Forecasting Achievement of Inactive Disease in Juvenile Idiopathic Arthritis with Artificial Intelligence †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Clinical Assessment
2.3. Study Endpoint
2.4. Statistical Analysis
2.5. Machine Learning Analysis
2.6. Patients and Public Involvement
3. Results
3.1. Patient Population and Dataset Creation
3.2. Forecast of the State of ID at 24 Months
- T0-T6-T12-T18-T24: ‘n_estimators’: 160, ‘max_depth’: 32, ‘min_samples_split’: 4, ‘min_samples_leaf’: 10.
- T0-T6-T12-T24: ‘n_estimators’: 437, ‘max_depth’: 30, ‘min_samples_split’: 10 ‘min_samples_leaf’: 4.
- T0-T6-T24: ‘n_estimators’: 262, ‘max_depth’: 20, ‘min_samples_split’: 5, ‘min_samples_leaf’: 5.
- T0-T24: ‘n_estimators’: 157, ‘max_depth’: 11, ‘min_samples_split’: 6, ‘min_samples_leaf’: 6.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AJC | Active Joint Count |
ANA | Antinuclear Antibody |
BOCF | Baseline Observation Carried Forward |
CRP | C-Reactive Protein |
ESR | Erythrocyte Sedimentation Rate |
ID | Inactive Disease |
ILAR | International League of Associations for Rheumatology |
JIA | Juvenile Idiopathic Arthritis |
LOCF | Last Observation Carried Forward |
MCC | Matthews Correlation Coefficient |
ML | Machine Learning |
PhGA | Physician Global Assessment |
RF | Rheumatoid Factor |
SHAP | SHapley Additive exPlanations |
References
- Martini, A.; Lovell, D.J.; Albani, S.; Brunner, H.I.; Hyrich, K.L.; Thompson, S.D.; Ruperto, N. Juvenile idiopathic arthritis. Nat. Rev. Dis. Primers 2022, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.L.; LeBovidge, J.; Feldman, B. Health-related quality of life in children with arthritis. Rheum. Dis. Clin. N. Am. 2002, 28, 493–501. [Google Scholar] [CrossRef]
- Brunner, H.I.; Giannini, E.H. Health-related quality of life in children with rheumatic diseases. Curr. Opin. Rheumatol. 2003, 15, 602–612. [Google Scholar] [CrossRef]
- Lovell, D.J.; Ruperto, N.; Giannini, E.H.; Martini, A. Advances from clinical trials in juvenile idiopathic arthritis. Nat. Rev. Rheumatol. 2013, 9, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Shoop-Worrall, S.J.W.; Verstappen, S.M.M.; Baildam, E.; Chieng, A.; Davidson, J.; Foster, H.; Ioannou, Y.; McErlane, F.; Wedderburn, L.R.; Thomson, W.; et al. How common is clinically inactive disease in a prospective cohort of patients with juvenile idiopathic arthritis? The importance of definition. Ann. Rheum. Dis. 2017, 76, 1381–1388. [Google Scholar] [CrossRef]
- Ravelli, A.; Consolaro, A.; Horneff, G.; Laxer, R.M.; Lovell, D.J.; Wulffraat, N.M.; Akikusa, J.D.; Al-Mayouf, S.M.; Antón, J.; Avcin, T.; et al. Treating juvenile idiopathic arthritis to target: Recommendations of an international task force. Ann. Rheum. Dis. 2018, 77, 819–828. [Google Scholar] [CrossRef] [PubMed]
- van Dijkhuizen, E.H.P.; Wulffraat, N.M. Early predictors of prognosis in juvenile idiopathic arthritis: A systematic literature review. Ann. Rheum. Dis. 2015, 74, 1996–2005. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Nowroozi, A.; Rezaei, N. Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review. Rheumatol. Ther. 2022, 9, 1249–1304. [Google Scholar] [CrossRef]
- Venerito, V.; Bilgin, E.; Iannone, F.; Kiraz, S. AI am a rheumatologist: A practical primer to large language models for rheumatologists. Rheumatology 2023, 62, 3256–3260. [Google Scholar] [CrossRef]
- Benavent, D.; Madrid-García, A. Large language models and rheumatology: Are we there yet? Rheumatol. Adv. Pr. 2024, 9, rkae119. [Google Scholar] [CrossRef]
