How Delayed Cord Clamping Saves Newborn Lives
Abstract
:1. Introduction
“Another thing very injurious to the child, is the tying and cutting of the navel string too soon; which should always be left till the child has not only repeatedly breathed but till all pulsation in the cord ceases. As otherwise the child is much weaker than it ought to be, a portion of the blood being left in the placenta, which ought to have been in the child” Erasmus Darwin, 1801, [1] (p. 302).
2. Supporting Evidence: Reduction in Death After DCC for Preterm Infants
3. Physiology of Placental Transfusion at Birth
4. Placental/Cord Blood and Its Components
5. An Intact Cord Offers Continued (Sustained) Blood Circulation
“Is it possible that this wonderful alteration in the human machine [neonatal transition]...could be properly brought about in one instant of time, and at the will of a by-stander?” Charles White, 1791, [40] (p. 109)
6. Mechanical Interactions Resulting from Enhanced Blood Volume
“It is not widely appreciated that the dysfunction of the inner lining of blood vessels is the single most common cause of human mortality. Endothelial cells (ECs) control their micro-environments as gatekeepers of organ development, homeostasis, and tissue regeneration”. Hellmut Augustin, 2017, [61] (p. 1).
Clinical Example of Enhanced Perfusion from a Full Placental Transfusion
7. Other Supporting Processes
7.1. Vascular Relaxation from High Levels of Progesterone
7.2. Lung Expansion by Air Versus Capillary Distension with Blood
7.3. High Pulmonary Artery Pressures Are Found with Good Perfusion
8. Concerns About Potential Adverse Effects of DCC
9. The High Cost of Immediate or Early Cord Clamping
“Endothelial dysfunction is an important factor in the pathogenesis of acute and chronic diseases of prematurity including…essentially all morbidities that occur in premature infants” Dwayne Mascarenhas, 2024, [94] (p.3).
Hypovolemia, Inflammation, and Ischemia
10. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
References
- Darwin, E. Zoonomia: The Laws of Organic Life; Johnson: London, UK, 1801. [Google Scholar]
- Seidler, A.L.; Libesman, S.; Hunter, K.E.; Barba, A.; Aberoumand, M.; Williams, J.G.; Shrestha, N.; Aagerup, J.; Sotiropoulos, J.X.; Montgomery, A.A.; et al. Short, medium, and long deferral of umbilical cord clamping compared with umbilical cord milking and immediate clamping at preterm birth: A systematic review and network meta-analysis with individual participant data. Lancet 2023, 402, 2223–2234. [Google Scholar] [CrossRef] [PubMed]
- Mabry, P.L.; Marcus, S.E.; Clark, P.I.; Leischow, S.J.; Méndez, D. Systems Science: A Revolution in Public Health Policy Research. Am. J. Public Health 2010, 100, 1161–1163. [Google Scholar] [CrossRef]
- Kennedy, H.P.; Yoshida, S.; Costello, A.; Declercq, E.; Dias, M.A.; Duff, E.; Gherissi, A.; Kaufman, K.; McConville, F.; McFadden, A.; et al. Asking different questions: Research priorities to improve the quality of care for every woman, every child. Lancet Glob. Health 2016, 4, e777–e779. [Google Scholar] [CrossRef] [PubMed]
- González-Orozco, J.C.; Camacho-Arroyo, I. Progesterone Actions During Central Nervous System Development. Front. Neurosci. 2019, 13, 503. [Google Scholar] [CrossRef]
- Sippell, W.G.; Becker, H.; Versmold, H.T.; Bidlingmaier, F.; Knorr, D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. J. Clin. Endocrinol. Metab. 1978, 46, 971–985. [Google Scholar] [CrossRef]
- Arcilla, R.A.; Oh, W.; Lind, J.; Gessner, I.H. Pulmonary Arterial Pressures of Newborn Infants Born with Early and Late Clamping of the Cord. Acta Paediatr. 1966, 55, 305–315. [Google Scholar] [CrossRef]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of Transition from Intrauterine to Extrauterine Life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef]
