossRef]
- Rosenquist, T.H.; Ratashak, S.A.; Selhub, J. Homocysteine induces congenital defects of the heart and neural tube: Effect of folic acid. Proc. Natl. Acad. Sci. USA 1996, 93, 15227–15232. [Google Scholar] [CrossRef]
- Limpach, A.; Dalton, M.; Miles, R.; Gadson, P. Homocysteine inhibits retinoic acid synthesis: A mechanism for homocysteine-induced congenital defects. Exp. Cell Res. 2000, 260, 166–174. [Google Scholar] [CrossRef]
- Epeldegui, M.; Pena-Melian, A.; Varela-Moreiras, G.; Perez-Miguelsanz, J. Homocysteine modifies development of neurulation and dorsal root ganglia in chick embryos. Teratology 2002, 65, 171–179. [Google Scholar] [CrossRef]
- de las Casas, C.M.; Epeldegui, M.; Tudela, C.; Varela-Moreiras, G.; Perez-Miguelsanz, J. High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Res. A Clin. Mol. Teratol. 2003, 67, 35–40. [Google Scholar] [CrossRef]
- Tierney, B.J.; Ho, T.; Reedy, M.V.; Brauer, P.R. Homocysteine inhibits cardiac neural crest cell formation and morphogenesis in vivo. Dev. Dyn. 2004, 229, 63–73. [Google Scholar] [CrossRef]
- Brouns, M.R.; Afman, L.A.; Vanhauten, B.A.; Hekking, J.W.; Kohler, E.S.; van Straaten, H.W. Morphogenetic movements during cranial neural tube closure in the chick embryo and the effect of homocysteine. Anat Embryol. 2005, 210, 81–90. [Google Scholar] [CrossRef]
- Latacha, K.S.; Rosenquist, T.H. Homocysteine inhibits extra-embryonic vascular development in the avian embryo. Dev. Dyn. 2005, 234, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Bianchini, K.; Bourckhardt, G.F.; Ammar, D.; Nazari, E.M.; Müller, Y.M. Homocysteine-induced changes in cell proliferation and differentiation in the chick embryo spinal cord: Implications for mechanisms of neural tube defects (NTD). Reprod. Toxicol. 2017, 69, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sodero, G.; Rigante, D.; Pane, L.C.; Sessa, L.; Quarta, L.; Candelli, M.; Cipolla, C. Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases 2024, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 2002, 288, 2015–2022. [Google Scholar] [CrossRef]
- Pierpoint, T.; McKeigue, P.M.; Isaacs, A.J.; Wild, S.H.; Jacobs, H.S. Mortality of women with polycystic ovary syndrome at long-term follow-up. J. Clin. Epidemiol. 1998, 51, 581–586. [Google Scholar] [CrossRef]
- Meigs, J.B.; Jacques, P.F.; Selhub, J.; Singer, D.E.; Nathan, D.M.; Rifai, N.; D’Agostino Sr, R.B.; Wilson, P.W. Fasting plasma homocysteine levels in the insulin resistance syndrome: The Framingham offspring study. Diabetes Care 2001, 24, 1403–1410. [Google Scholar] [CrossRef]
- Imai, K.; Kadowaki, T.; Aizawa, Y.; Fukutomi, K. Problems in the health management of person with spinal cord injury. J. Clin. Epidemiol. 1996, 49, 505–510. [Google Scholar] [CrossRef]
- Washburn, R.A.; Figoni, S.F. High density lipoprotein cholesterol in individuals with spinal cord injury: The potential role of physical activity. Spinal Cord 1999, 37, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Shetty, K.R.; Sutton, C.H.; Rudman, I.W.; Rudman, D. Lipid and lipoprotein abnormalities in young quadriplegic men. Am. J. Med. Sci. 1992, 30, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Rendeli, C.; Castorina, M.; Ausili, E.; Girardi, E.; Fundaro, C.; Caldarelli, M.; Salvaggio, E. Risk factors for atherogenesis in children with spina bifida. Child’s Nerv. Syst. 2004, 20, 392–396. [Google Scholar] [CrossRef]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.S.; Middleton, L.J.; Jimenez, M.; Desai, R.; McMahon, A.C.; Allan, C.M.; Handelsman, D.J.; Walters, K.A. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 2014, 155, 3146–3159. [Google Scholar] [CrossRef]
- Azziz, R.; Kintziger, K.; Li, R.; Laven, J.; Morin-Papunen, L.; Merkin, S.S.; Teede, H.; Yildiz, B.O. Recommendations for epidemiologic and phenotypic research in polycystic ovary syndrome: An androgen excess and PCOS society resource. Hum. Reprod. 2019, 34, 2254–2265. [Google Scholar] [CrossRef]