- La Bella, S.; Gupta, L.; Venerito, V. AI am the future: Artificial intelligence in pediatric rheumatology. Curr. Opin. Rheumatol. 2025, 10–1097. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Chan, A.; O Adebajo, A.; Walker, D.; Bukhari, M.; Adebajo, A. Artificial intelligence and machine learning in rheumatology. Rheumatology 2024, 63, 2040–2041. [Google Scholar] [CrossRef] [PubMed]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Filocamo, G.; Davì, S.; Pistorio, A.; Bertamino, M.; Ruperto, N.; Lattanzi, B.; Consolaro, A.; Magni-Manzoni, S.; Galasso, R.; Varnier, G.C.; et al. Evaluation of 21-numbered circle and 10-centimeter horizontal line visual analog scales for physician and parent subjective ratings in juvenile idiopathic arthritis. J. Rheumatol. 2010, 37, 1534–1541. [Google Scholar] [CrossRef]
- Bazso, A.; Consolaro, A.; Ruperto, N.; Pistorio, A.; Viola, S.; Magni-Manzoni, S.; Malattia, C.; Buoncompagni, A.; Loy, A.; Martini, A.; et al. Development and testing of reduced joint counts in juvenile idiopathic arthritis. J. Rheumatol. 2009, 36, 183–190. [Google Scholar] [CrossRef]
- Ravelli, A.; Viola, S.; Ruperto, N.; Corsi, B.; Ballardini, G.; Martini, A. Correlation between conventional disease activity measures in juvenile chronic arthritis. Ann. Rheum. Dis. 1997, 56, 197–200. [Google Scholar] [CrossRef]
- Ravelli, A.; Varnier, G.C.; Oliveira, S.; Castell, E.; Arguedas, O.; Magnani, A.; Pistorio, A.; Ruperto, N.; Magni-Manzoni, S.; Galasso, R.; et al. Antinuclear antibody-positive patients should be grouped as a separate category in the classification of juvenile idiopathic arthritis. Arthritis Rheum. 2011, 63, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.A.; Ruperto, N.; Giannini, E. Childhood Arthritis and Rheumatology Research Alliance, Pediatric Rheumatology International Trials Organization, Pediatric Rheumatology Collaborative Study Group. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J. Rheumatol. 2004, 31, 2290–2294. [Google Scholar]
- Bava, C.; Mongelli, F.; Pistorio, A.; Bertamino, M.; Bracciolini, G.; Dalprà, S.; Davì, S.; Lanni, S.; Muratore, V.; Pederzoli, S.; et al. A prediction rule for lack of achievement of inactive disease with methotrexate as the sole disease-modifying antirheumatic therapy in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 2019, 17, 50. [Google Scholar] [CrossRef]
- Bava, C.; Mongelli, F.; Pistorio, A.; Bertamino, M.; Bracciolini, G.; Dalprà, S.; Davì, S.; Lanni, S.; Muratore, V.; Pederzoli, S.; et al. Analysis of arthritis flares after achievement of inactive disease with methotrexate monotherapy in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 2021, 39, 426–433. [Google Scholar] [CrossRef]
- Rebollo-Giménez, A.I.; Pistorio, A.; Orsi, S.M.; Ridella, F.; Aldera, E.; Carlini, L.; Natoli, V.; Burrone, M.; Rosina, S.; Naddei, R.; et al. Frequency of remission achievement in the pre-treat-to-target decade in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 2025, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 56–61. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Rocklin, M. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 126–132. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. [Google Scholar] [CrossRef]
- Chicco, D.; Haupt, R.; Garaventa, A.; Uva, P.; Luksch, R.; Cangelosi, D. Computational intelligence analysis of high-risk neuroblastoma patient health records reveals time to maximum response as one of the most relevant factors for outcome prediction. Eur. J. Cancer 2023, 193, 113291. [Google Scholar] [CrossRef]
- Fatima, S.S.W.; Rahimi, A. A Review of Time-Series Forecasting Algorithms for Industrial Manufacturing Systems. Machines 2024, 12, 380. [Google Scholar] [CrossRef]