- Rabe, H.; Gyte, G.M.; Díaz-Rossello, J.L.; Duley, L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2019, 9, CD003248. [Google Scholar] [CrossRef] [PubMed]
- Jasani, B.; Torgalkar, R.; Ye, X.Y.; Syed, S.; Shah, P.S. Association of Umbilical Cord Management Strategies with Outcomes of Preterm Infants: A Systematic Review and Network Meta-analysis. JAMA Pediatr. 2021, 175, e210102. [Google Scholar] [CrossRef]
- Backes, C.H.; Rivera, B.K.; Haque, U.; Bridge, J.A.; Smith, C.V.; Hutchon, D.J.R.; Mercer, J.S. Placental Transfusion Strategies in Very Preterm Neonates: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2014, 124, 47–56. [Google Scholar] [CrossRef]
- Seidler, A.L.; Aberoumand, M.; Hunter, K.E.; Barba, A.; Libesman, S.; Williams, J.G.; Shrestha, N.; Aagerup, J.; Sotiropoulos, J.X.; Montgomery, A.A.; et al. Deferred cord clamping, cord milking, and immediate cord clamping at preterm birth: A systematic review and individual participant data meta-analysis. Lancet 2023, 402, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
- Seidler, A.L.L.; Duley, L.; Katheria, A.; De Paco Matallana, C.; Dempsey, E.; Rabe, H.; Kattwinkel, J.; Mercer, J.; Josephsen, J.; Fairchild, K.; et al. iCOMP Collaboration. Systematic review and network meta-analysis with individual participant data on cord management at preterm birth (iCOMP): Study protocol. BMJ Open 2020, 10, e034595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katheria, A.C.; Clark, E.; Yoder, B.; Schmölzer, G.M.; Yan Law, B.H.; El-Naggar, W.; Rittenberg, D.; Sheth, S.; Mohamed, M.A.; Martin, C.; et al. Umbilical cord milking in nonvigorous infants: A cluster-randomized crossover trial. Am. J. Obstet. Gynecol. 2022, 228, 217.e1–217.e14. [Google Scholar] [CrossRef] [PubMed]
- McAdams, R.M.; Fay, E.; Delaney, S. Whole blood volumes associated with milking intact and cut umbilical cords in term newborns. J. Perinatol. 2018, 38, 245–250. [Google Scholar] [CrossRef]
- Mercer, J.S.; Erickson-Owens, D.A. Rethinking placental transfusion and cord clamping issues. J. Perinat. Neonatal Nurs. 2012, 26, 202–217, quiz 218–219. [Google Scholar] [CrossRef]
- Katheria, A.; Reister, F.; Essers, J.; Mendler, M.; Hummler, H.; Subramaniam, A.; Carlo, W.; Tita, A.; Truong, G.; Davis-Nelson, S.; et al. Association of Umbilical Cord Milking vs Delayed Umbilical Cord Clamping with Death or Severe Intraventricular Hemorrhage Among Preterm Infants. JAMA 2019, 322, 1877. [Google Scholar] [CrossRef]
- Yao, A.C.; Moinian, M.; Lind, J. Distribution of blood between infant and placenta after birth. Lancet 1969, 2, 871–873. [Google Scholar] [CrossRef]
- Alvarez, H.; Caldeyro-Barcia, R. Uterine Contractility in the Third Stage of Labour [Abstract]. Proc. R. Soc. Med. 1952, 45, 540. [Google Scholar] [CrossRef]
- Hellman, J.; Chandrasekharan, P. Umbilical Cord Pulse Oximetry Could It Help Guide Delaying the Clamping of the Umbilical Cord and Predict the Accurate Heart Rate and Oxygen Saturation in the Delivery Room; PAS: Toronto, CA, USA, 2024. [Google Scholar]
- Kiserud, T. Physiology of the fetal circulation. Semin. Fetal Neonatal Med. 2005, 10, 493–503. [Google Scholar] [CrossRef]
- Chaudhury, S.; Saqibuddin, J.; Birkett, R.; Falcon-Girard, K.; Kraus, M.; Ernst, L.M.; Grobman, W.; Mestan, K.K. Variations in Umbilical Cord Hematopoietic and Mesenchymal Stem Cells with Bronchopulmonary Dysplasia. Front. Pediatr. 2019, 7, 475. [Google Scholar] [CrossRef]
- Zhou, L.; McDonald, C.A.; Yawno, T.; Penny, T.; Miller, S.L.; Jenkin, G.; Malhotra, A. Feasibility of cord blood collection for autologous cell therapy applications in extremely preterm infants. Cytotherapy 2023, 25, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Linderkamp, O. Placental transfusion: Determinants and effects. Clin. Perinatol. 1982, 9, 559–592. [Google Scholar] [CrossRef] [PubMed]
