Review of the Current State of Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging
Abstract
:1. Introduction
2. AI in CMR Acquisition and Reconstruction
2.1. Acquisition
2.2. Two-Dimensional Reconstructions
2.3. Three-Dimensional Reconstructions
3. AI in Image Processing and Reporting
3.1. Volumetric Analysis
3.2. 2 Dimensional Flow Quantification
3.3. 4 Dimensional Flow Quantification
3.4. CMR Reporting
4. AI in Clinical Use Today
Scanner Integration in the Clinical Setting
5. Future Directions
5.1. Increasing Computational Power and Pediatric Specific Datasets
5.2. Accelerated Image Acquisition and Reconstruction
5.3. Segmentation
5.4. Radiomics for Risk Prediction and Disease Detection
5.5. Disease Diagnosis
6. Ethical Considerations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arafati, A.; Hu, P.; Finn, J.P.; Rickers, C.; Cheng, A.L.; Jafarkhani, H.; Kheradvar, A. Artificial intelligence in pediatric and adult congenital cardiac MRI: An unmet clinical need. Cardiovasc. Diagn. Ther. 2019, 9, S310–S325. [Google Scholar] [CrossRef]
- Cau, R.; Pisu, F.; Suri, J.S.; Mannelli, L.; Scaglione, M.; Masala, S.; Saba, L. Artificial Intelligence Applications in Cardiovascular Magnetic Resonance Imaging: Are We on the Path to Avoiding the Administration of Contrast Media? Diagnostics 2023, 13, 2061. [Google Scholar] [CrossRef]
- Alansary, A.; Oktay, O.; Li, Y.; Folgoc, L.L.; Hou, B.; Vaillant, G.; Kamnitsas, K.; Vlontzos, A.; Glocker, B.; Kainz, B.; et al. Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 2019, 53, 156–164. [Google Scholar] [CrossRef]
- Lyu, Q.; Shan, H.; Xie, Y.; Kwan, A.C.; Otaki, Y.; Kuronuma, K.; Li, D.; Wang, G. Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network. IEEE Trans. Med. Imaging 2021, 40, 2170–2181. [Google Scholar] [CrossRef]
- Küstner, T.; Munoz, C.; Psenicny, A.; Bustin, A.; Fuin, N.; Qi, H.; Neji, R.; Kunze, K.; Hajhosseiny, R.; Prieto, C.; et al. Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute. Magn. Reson. Med. 2021, 86, 2837–2852. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Hanneman, K.; Zhang, T.; Alley, M.T.; Lai, P.; Tamir, J.I.; Uecker, M.; Pauly, J.M.; Lustig, M.; Vasanawala, S.S. Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J. Magn. Reson. Imaging 2016, 43, 1355–1368. [Google Scholar] [CrossRef]
- Peper, E.S.; van Ooij, P.; Jung, B.; Huber, A.; Gräni, C.; Bastiaansen, J.A.M. Advances in machine learning applications for cardiovascular 4D flow MRI. Front. Cardiovasc. Med. 2022, 9, 1052068. [Google Scholar] [CrossRef]
- Klemenz, A.-C.; Reichardt, L.; Gorodezky, M.; Manzke, M.; Zhu, X.; Dalmer, A.; Lorbeer, R.; Lang, C.I.; Weber, M.-A.; Meinel, F.G. Accelerated Cardiac MRI with Deep Learning–Based Image Reconstruction for Cine Imaging. Radiol. Cardiothorac. Imaging 2024, 6, e230419. [Google Scholar] [CrossRef]
- Pednekar, A.; Kocaoglu, M.; Wang, H.; Tanimoto, A.; Tkach, J.A.; Lang, S.; Taylor, M.D. Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation. J. Magn. Reson. Imaging 2024, 60, 640–650. [Google Scholar] [CrossRef]