- Soyiri, I.N.; Reidpath, D.D. Evolving forecasting classifications and applications in health forecasting. Int. J. Gen. Med. 2012, 5, 381–389. [Google Scholar] [CrossRef]
- Moretti, C.; Viola, S.; Pistorio, A.; Magni-Manzoni, S.; Ruperto, N.; Martini, A.; Ravelli, A. Relative responsiveness of condition specific and generic health status measures in juvenile idiopathic arthritis. Ann. Rheum. Dis. 2005, 64, 257–261. [Google Scholar] [CrossRef]
- Palmisani, E.; Solari, N.; Magni-Manzoni, S.; Pistorio, A.; Labò, E.; Panigada, S.; Martini, A.; Ravelli, A. Correlation between juvenile idiopathic arthritis activity and damage measures in early, advanced, and longstanding disease. Arthritis Rheum. 2006, 55, 843–849. [Google Scholar] [CrossRef]
- Guzman, J.; Henrey, A.; Loughin, T.; Berard, R.A.; Shiff, N.J.; Jurencak, R.; Benseler, S.M.; Tucker, L.B. Predicting Which Children with Juvenile Idiopathic Arthritis Will Have a Severe Disease Course: Results from the ReACCh-Out Cohort. J. Rheumatol. 2017, 44, 230–240. [Google Scholar] [CrossRef]
- Wallace, C.A.; Giannini, E.H.; Huang, B.; Itert, L.; Ruperto, N.; Childhood Arthritis Rheumatology Research Alliance (CARRA); Pediatric Rheumatology Collaborative Study Group (PRCSG); Paediatric Rheumatology International Trials Organisation (PRINTO). American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011, 63, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Trincianti, C.; Consolaro, A. Outcome Measures for Juvenile Idiopathic Arthritis Disease Activity. Arthritis Care Res. 2020, 72 (Suppl. S10), 150–162. [Google Scholar] [CrossRef] [PubMed]
- Falcone, A.; Cassone, R.; Rossi, E.; Pistorio, A.; Martini, A.; Ravelli, A. Inter-observer agreement of the physician’s global assessment of disease activity in children with juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 2005, 23, 113–116. [Google Scholar]
- Taylor, J.; Giannini, E.H.; Lovell, D.J.; Huang, B.; Morgan, E.M. Lack of Concordance in Interrater Scoring of the Provider’s Global Assessment of Children With Juvenile Idiopathic Arthritis With Low Disease Activity. Arthritis Care Res. 2018, 70, 162–166. [Google Scholar] [CrossRef]
- Rypdal, V.; Brunner, H.I.; Feldman, B.M.; Ruperto, N.; Aggarwal, A.; Angeles-Han, S.T.; Backström, M.; Balay-Dustrude, E.; Bracaglia, C.; De Benedetti, F.; et al. Physician’s global assessment of disease activity in juvenile idiopathic arthritis: Consensus-based recommendations from an international task force. Ann. Rheum. Dis. 2025. [Google Scholar] [CrossRef] [PubMed]
- Backström, M.; Tarkiainen, M.; Gottlieb, B.S.; Trincianti, C.; Qiu, T.; Morgan, E.; Lovell, D.J.; Bovis, F.; Löyttyniemi, E.; Ruperto, N.; et al. Paediatric rheumatologists do not score the physician’s global assessment of juvenile idiopathic arthritis disease activity in the same way. Rheumatology 2023, 62, 3421–3426. [Google Scholar] [CrossRef]
- Alongi, A.; Giancane, G.; Naddei, R.; Natoli, V.; Ridella, F.; Burrone, M.; Rosina, S.; Chedeville, G.; Alexeeva, E.; Horneff, G.; et al. Drivers of non-zero physician global scores during periods of inactive disease in juvenile idiopathic arthritis. RMD Open 2022, 8, e002042. [Google Scholar] [CrossRef]
- De Lucia, O.; Giani, T.; Caporali, R.; Cimaz, R. Ultrasound versus physical examination in predicting disease flare in children with juvenile idiopathic arthritis: A systematic literature review and qualitative synthesis. Med. Ultrason. 2022, 24, 473–478. [Google Scholar] [CrossRef]