- Erickson-Owens, D.A.; Mercer, J.S.; Oh, W. Umbilical cord milking in term infants delivered by cesarean section: A randomized controlled trial. J. Perinatol. 2012, 32, 580–584. [Google Scholar] [CrossRef]
- Marrs, L.; Niermeyer, S. Toward greater nuance in delayed cord clamping. Curr. Opin. Pediatr. 2022, 34, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Phil. Trans. R. Soc. B 2015, 370, 20140066. [Google Scholar] [CrossRef]
- Murphy, C.; Baskind, S.; Aladangady, N.; Banerjee, J. Measuring gut perfusion and blood flow in neonates using ultrasound Doppler of the superior mesenteric artery: A narrative review. Front. Pediatr. 2023, 11, 1154611. [Google Scholar] [CrossRef]
- Haworth, S.G.; Hall, S.M.; Chew, M.; Allen, K. Thinning of fetal pulmonary arterial wall and postnatal remodelling: Ultrastructural studies on the respiratory unit arteries of the pig. Virchows Arch. A Pathol. Anat. Histopathol. 1987, 411, 161–171. [Google Scholar] [CrossRef]
- Asakura, H. Fetal and Neonatal Thermoregulation. J. Nippon. Med. Sch. 2004, 71, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Blank, D.A.; Crossley, K.J.; Kashyap, A.J.; Hodges, R.J.; DeKoninck, P.L.J.; McGillick, E.V.; Rodgers, K.A.; Te Pas, A.B.; Hooper, S.B.; Polglase, G.R. Physiologic-Based Cord Clamping Maintains Core Temperature vs. Immediate Cord Clamping in Near-Term Lambs. Front. Pediatr. 2020, 8, 584983. [Google Scholar] [CrossRef]
- Maltepe, E.; Penn, A.A. Development, Function, and Patholoogy of the Placenta. In Avery’s Diseases of the Newborn; Elsevier: Philadelphia, PA, USA, 2018; pp. 40–60. ISBN 978-0-323-40139-5. [Google Scholar]
- Sherwood, L. Human Physiology: From Cells to Systems, 9th ed.; Cengage Learning: Boston, MA, USA, 2016; ISBN 978-1-285-86693-2. [Google Scholar]
- Hellström, W.; Martinsson, T.; Hellstrom, A.; Morsing, E.; Ley, D. Fetal haemoglobin and bronchopulmonary dysplasia in neonates: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 88–92. [Google Scholar] [CrossRef]
- Chaparro, C.M. Timing of umbilical cord clamping: Effect on iron endowment of the newborn and later iron status: Nutrition Reviews©, Vol. 69, No. S1. Nutr. Rev. 2011, 69, S30–S36. [Google Scholar] [CrossRef]
- Chopra, A.; Thakur, A.; Garg, P.; Kler, N.; Gujral, K. Early versus delayed cord clamping in small for gestational age infants and iron stores at 3 months of age—A randomized controlled trial. BMC Pediatr. 2018, 18, 234. [Google Scholar] [CrossRef] [PubMed]
- Wisgrill, L.; Schüller, S.; Bammer, M.; Berger, A.; Pollak, A.; Radke, T.F.; Kögler, G.; Spittler, A.; Helmer, H.; Husslein, P.; et al. Hematopoietic Stem Cells in Neonates: Any Differences between Very Preterm and Term Neonates? PLoS ONE 2014, 9, e106717. [Google Scholar] [CrossRef] [PubMed]
- Lawton, C.; Acosta, S.; Watson, N.; Gonzales-Portillo, C.; Diamandis, T.; Tajiri, N.; Kaneko, Y.; Sanberg, P.R.; Borlongan, C.V. Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping. Neural Regen. Res. 2015, 10, 1359–1362. [Google Scholar] [CrossRef]
- Tolosa, J.N.; Park, D.-H.; Eve, D.J.; Klasko, S.K.; Borlongan, C.V.; Sanberg, P.R. Mankind’s first natural stem cell transplant. J. Cell. Mol. Med. 2010, 14, 488–495. [Google Scholar] [CrossRef]
- White, C. Treatise on the Management of Pregnant and Lying—In Women, 5th ed.; Boston Book Company: London, UK, 1791. [Google Scholar]
- Ekelöf, K.; Sæther, E.; Santesson, A.; Wilander, M.; Patriksson, K.; Hesselman, S.; Thies-Lagergren, L.; Rabe, H.; Andersson, O. A hybrid type I, multi-center randomized controlled trial to study the implementation of a method for Sustained cord circulation And VEntilation (the SAVE-method) of late preterm and term neonates: A study protocol. BMC Pregnancy Childbirth 2022, 22, 593. [Google Scholar] [CrossRef]