- Vollbrecht, T.M.; Hart, C.; Zhang, S.; Katemann, C.; Sprinkart, A.M.; Isaak, A.; Attenberger, U.; Pieper, C.C.; Kuetting, D.; Geipel, A.; et al. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI. Front. Cardiovasc. Med. 2024, 11, 1323443. [Google Scholar] [CrossRef]
- Zucker, E.J.; Sandino, C.M.; Kino, A.; Lai, P.; Vasanawala, S.S. Free-Breathing Accelerated Cardiac MRI Using Deep Learning: Validation in Children and Young Adults. Radiology 2021, 300, 539–548. [Google Scholar] [CrossRef]
- Chen, C.; Qin, C.; Qiu, H.; Tarroni, G.; Duan, J.; Bai, W.; Rueckert, D. Deep Learning for Cardiac Image Segmentation: A Review. Front. Cardiovasc. Med. 2020, 7, 25. [Google Scholar] [CrossRef]
- Yao, T.; St. Clair, N.; Miller, G.F.; Dorfman, A.L.; Fogel, M.A.; Ghelani, S.; Krishnamurthy, R.; Lam, C.Z.; Quail, M.; Robinson, J.D.; et al. A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology. Radiol. Artif. Intell. 2024, 6, e230132. [Google Scholar] [CrossRef]
- Tayebi Arasteh, S.; Romanowicz, J.; Pace, D.F.; Golland, P.; Powell, A.J.; Maier, A.K.; Truhn, D.; Brosch, T.; Weese, J.; Lotfinia, M.; et al. Automated segmentation of 3D cine cardiovascular magnetic resonance imaging. Front. Cardiovasc. Med. 2023, 10, 1167500. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Y. A Deep Learning-Based Method for Rapid 3D Whole-Heart Modeling in Congenital Heart Disease. Cardiology 2024, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Yang, K.; Wen, Y.; Wang, P.; Hu, Y.; Lai, Y.; Wang, Y.; Zhao, K.; Tang, S.; Zhang, A.; et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 2024, 30, 1471–1480. [Google Scholar] [CrossRef]
- Pace, D.F.; Contreras, H.T.M.; Romanowicz, J.; Ghelani, S.; Rahaman, I.; Zhang, Y.; Gao, P.; Jubair, M.I.; Yeh, T.; Golland, P.; et al. HVSMR-2.0: A 3D cardiovascular MR dataset for whole-heart segmentation in congenital heart disease. Sci. Data 2024, 11, 721. [Google Scholar] [CrossRef]
- Rauseo, E.; Omer, M.; Amir-Khalili, A.; Sojoudi, A.; Le, T.-T.; Cook, S.A.; Hausenloy, D.J.; Ang, B.; Toh, D.-F.; Bryant, J.; et al. A Systematic Quality Scoring Analysis to Assess Automated Cardiovascular Magnetic Resonance Segmentation Algorithms. Front. Cardiovasc. Med. 2021, 8, 816985. [Google Scholar] [CrossRef]
- Tandon, A.; Mohan, N.; Jensen, C.; Burkhardt, B.E.U.; Gooty, V.; Castellanos, D.A.; McKenzie, P.L.; Zahr, R.A.; Bhattaru, A.; Abdulkarim, M.; et al. Retraining Convolutional Neural Networks for Specialized Cardiovascular Imaging Tasks: Lessons from Tetralogy of Fallot. Pediatr. Cardiol. 2021, 42, 578–589. [Google Scholar] [CrossRef]
- Buddhe, S.; Soriano, B.D.; Powell, A.J. Survey of centers performing cardiovascular magnetic resonance in pediatric and congenital heart disease: A report of the Society for Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2022, 24, 10. [Google Scholar] [CrossRef]