- Rosina, S.; Natoli, V.; Santaniello, S.; Trincianti, C.; Consolaro, A.; Ravelli, A. Novel biomarkers for prediction of outcome and therapeutic response in juvenile idiopathic arthritis. Expert. Rev. Clin. Immunol. 2021, 17, 853–870. [Google Scholar] [CrossRef]
- Giménez, A.I.R.; Cangelosi, D.; Ridella, F.; Orsi, S.; Aldera, E.; Natoli, V.; Rosina, S.; Naredo, E.; Ravelli, A. POS0762 Seeking for predictors of inactive disease in juvenile idiopathic arthritis with artificial intelligence. Ann. Rheum. Dis. 2024, 83 (Suppl. S1), 1172–1173. [Google Scholar] [CrossRef]
N (%) or Median (IQR) | N with Available Information | |
---|---|---|
Demographic features | ||
Females | 308 (74.4) | 414 |
Median (IQR) age at disease onset (years) | 3.1 (1.8–7.0) | 414 |
Median (IQR) age at study entry (years) | 3.2 (2.0–7.1) | 414 |
Median (IQR) disease duration at study entry (months) | 1.9 (1–3.4) | 414 |
Functional phenotype | ||
Systemic arthritis | 29 (7) | 29 |
Polyarthritis a | 211 (51) | 211 |
Oligoarthritis | 158 (38.2) | 158 |
Other arthritis b | 16 (3.9) | 16 |
Antinuclear antibody-positive | 268 (65.1) | 414 |
Uveitis | 15 (3.6) | 414 |
Clinical outcome measures | ||
Median (IQR) physician’s global assessment | 4 (3–6) | 414 |
Active joint count | 2 (1–4) | 414 |
Acute phase reactants | ||
Median (IQR) erythrocyte sedimentation rate | 33 (17–51) | 356 |
Median (IQR) C-reactive protein | 0.8 (0.5–2.3) | 359 |
Joints involved | ||
Temporomandibular | 16 (3.9) | 414 |
Cervical spine | 12 (2.9) | 414 |
Shoulder | 17 (4.1) | 414 |
Elbow | 59 (14.3) | 414 |
Wrist | 77 (18.6) | 414 |
Small hand joints | 116 (28) | 414 |
Sacroiliac | 2 (0.5) | 414 |
Hip | 23 (5.6) | 414 |
Knee | 319 (77.1) | 414 |
Ankle | 187 (45.2) | 414 |
Small foot joints | 81 (19.6) | 414 |
Treatments | N (%) |
---|---|
NSAIDs | 346 (83.6) |
Intra-articular glucocorticoids | 291 (70.3) |
Systemic glucocorticoids | 113 (27.3) |
Methotrexate | 273 (65.9) |
Sulfasalazine | 5 (1.2) |
Cyclosporine | 3 (0.7) |
Etanercept | 58 (14) |
Adalimumab | 18 (4.3) |
Infliximab | 1 (0.2) |
Tocilizumab | 3 (0.7) |
Abatacept | 0 (0) |
Anakinra | 14 (3.4) |
Canakinumab | 5 (1.2) |
Tofacitinib | 0 (0) |
Baricitinib | 1 (0.2) |
Dataset | MCC Training Set | MCC Testing Set |
---|---|---|
T0-T6-T12-T18-T24 | 0.70 | 0.42 |
T0-T6-T12-T24 | 0.68 | 0.65 |
T0-T6-T24 | 0.57 | 0.50 |
T0-T24 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebollo-Giménez, A.I.; Ridella, F.; Orsi, S.M.; Aldera, E.; Burrone, M.; Natoli, V.; Rosina, S.; Consolaro, A.; Naredo, E.; Ravelli, A.; et al. Forecasting Achievement of Inactive Disease in Juvenile Idiopathic Arthritis with Artificial Intelligence. Children 2025, 12, 741. https://doi.org/10.3390/children12060741
Rebollo-Giménez AI, Ridella F, Orsi SM, Aldera E, Burrone M, Natoli V, Rosina S, Consolaro A, Naredo E, Ravelli A, et al. Forecasting Achievement of Inactive Disease in Juvenile Idiopathic Arthritis with Artificial Intelligence. Children. 2025; 12(6):741. https://doi.org/10.3390/children12060741
Chicago/Turabian StyleRebollo-Giménez, Ana I., Francesca Ridella, Silvia Maria Orsi, Elena Aldera, Marco Burrone, Valentina Natoli, Silvia Rosina, Alessandro Consolaro, Esperanza Naredo, Angelo Ravelli, and et al. 2025. "Forecasting Achievement of Inactive Disease in Juvenile Idiopathic Arthritis with Artificial Intelligence" Children 12, no. 6: 741. https://doi.org/10.3390/children12060741
APA StyleRebollo-Giménez, A. I., Ridella, F., Orsi, S. M., Aldera, E., Burrone, M., Natoli, V., Rosina, S., Consolaro, A., Naredo, E., Ravelli, A., & Cangelosi, D. (2025). Forecasting Achievement of Inactive Disease in Juvenile Idiopathic Arthritis with Artificial Intelligence. Children, 12(6), 741. https://doi.org/10.3390/children12060741