- Andersson, O.; Rana, N.; Ewald, U.; Målqvist, M.; Stripple, G.; Basnet, O.; Subedi, K.; Kc, A. Intact cord resuscitation versus early cord clamping in the treatment of depressed newborn infants during the first 10 minutes of birth (Nepcord III)—A randomized clinical trial. Matern. Health Neonatol. Perinatol. 2019, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Sæther, E.; Gülpen, F.R.-V.; Jensen, C.; Myklebust, T.Å.; Eriksen, B.H. Neonatal transitional support with intact umbilical cord in assisted vaginal deliveries: A quality-improvement cohort study. BMC Pregnancy Childbirth 2020, 20, 496. [Google Scholar] [CrossRef]
- Ludwig, R.J.; Welch, M.G. Wired to Connect: The Autonomic Socioemotional Reflex Arc. Front. Psychol. 2022, 13, 841207. [Google Scholar] [CrossRef]
- Wiberg, N.; Källén, K.; Olofsson, P. Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 697–703. [Google Scholar] [CrossRef]
- Bland, R.D. Lung Fluid Balance During Development. NeoReviews 2005, 6, e255–e267. [Google Scholar] [CrossRef]
- Stein, H.; Oyama, K.; Martinez, A.; Chappell, B.; Padbury, J. Plasma epinephrine appearance and clearance rates in fetal and newborn sheep. Am. J. Physiol. 1993, 265, R756–R760. [Google Scholar] [CrossRef]
- Polglase, G.R.; Schmölzer, G.M.; Roberts, C.T.; Blank, D.A.; Badurdeen, S.; Crossley, K.J.; Miller, S.L.; Stojanovska, V.; Galinsky, R.; Kluckow, M.; et al. Cardiopulmonary Resuscitation of Asystolic Newborn Lambs Prior to Umbilical Cord Clamping; the Timing of Cord Clamping Matters! Front. Physiol. 2020, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Polglase, G.R.; Wallace, E.M.; te Pas, A.B.; Hooper, S.B. Ventilation before Umbilical Cord Clamping Improves the Physiological Transition at Birth. Front. Pediatr. 2014, 2, 113. [Google Scholar] [CrossRef] [PubMed]
- Ersdal, H.L.; Linde, J.; Mduma, E.; Auestad, B.; Perlman, J. Neonatal Outcome Following Cord Clamping After Onset of Spontaneous Respiration. Pediatrics 2014, 134, 265–272. [Google Scholar] [CrossRef]
- Downey, C.L.; Bewley, S. Historical perspectives on umbilical cord clamping and neonatal transition. J. R. Soc. Med. 2012, 105, 325–329. [Google Scholar] [CrossRef]
- Katheria, A.; Lee, H.C.; Knol, R.; Irvine, L.; Thomas, S. A review of different resuscitation platforms during delayed cord clamping. J. Perinatol. 2021, 41, 1540–1548. [Google Scholar] [CrossRef]
- Landau, D.; Goodrich, H.; Francka, W.; Burns, F. Death of Cesarean Infants: A theory as to its cause and a method of prevention. J. Pediat. 1950, 36, 421. [Google Scholar] [CrossRef]
- Welsh, S.; Elwell, J.; Manister, N.N.; Gildersleeve, R.K. Implementing Delayed Umbilical Cord Clamping in Cesarean Birth Using a Novel Method: A Pilot Study of Feasibility and Safety. J. Midwifery Womens Health 2020, 65, 109–118. [Google Scholar] [CrossRef]
- Sæther, E.; Andersson, O.; Myklebust, T.Å.; Bjellmo, S.; Bernitz, S.; Stridsklev, S.; Eriksen, B.H. Extra-uterine placental transfusion and intact-cord stabilisation of moderately preterm to term infants in caesarean deliveries—A feasibility study with historical control (INTACT-2). Early Hum. Dev. 2025, 202, 106208. [Google Scholar] [CrossRef]
- Kuehne, B.; Kirchgaessner, C.; Becker, I.; Kuckelkorn, M.; Valter, M.; Kribs, A.; Oberthuer, A. Mask Continuous Positive Airway Pressure Therapy with Simultaneous Extrauterine Placental Transfusion for Resuscitation of Preterm Infants—A Preliminary Study. Biomed. Hub. 2018, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ou, J.; Chen, G.; Zhu, Y.; Zhong, X. Comparing two different placental transfusion strategies for very preterm infants at birth: A matched-pairs study. Ann. Med. 2023, 55, 2301589. [Google Scholar] [CrossRef]
- Kuehne, B.; Grüttner, B.; Hellmich, M.; Hero, B.; Kribs, A.; Oberthuer, A. Extrauterine Placental Perfusion and Oxygenation in Infants with Very Low Birth Weight: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2340597. [Google Scholar] [CrossRef]
- Roberts, C.T. Placental Perfusion Rather Than Placental Transfusion—Key to Umbilical Cord Management at Birth? JAMA Netw. Open 2023, 6, e2340490. [Google Scholar] [CrossRef] [PubMed]