- Govil, S.; Crabb, B.T.; Deng, Y.; Dal Toso, L.; Puyol-Antón, E.; Pushparajah, K.; Hegde, S.; Perry, J.C.; Omens, J.H.; Hsiao, A.; et al. A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 2023, 25, 15. [Google Scholar] [CrossRef]
- Tilborghs, S.; Liang, T.; Raptis, S.; Ishikita, A.; Budts, W.; Dresselaers, T.; Bogaert, J.; Maes, F.; Wald, R.M.; Van De Bruaene, A. Automated biventricular quantification in patients with repaired tetralogy of Fallot using a three-dimensional deep learning segmentation model. J. Cardiovasc. Magn. Reson. 2024, 26, 101092. [Google Scholar] [CrossRef]
- Tran, C.T.; Halicek, M.; Dormer, J.D.; Tandon, A.; Hussain, T.; Fei, B. Fully automated segmentation of the right ventricle in patients with repaired Tetralogy of Fallot using U-Net. In Proceedings of the SPIE—The International Society for Optical Engineering, Houston, TX, USA, 15–20 February 2020; Volume 11317, p. 113171M. [Google Scholar] [CrossRef]
- Pradella, M.; Scott, M.B.; Omer, M.; Hill, S.K.; Lockhart, L.; Yi, X.; Amir-Khalili, A.; Sojoudi, A.; Allen, B.D.; Avery, R.; et al. Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI. Eur. Radiol. 2023, 33, 1707–1718. [Google Scholar] [CrossRef]
- Oscanoa, J.A.; Middione, M.J.; Syed, A.B.; Sandino, C.M.; Vasanawala, S.S.; Ennis, D.B. Accelerated two-dimensional phase-contrast for cardiovascular MRI using deep learning-based reconstruction with complex difference estimation. Magn. Reson. Med. 2023, 89, 356–369. [Google Scholar] [CrossRef]
- Bissell, M.M.; Raimondi, F.; Ait Ali, L.; Allen, B.D.; Barker, A.J.; Bolger, A.; Burris, N.; Carhäll, C.-J.; Collins, J.D.; Ebbers, T.; et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J. Cardiovasc. Magn. Reson. 2023, 25, 40. [Google Scholar] [CrossRef]
- Elsayed, A.; Gilbert, K.; Scadeng, M.; Cowan, B.R.; Pushparajah, K.; Young, A.A. Four-dimensional flow cardiovascular magnetic resonance in tetralogy of Fallot: A systematic review. J. Cardiovasc. Magn. Reson. 2021, 23, 59. [Google Scholar] [CrossRef]
- Bustamante, M.; Viola, F.; Engvall, J.; Carlhäll, C.-J.; Ebbers, T. Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning. J. Magn. Reson. Imaging JMRI 2023, 57, 191–203. [Google Scholar] [CrossRef]
- Kamphuis, V.P.; Roest, A.A.W.; Ajmone Marsan, N.; van den Boogaard, P.J.; Kroft, L.J.M.; Aben, J.-P.; Bax, J.J.; de Roos, A.; Lamb, H.J.; Westenberg, J.J.M. Automated Cardiac Valve Tracking for Flow Quantification with Four-dimensional Flow MRI. Radiology 2019, 290, 70–78. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, L.-H.; Plein, S.; Garg, P.; van der Geest, R.J. Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI. J. Cardiovasc. Magn. Reson. 2024, 26, 100003. [Google Scholar] [CrossRef]
- Clark, P.; Kim, J.; Aphinyanaphongs, Y. Marketing and US Food and Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical Devices: A Systematic Review. JAMA Netw. Open 2023, 6, e2321792. [Google Scholar] [CrossRef]
- Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed on 10 February 2025).