- Yildiz, B.O.; Bolour, S.; Woods, K.; Moore, A.; Azziz, R. Visually scoring hirsutism. Hum. Reprod. Update 2010, 16, 51–64. [Google Scholar] [CrossRef]
- Cacciari, E.; Milani, S.; Balsamo, A.; Dammacco, F.; De Luca, F.; Chiarelli, F.; Pasquino, A.M.; Tonini, G.; Vanelli, M. Italian cross-sectional growth charts for height, weight and BMI (6–20 y). Eur. J. Clin. Nutr. 2002, 56, 171–180. [Google Scholar] [CrossRef]
- Cipolla, C.; Sodero, G.; Pane, L.C.; Mariani, F.; Di Sarno, L.; Rigante, D.; Candelli, M. Auxological and Metabolic Parameters of Children Undergoing the Gonadotropin-Releasing Hormone Stimulation Test: Correlations with the Final Diagnosis of Central Precocious Puberty in a Single-Center Study. Biomedicines 2023, 11, 1678. [Google Scholar] [CrossRef]
- Sessa, L.; Rotunno, G.; Sodero, G.; Pane, L.C.; Rendeli, C.; Maresca, G.; Rigante, D.; Cipolla, C. Predictive value of transabdominal pelvic ultrasonography for the diagnosis of central precocious puberty: A single-center observational retrospective study. Clin. Pediatr. Endocrinol. 2024, 33, 199–206. [Google Scholar] [CrossRef]
- Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef]
- Şeker Abanoz, E.; Özmen, M.; Çalışkan, M.; Gökçay, G.; Aydınlı, N. Ambulation, lesion level, and health-related quality of life in children with myelomeningocele. Childs Nerv. Syst. 2020, 36, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Rendeli, C.; Ausili, E.; Tabacco, F.; Focarelli, B.; Massimi, L.; Caldarelli, M.; Tamburrini, G.; Di Rocco, C. Urodynamic evaluation in children with lipomeningocele: Timing for neurosurgery, spinal cord tethering and followup. J. Urol. 2007, 177, 2319–2324. [Google Scholar] [CrossRef] [PubMed]
- Fidas, A.; MacDonald, H.L.; Elton, R.A.; McInnes, A.; Wild, S.R.; Chisholm, G.D. Prevalence of spina bifida occulta in patients with functional disorders of the lower urinary tract and its relation to urodynamic and neurophysiological measurements. Br. Med. J. 1989, 298, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, L.; Moehrlen, U.; Casanova, B.; Ryf, S.; Ochsenbein-Kölble, N.; Zimmermann, R.; Kraehenmann, F.; Meuli, M. Open Spina Bifida: Why Not Fetal Surgery? Fetal Diagn. Ther. 2019, 45, 430–434. [Google Scholar] [CrossRef]
- Cipolla, C.; Sodero, G.; Cammisa, I.; Giuliano, S.; Amar, I.D.; Biton, R.; Villa, P. The impact of glucocorticoids on bone health and growth: Endocrine and non-endocrine effects in children and young patients. Minerva Pediatr. 2023, 75, 896–904. [Google Scholar] [CrossRef]
- Nayak, B.S.; Mallappa Bannigida, D.; Krishna Mohan, S. Diet and lifestyle of women with polycystic ovarian syndrome in South India. Int. J. Clin. Biochem. Res. 2019, 6, 29–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sodero, G.; Cipolla, C.; Arzilli, F.; Rendeli, C. Prevalence and Metabolic Characterization of Polycystic Ovary Syndrome in a Cohort of Patients Diagnosed with Spina Bifida: Study Protocol. Children 2025, 12, 851. https://doi.org/10.3390/children12070851
Sodero G, Cipolla C, Arzilli F, Rendeli C. Prevalence and Metabolic Characterization of Polycystic Ovary Syndrome in a Cohort of Patients Diagnosed with Spina Bifida: Study Protocol. Children. 2025; 12(7):851. https://doi.org/10.3390/children12070851
Chicago/Turabian StyleSodero, Giorgio, Clelia Cipolla, Federica Arzilli, and Claudia Rendeli. 2025. "Prevalence and Metabolic Characterization of Polycystic Ovary Syndrome in a Cohort of Patients Diagnosed with Spina Bifida: Study Protocol" Children 12, no. 7: 851. https://doi.org/10.3390/children12070851
APA StyleSodero, G., Cipolla, C., Arzilli, F., & Rendeli, C. (2025). Prevalence and Metabolic Characterization of Polycystic Ovary Syndrome in a Cohort of Patients Diagnosed with Spina Bifida: Study Protocol. Children, 12(7), 851. https://doi.org/10.3390/children12070851