- Manchineni, S.B.; Meshram, R.J. Revolutionizing Neonatal Care: A Comprehensive Review of Intact Cord Resuscitation in Newborns. Cureus 2024, 16, e68924. [Google Scholar] [CrossRef]
- Augustin, H.G.; Koh, G.Y. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 2017, 357, eaal2379. [Google Scholar] [CrossRef]
- Drummond, H.A. ENaC Proteins in Vascular Smooth Muscle Mechanotransduction. In Current Topics in Membranes; Elsevier: Amsterdam, The Netherlands, 2007; Volume 59, pp. 127–153. ISBN 978-0-12-153359-5. [Google Scholar]
- Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Chu, Q.; Jiang, K.; Li, J.; Tang, N. The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Dev. Cell 2018, 44, 297–312.e5. [Google Scholar] [CrossRef]
- Yamashiro, Y.; Yanagisawa, H. The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin. Sci. 2020, 134, 2399–2418. [Google Scholar] [CrossRef]
- Davis, M.J.; Earley, S.; Li, Y.-S.; Chien, S. Vascular mechanotransduction. Physiol. Rev. 2023, 103, 1247–1421. [Google Scholar] [CrossRef]
- Riha, G.M.; Lin, P.H.; Lumsden, A.B.; Yao, Q.; Chen, C. Roles of Hemodynamic Forces in Vascular Cell Differentiation. Ann. Biomed. Eng. 2005, 33, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, L.; Axnick, J.; Buschmann, T.; Henning, C.; Urner, S.; Fang, S.; Nurmi, H.; Eichhorst, N.; Holtmeier, R.; Bódis, K.; et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018, 562, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Nico, B.; Ribatti, D. Contribution of endothelial cells to organogenesis: A modern reappraisal of an old Aristotelian concept. J. Anat. 2007, 211, 415–427. [Google Scholar] [CrossRef]
- Rafii, S.; Butler, J.M.; Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 2016, 529, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Morrisey, E.E.; Hogan, B.L.M. Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development. Dev. Cell 2010, 18, 8–23. [Google Scholar] [CrossRef]
- Pietra, G.G.; D’Amodio, M.D.; Leventhal, M.M.; Oh, W.; Braudo, J.L. Electron microscopy of cutaneous capillaries of newborn infants: Effects of placental transfusion. Pediatrics 1968, 42, 678–683. [Google Scholar] [CrossRef]
- Hall, S.M.; Haworth, S.G. Normal adaptation of pulmonary arterial intima to extrauterine life in the pig: Ultrastructural studies. J. Pathol. 1986, 149, 55–66. [Google Scholar] [CrossRef]
- Jaykka, S. Capillary erection and the structural appearance of fetal and neonatl lungs. Acta Paediatr. 1958, 47, 484–500. [Google Scholar] [CrossRef]
- Tingay, D.G.; Fatmous, M.; Kenna, K.; Dowse, G.; Douglas, E.; Sett, A.; Perkins, E.J.; Sourial, M.; Pereira-Fantini, P.M. Inflating Pressure and Not Expiratory Pressure Initiates Lung Injury at Birth in Preterm Lambs. Am. J. Respir. Crit. Care Med. 2023, 208, 589–599. [Google Scholar] [CrossRef]
- Davies, I.M.; Polglase, G.R. Inflating or Overinflation? New Evidence for Lung Injury at Birth. Am. J. Respir. Crit. Care Med. 2023, 208, 517–518. [Google Scholar] [CrossRef]
- Ambrogi, M.; Vezina, C.M. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front. Cell. Infect. Microbiol. 2024, 14, 1346087. [Google Scholar] [CrossRef] [PubMed]
- Lara-Cantón, I.; Badurdeen, S.; Dekker, J.; Davis, P.; Roberts, C.; Te Pas, A.; Vento, M. Oxygen saturation and heart rate in healthy term and late preterm infants with delayed cord clamping. Pediatr. Res. 2022, 96, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.P.; Nevill, E. The Assisted Breathing before Cord Clamping (ABC) Study Protocol. Children 2021, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Katheria, A.; Poeltler, D.; Durham, J.; Steen, J.; Rich, W.; Arnell, K.; Maldonado, M.; Cousins, L.; Finer, N. Neonatal Resuscitation with an Intact Cord: A Randomized Clinical Trial. J. Pediatr. 2016, 178, 75–80.e3. [Google Scholar] [CrossRef]