- Pezzotti, N.; de Weerdt, E.; Yousefi, S.; Elmahdy, M.S.; van Gemert, J.; Schülke, C.; Doneva, M.; Nielsen, T.; Kastryulin, S.; Lelieveldt, B.P.F.; et al. Adaptive-CS-Net: FastMRI with Adaptive Intelligence. arXiv 2019, arXiv:1912.12259. [Google Scholar] [CrossRef]
- Pezzotti, N.; Yousefi, S.; Elmahdy, M.S.; Gemert, J.H.F.V.; Schuelke, C.; Doneva, M.; Nielsen, T.; Kastryulin, S.; Lelieveldt, B.P.F.; Osch, M.J.P.V.; et al. An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access 2020, 8, 204825–204838. [Google Scholar] [CrossRef]
- Ahmad, R.; Xue, H.; Giri, S.; Ding, Y.; Craft, J.; Simonetti, O.P. Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn. Reson. Med. 2015, 74, 1266–1278. [Google Scholar] [CrossRef]
- AI4Medimaging—AI for Better Workflow, Better Outcomes in Medical Imaging Answering Unmet Medical Needs. Available online: https://ai4medimaging.com/ (accessed on 10 February 2025).
- van der Ven, J.P.G.; van Genuchten, W.; Sadighy, Z.; Valsangiacomo Buechel, E.R.; Sarikouch, S.; Boersma, E.; Helbing, W.A. Multivendor Evaluation of Automated MRI Postprocessing of Biventricular Size and Function for Children With and Without Congenital Heart Defects. J. Magn. Reson. Imaging JMRI 2023, 58, 794–804. [Google Scholar] [CrossRef]
- FORCE. Available online: https://www.forceregistry.org (accessed on 10 February 2025).
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2016, arXiv:1511.06434. [Google Scholar] [CrossRef]
- Karimi-Bidhendi, S.; Arafati, A.; Cheng, A.L.; Wu, Y.; Kheradvar, A.; Jafarkhani, H. Fully-automated deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J. Cardiovasc. Magn. Reson. 2020, 22, 80. [Google Scholar] [CrossRef]
- Bashir, S.M.A.; Wang, Y.; Khan, M.; Niu, Y. A comprehensive review of deep learning-based single image super-resolution. PeerJ Comput. Sci. 2021, 7, e621. [Google Scholar] [CrossRef]
- Biswas, S.; Aggarwal, H.K.; Jacob, M. Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM. Magn. Reson. Med. 2019, 82, 485–494. [Google Scholar] [CrossRef]
- Cardiac MRI Leverages Deep Learning for Speed and Precision. Available online: https://www.gehealthcare.com/insights/article/cardiac-mri-leverages-deep-learning-for-speed-and-precision (accessed on 10 February 2025).
- Fahmy, A.S.; Rowin, E.J.; Jaafar, N.; Chan, R.H.; Rodriguez, J.; Nakamori, S.; Ngo, L.H.; Pradella, S.; Zocchi, C.; Olivotto, I.; et al. Radiomics of Late Gadolinium Enhancement Reveals Prognostic Value of Myocardial Scar Heterogeneity in Hypertrophic Cardiomyopathy. JACC Cardiovasc. Imaging 2024, 17, 16–27. [Google Scholar] [CrossRef]
- Pujadas, E.R.; Raisi-Estabragh, Z.; Szabo, L.; McCracken, C.; Morcillo, C.I.; Campello, V.M.; Martín-Isla, C.; Atehortua, A.M.; Vago, H.; Merkely, B.; et al. Prediction of incident cardiovascular events using machine learning and CMR radiomics. Eur. Radiol. 2023, 33, 3488–3500. [Google Scholar] [CrossRef]
- Izquierdo, C.; Casas, G.; Martin-Isla, C.; Campello, V.M.; Guala, A.; Gkontra, P.; Rodríguez-Palomares, J.F.; Lekadir, K. Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance. Front. Cardiovasc. Med. 2021, 8, 764312. [Google Scholar] [CrossRef]
- Pezel, T.; Sanguineti, F.; Garot, P.; Unterseeh, T.; Champagne, S.; Toupin, S.; Morisset, S.; Hovasse, T.; Faradji, A.; Ah-Sing, T.; et al. Machine-Learning Score Using Stress CMR for Death Prediction in Patients with Suspected or Known CAD. JACC Cardiovasc. Imaging 2022, 15, 1900–1913. [Google Scholar] [CrossRef]