- Jobe, A.H. Transition/adaptation in the delivery room and less RDS: “Don’t just do something, stand there!”. J. Pediatr. 2005, 147, 284–286. [Google Scholar] [CrossRef]
- Andersson, O. The transition to extra-uterine life by extremely preterm infants—Handle with care. Acta Paediatr. 2016, 105, 337–338. [Google Scholar] [CrossRef]
- Dekker, J.; Hooper, S.B.; Te Pas, A.B. Non-invasive ventilation of preterm infants in the delivery room. Semin. Perinatol. 2025, 152080, in press. [Google Scholar] [CrossRef]
- Rudolph, A.M. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol. 1979, 41, 383–395. [Google Scholar] [CrossRef]
- Weissgerber, T.L. Flow-Mediated Dilation: Can New Approaches Provide Greater Mechanistic Insight into Vascular Dysfunction in Preeclampsia and Other Diseases? Curr. Hypertens. Rep. 2014, 16, 487. [Google Scholar] [CrossRef]
- McDonald, S.J.; Middleton, P.; Dowswell, T.; Morris, P.S. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst. Rev. 2013, 2015, CD004074. [Google Scholar] [CrossRef]
- Tournier, A.; Ghesquiere, L.; Labreuche, J.; Drumez, E.; Storme, L.; Rakza, T.; Houfflin-Debarge, V.; Garabedian, C. Effect of delayed cord clamping on red blood cell alloimmunization: A retrospective cohort study. Am. J. Obstet. Gynecol. MFM 2023, 5, 101165. [Google Scholar] [CrossRef] [PubMed]
- Rana, N.; Ranneberg, L.J.; Målqvist, M.; Kc, A.; Andersson, O. Delayed cord clamping was not associated with an increased risk of hyperbilirubinaemia on the day of birth or jaundice in the first 4 weeks. Acta Paediatr. 2019, 109, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Gustaffson, A.; Andersson, O. Effects of Extended Delayed Cord Clamping on Bilirubin and Postpartum Hemorrhage. 2018T. Available online: https://www.xcdsystem.com/pas/program/2018/index.cfm?pgid=157 (accessed on 3 March 2025).
- Zahir, F.; Rabbani, G.; Khan, R.H.; Rizvi, S.J.; Jamal, M.S.; Abuzenadah, A.M. The pharmacological features of bilirubin: The question of the century. Cell. Mol. Biol. Lett. 2015, 20, 418–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mercer, J.S.; Padbury, J.F. Delayed Cord Clamping in Infants with Suspected Intrauterine Growth Restriction. J. Pediatr. 2018, 201, 264–268. [Google Scholar] [CrossRef]
- Strauss, R.G.; Mock, D.M.; Johnson, K.; Mock, N.I.; Cress, G.; Knosp, L.; Lobas, L.; Schmidt, R.L. Circulating RBC volume, measured with biotinylated RBCs, is superior to the Hct to document the hematologic effects of delayed versus immediate umbilical cord clamping in preterm neonates. Transfusion 2003, 43, 1168–1172. [Google Scholar] [CrossRef]
- Johnson, A.B.; Burns, B. Hemorrhage. In StatPearls [Internet]; StatPearls Publishing: Petersburg, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542273/ (accessed on 10 January 2025).
- Mascarenhas, D.; Mohammadi, A.; Higazy, R.; Ivanovska, J.; Gauda, E.; Jasani, B. L-Citrulline in Neonates: From Bench to Bed Side. Children 2024, 12, 42. [Google Scholar] [CrossRef]
- Bennet, L. The art of cord clamping: Sparing the linen or sparing the child? J. Physiol. 2013, 591.8, 2021–2022. [Google Scholar] [CrossRef]
- Uduwana, S.; Nemerofsky, S. Umbilical cord management—The first opportunity to improve healthcare disparities. Semin. Perinatol. 2023, 47, 151785. [Google Scholar] [CrossRef]
- Amercian College of Obstetricians and Gynecologists (ACOG). Umbilical Cord Clamping After Birth: Committee Opinion #814, (n.d.). Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/12/delayed-umbilical-cord-clamping-after-birth#:~:text=Given%20the%20benefits%20to%20most,30%E2%80%9360%20seconds%20after%20birth (accessed on 10 February 2023).
- World Health Organization. Guideline: Delayed Umbilical Cord Clamping for Improved Maternal and Infant and Nutrition Outcomes. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/148793/9789241508209_eng.pdf (accessed on 7 November 2022).
- Menticoglou, S.; Schneider, C. Resuscitating the Baby after Shoulder Dystocia. Case Rep. Obstet. Gynecol. 2016, 2016, 8674167. [Google Scholar] [CrossRef]
- Mercer, J.; Erickson-Owens, D.; Rabe, H.; Andersson, O. Cardiac Asystole at Birth Re-Visited: Effects of Acute Hypovolemic Shock. Children 2023, 10, 383. [Google Scholar] [CrossRef]
- Madar, J.; Roehr, C.C.; Ainsworth, S.; Ersdal, H.; Morley, C.; Rüdiger, M.; Skåre, C.; Szczapa, T.; Te Pas, A.; Trevisanuto, D.; et al. European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation 2021, 161, 291–326. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Singletary, E.M.; Soar, J.; Olasveengen, T.M.; Greif, R.; Liley, H.G.; Zideman, D.; Bhanji, F.; Andersen, L.W.; Avis, S.R.; et al. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Resuscitation 2021, 169, 229–311. [Google Scholar] [CrossRef] [PubMed]
- Ott, F.; Kribs, A.; Stelzl, P.; Kyvernitakis, I.; Ehlen, M.; Schmidtke, S.; Rawnaq-Möllers, T.; Rath, W.; Berger, R.; Maul, H. Resuscitation of Term Compromised and Asphyctic Newborns: Better with Intact Umbilical Cord? Geburtshilfe Frauenheilkd. 2022, 82, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Isacson, M.; Gustafsson, A.; Svedenkrans, J.; Andersson, O. Cord clamping beyond 3 minutes: Neonatal short-term outcomes and maternal postpartum hemorrhage. Birth 2022, 49, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Raina, J.S.; Chawla, D.; Jain, S.; Khurana, S.; Sehgal, A.; Rani, S. Resuscitation with intact cord versus clamped cord in late preterm and term neonates: A randomized controlled trial. J. Pediatr. 2022, 254, 54–60.e4. [Google Scholar] [CrossRef]
- Hooper, N.; Armstrong, T. Hemorrhagic Shock. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470382/ (accessed on 2 February 2025).
- Rajnik, M.; Salkowski, C.A.; Thomas, K.E.; Li, Y.-Y.; Rollwagen, F.M.; Vogel, S.N. Induction of early inflammatory gene expression in a murine model of nonresuscitated, fixed-volume hemorrhage. Shock 2002, 17, 322–328. [Google Scholar] [CrossRef]
- Makley, A.T.; Goodman, M.D.; Belizaire, R.M.; Friend, L.A.W.; Johannigman, J.A.; Dorlac, W.C.; Lentsch, A.B.; Pritts, T.A. Damage control resuscitation decreases systemic inflammation after hemorrhage. J. Surg. Res. 2012, 175, e75–e82. [Google Scholar] [CrossRef]
- Makley, A.T.; Goodman, M.D.; Friend, L.A.W.; Deters, J.S.; Johannigman, J.A.; Dorlac, W.C.; Lentsch, A.B.; Pritts, T.A. Resuscitation with fresh whole blood ameliorates the inflammatory response after hemorrhagic shock. J. Trauma. 2010, 68, 305–311. [Google Scholar] [CrossRef]
- Sonnier, D.I.; Makley, A.T.; Friend, L.A.W.; Bailey, S.R.; Lentsch, A.B.; Pritts, T.A. Hemorrhagic shock induces a proinflammatory milieu in the gut lumen. J. Surg. Res. 2011, 170, 272–279. [Google Scholar] [CrossRef]
- Awad, A.S.; Okusa, M.D. Distant organ injury following acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2007, 293, F28–F29. [Google Scholar] [CrossRef]
- Ulinder, T.; Hellström, W.; Gadsbøll, C.; Nilsson, L.; Gebka, M.; Robertz, G.; Bruschettini, M.; Hellstrom, A.; Ley, D. Fetal haemoglobin and oxygen requirement in preterm infants: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2025, 110, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Söder, S. Neuroprotection in Preterm Infants. BioMed Res. Int. 2015, 2015, 257139. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, B.; Connolly, E.S. Principles of Cerebral Metabolism and Blood Flow. In Monitoring in Neurocritical Care; Eslevier/Saunders: Philadelphia, PA, USA, 2013; pp. 2–7. ISBN 987-1-4377-0167-8. [Google Scholar]
- van Os, S.; Liem, D.; Hopman, J.; Klaessens, J.; van de Bor, M. Cerebral O2 supply thresholds for the preservation of electrocortical brain activity during hypotension in near-term-born lambs. Pediatr. Res. 2005, 57, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Nassar, A.; Askari, R. Hypovolemic Shock. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513297/ (accessed on 1 February 2025).