- Martini, N.; Aimo, A.; Barison, A.; Della Latta, D.; Vergaro, G.; Aquaro, G.D.; Ripoli, A.; Emdin, M.; Chiappino, D. Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2020, 22, 84. [Google Scholar] [CrossRef]
- Sharifrazi, D.; Alizadehsani, R.; Joloudari, J.H.; Band, S.S.; Hussain, S.; Sani, Z.A.; Hasanzadeh, F.; Shoeibi, A.; Dehzangi, A.; Sookhak, M.; et al. CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering. Math. Biosci. Eng. 2022, 19, 2381–2402. [Google Scholar] [CrossRef]
- Mannil, M.; Kato, K.; Manka, R.; von Spiczak, J.; Peters, B.; Cammann, V.L.; Kaiser, C.; Osswald, S.; Nguyen, T.H.; Horowitz, J.D.; et al. Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: A machine learning based proof-of-principle approach. Scientific Reports 2020, 10, 20537. [Google Scholar] [CrossRef]
- Dykstra, S.; Satriano, A.; Cornhill, A.K.; Lei, L.Y.; Labib, D.; Mikami, Y.; Flewitt, J.; Rivest, S.; Sandonato, R.; Feuchter, P.; et al. Machine learning prediction of atrial fibrillation in cardiovascular patients using cardiac magnetic resonance and electronic health information. Front. Cardiovasc. Med. 2022, 9, 998558. [Google Scholar] [CrossRef]
- Kwak, S.; Everett, R.J.; Treibel, T.A.; Yang, S.; Hwang, D.; Ko, T.; Williams, M.C.; Bing, R.; Singh, T.; Joshi, S.; et al. Markers of Myocardial Damage Predict Mortality in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2021, 78, 545–558. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Y.G.; Zaman, F.; Wu, X.; Adhaduk, M.; Chang, A.; Ji, J.; Wei, T.; Suksaranjit, P.; Christodoulidis, G.; et al. Predicting adverse cardiac events in sarcoidosis: Deep learning from automated characterization of regional myocardial remodeling. Int. J. Cardiovasc. Imaging 2022, 38, 1825–1836. [Google Scholar] [CrossRef]
- Dawes, T.J.W.; de Marvao, A.; Shi, W.; Fletcher, T.; Watson, G.M.J.; Wharton, J.; Rhodes, C.J.; Howard, L.S.G.E.; Gibbs, J.S.R.; Rueckert, D.; et al. Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology 2017, 283, 381–390. [Google Scholar] [CrossRef]
- Swift, A.J.; Lu, H.; Uthoff, J.; Garg, P.; Cogliano, M.; Taylor, J.; Metherall, P.; Zhou, S.; Johns, C.S.; Alabed, S.; et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 236–245. [Google Scholar] [CrossRef]
Metric | Potential Benefits of AI | Challenges | Ways to Overcome Challenges |
---|---|---|---|
Acquisition |
|
|
|
Image Reconstruction |
|
|
|
Volumetrics |
|
|
|
4D flow |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gearhart, A.; Anjewierden, S.; Buddhe, S.; Tandon, A. Review of the Current State of Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging. Children 2025, 12, 416. https://doi.org/10.3390/children12040416
Gearhart A, Anjewierden S, Buddhe S, Tandon A. Review of the Current State of Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging. Children. 2025; 12(4):416. https://doi.org/10.3390/children12040416
Chicago/Turabian StyleGearhart, Addison, Scott Anjewierden, Sujatha Buddhe, and Animesh Tandon. 2025. "Review of the Current State of Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging" Children 12, no. 4: 416. https://doi.org/10.3390/children12040416
APA StyleGearhart, A., Anjewierden, S., Buddhe, S., & Tandon, A. (2025). Review of the Current State of Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging. Children, 12(4), 416. https://doi.org/10.3390/children12040416