Term | Definition |
---|---|
Placental Transfusion | Redistribution of blood between the placenta and the newborn results in a net auto-transfusion if cord circulation is sustained (not clamped). Amounts of blood vary depending on cord management. General term—needs a clear definition in any study or guideline. |
Optimal Cord Management (OCM) | Waiting until the cord is flat and white and/or the placenta is ready to deliver. Often misused without defining exactly how the cord was managed. |
Immediate cord clamping (ICC) | Clamping the cord as soon as possible or “immediately” after birth, often before breathing has commenced. In some papers, it is used to mean before 30 s. |
Early cord clamping (ECC) | Clamping before 30 s up to <one minute. Often used for control groups in studies of cord management. |
Delayed Cord Clamping (DCC) | Delaying (or deferring) the clamping of the cord for various times ranging from “at least 30 to 60 s” or 10 min or more. Always needs to be defined for each use. |
Umbilical Cord Milking (UCM) | Manually milking (squeezing) the umbilical cord from the perineum to the newborn, releasing and repeating up to four times. UCM can be performed with the cord intact (iUCM) or it can be cut as long as possible before milking (cUCM). |
Physiological-Based Cord Clamping (PBCC) | Clamping after regular breathing is established or when the preterm infant is stabilized (HR > 100, SpO2 > 85%, using <40% supplemental oxygen). |
Intact Cord Stabilization (ICS) | Allowing the infant to stabilize while the cord is still attached to the placenta, as long as needed. |
Intact Cord Resuscitation (ICR) | Leaving the cord intact for the non-vigorous infant while resuscitation is ongoing, and often after stabilization. |
Sustained cord circulation (SCC) | Allows for bi-directional blood flow, where an individual equilibrium can be reached for an optimal transition to occur. |
Extrauterine placental transfusion (EPT) | Removing the placenta along with the newborn at cesarean section without cord clamping to allow for further placental transfusion to take place exteriorly of the uterus. |
Residual Placental Blood Volume | Used to approximate the volume of placental transfusion by manually draining the residual blood remaining in the placenta after delivery and reporting the volume in milliliters. |
Rationale | Function |
---|---|
(1) Transfer of blood components | Transport of different blood cells |
Transport of stem cells | |
Transport of hormones and enzymes | |
Protection against pathogens | |
Protection against blood loss (hemostasis) | |
(2) Continued circulation of blood | Transport of respiratory gases (oxygen, carbon dioxide) |
Transport of nutrients and metabolic wastes | |
Regulation of pH and electrolytes | |
Regulation of body temperature | |
(3) Mechanical interactions due to enhanced blood volume | Regulation of fluid (blood) volume and mechanotransduction |
Regulation of organ and tissue perfusion and proliferation |
Components | Functions |
---|---|
Plasma | |
Water | Serves as a transport medium; carries heat |
Electrolytes | Major role in membrane excitability; buffers pH changes; aids osmosis between blood and extracellular fluid |
Nutrients (glucose, proteins), wastes, gases, and hormones | All are transported in blood; blood CO2 influences acid–base balance |
Plasma proteins Synthesized by the liver | Provides an osmotic effect important for the distribution of fluids between vascular and interstitial compartments |
Albumin | Contributes to colloid osmotic pressure; a transporter |
Globulins | Crucial for immune defense and various bodily processes |
Alpha and beta globulin | Function as enzymes; transport many water-soluble substances, proteins, clotting factors, and precursors |
Gamma globulin | Helps the immune system fight infections and foreign substances |
Fibrinogen | Supplies fibrin meshwork for a clot |
Cellular Components of Blood | |
Red blood cells (erythrocytes) | Transports O2 to cells and CO2 to the placenta to be excreted |
White blood cells | Part of the immune system—fights infections and diseases |
Neutrophils | Engulfs bacteria and debris; 1st line protection |
Eosinophils | Role in allergic reactions |
Basophils | Release histamine and heparin |
Monocytes | In transit to become macrophages |
Lymphocytes | Produce plasma proteins |
B lymphocytes | Produce antibodies |
T lymphocytes | Produce a cell-mediated immune response |
Platelets | Contribute to hemostasis; necessary for coagulation |
Stem cells | Foundation for all cells, tissues, and organs in the body—maintain and renew tissues (regeneration) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercer, J.; Saether, E.; King, T.; Maul, H.; Kennedy, H.P.; Erickson-Owens, D.; Andersson, O.; Rabe, H. How Delayed Cord Clamping Saves Newborn Lives. Children 2025, 12, 585. https://doi.org/10.3390/children12050585
Mercer J, Saether E, King T, Maul H, Kennedy HP, Erickson-Owens D, Andersson O, Rabe H. How Delayed Cord Clamping Saves Newborn Lives. Children. 2025; 12(5):585. https://doi.org/10.3390/children12050585
Chicago/Turabian StyleMercer, Judith, Elisabeth Saether, Tekoa King, Holger Maul, Holly Powell Kennedy, Debra Erickson-Owens, Ola Andersson, and Heike Rabe. 2025. "How Delayed Cord Clamping Saves Newborn Lives" Children 12, no. 5: 585. https://doi.org/10.3390/children12050585
APA StyleMercer, J., Saether, E., King, T., Maul, H., Kennedy, H. P., Erickson-Owens, D., Andersson, O., & Rabe, H. (2025). How Delayed Cord Clamping Saves Newborn Lives. Children, 12(5), 585. https://doi.org/10.3390/children12050585