A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exome Sequencing
2.2. Patients
2.3. Family A
2.4. Family B
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerbone, M.; Dattani, M.T. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency. Growth Horm. IGF Res. 2017, 37, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Gregory, L.C.; Dattani, M.T. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J. Clin. Endocrinol. Metab. 2020, 105, dgz184. [Google Scholar] [CrossRef] [PubMed]
- Alatzoglou, K.S.; Dattani, M.T. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum. Dev. 2009, 85, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, R.; Gueydan, M.; Saveanu, A.; Vallette-Kasic, S.; Enjalbert, A.; Brue, T.; Barlier, A. Genetic screening of combined pituitary hormone deficiency: Experience in 195 patients. J. Clin. Endocrinol. Metab. 2006, 91, 3329–3336. [Google Scholar] [CrossRef]
- de Graaff, L.C.; Argente, J.; Veenma, D.C.; Drent, M.L.; Uitterlinden, A.G.; Hokken-Koelega, A.C. PROP1, HESX1, POU1F1, LHX3 and LHX4 mutation and deletion screening and GH1 P89L and IVS3+1/+2 mutation screening in a Dutch nationwide cohort of patients with combined pituitary hormone deficiency. Horm. Res. Paediatr. 2010, 73, 363–371. [Google Scholar] [CrossRef]
- Pérez Millán, M.I.; Vishnopolska, S.A.; Daly, A.Z.; Bustamante, J.P.; Seilicovich, A.; Bergadá, I.; Braslavsky, D.; Keselman, A.C.; Lemons, R.M.; Mortensen, A.H.; et al. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol. Genet. Genom. Med. 2018, 6, 514–525. [Google Scholar] [CrossRef]
- Gregory, L.C.; Cionna, C.; Cerbone, M.; Dattani, M.T. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet. Med. 2023, 25, 100881. [Google Scholar] [CrossRef]
- Blum, W.F.; Deal, C.; Zimmermann, A.G.; Shavrikova, E.P.; Child, C.J.; Quigley, C.A.; Drop, S.L.S.; Cutler, G.B.; Rosenfeld, R.G. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with idiopathic isolated GH deficiency. Eur. J. Endocrinol. 2013, 170, 13–21. [Google Scholar] [CrossRef]
- Xatzipsalti, M.; Voutetakis, A.; Stamoyannou, L.; Chrousos, G.P.; Kanaka-Gantenbein, C. Congenital Hypopituitarism: Various Genes, Various Phenotypes. Horm. Metab. Res. 2019, 51, 81–90. [Google Scholar] [CrossRef]
- De Rienzo, F.; Mellone, S.; Bellone, S.; Babu, D.; Fusco, I.; Prodam, F.; Petri, A.; Muniswamy, R.; De Luca, F.; Salerno, M.; et al. Frequency of genetic defects in combined pituitary hormone deficiency: A systematic review and analysis of a multicentre Italian cohort. Clin. Endocrinol. 2015, 83, 849–860. [Google Scholar] [CrossRef]
- Giordano, M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; George, A.S.; Brinkmeier, M.L.; Mortensen, A.H.; Gergics, P.; Cheung, L.Y.; Daly, A.Z.; Ajmal, A.; Millán, M.I.P.; Ozel, A.B.; et al. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr. Rev. 2016, 37, 636–675. [Google Scholar] [CrossRef] [PubMed]
- Sertedaki, A.; Tatsi, E.B.; Vasilakis, I.A.; Fylaktou, I.; Nikaina, E.; Iacovidou, N.; Siahanidou, T.; Kanaka-Gantenbein, C. Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells 2022, 11, 2088. [Google Scholar] [CrossRef]
- McCormack, S.E.; Li, D.; Kim, Y.J.; Lee, J.Y.; Kim, S.H.; Rapaport, R.; Levine, M.A. Digenic Inheritance of PROKR2 and WDR11 Mutations in Pituitary Stalk Interruption Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 2501–2507. [Google Scholar] [CrossRef]
- Zwaveling-Soonawala, N.; Alders, M.; Jongejan, A.; Kovacic, L.; Duijkers, F.A.; Maas, S.M.; Fliers, E.; van Trotsenburg, A.S.P.; Hennekam, R.C. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome from Exome Sequencing in 20 Patients. J. Clin. Endocrinol. Metab. 2018, 103, 415–428. [Google Scholar] [CrossRef]
- Jee, Y.H.; Gangat, M.; Yeliosof, O.; Temnycky, A.G.; Vanapruks, S.; Whalen, P.; Gourgari, E.; Bleach, C.; Yu, C.H.; Marshall, I.; et al. Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic. Front. Genet. 2021, 12, 697549. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bertino, E.; Di Nicola, P.; Varalda, A.; Occhi, L.; Giuliani, F.; Coscia, A. Neonatal growth charts. J. Matern. Fetal Neonatal Med. 2012, 25 (Suppl S1), 67–69. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar] [CrossRef]
- Nota 39. Available online: https://www.aifa.gov.it/nota-39 (accessed on 10 February 2025).
- Castinetti, F.; Reynaud, R.; Saveanu, A.; Quentien, M.H.; Albarel, F.; Enjalbert, A.; Barlier, A.; Brue, T. Congenital pituitary hormone deficiencies: Role of LHX3/LHX4 genes. Expert Rev. Endocrinol. Metab. 2008, 3, 751–760. [Google Scholar] [CrossRef]
- Mullen, R.D.; Colvin, S.C.; Hunter, C.S.; Savage, J.J.; Walvoord, E.C.; Bhangoo, A.P.; Ten, S.; Weigel, J.; Pfäffle, R.W.; Rhodes, S.J. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol. Cell. Endocrinol. 2007, 265–266, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Maghnie, M.; Collot, N.; Leger, J.; Dastot, F.; Polak, M.; Rose, S.; Touraine, P.; Duquesnoy, P.; Tauber, M.; et al. Contribution of LHX4 Mutations to Pituitary Deficits in a Cohort of 417 Unrelated Patients. J. Clin. Endocrinol. Metab. 2017, 102, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Tajima, T.; Hattori, T.; Nakajima, T.; Okuhara, K.; Tsubaki, J.; Fujieda, K. A novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr. J. 2007, 54, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Pfaeffle, R.W.; Hunter, C.S.; Savage, J.J.; Duran-Prado, M.; Mullen, R.D.; Neeb, Z.P.; Eiholzer, U.; Hesse, V.; Haddad, N.G.; Stobbe, H.M.; et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J. Clin. Endocrinol. Metab. 2008, 93, 1062–1071. [Google Scholar] [CrossRef]
- Castinetti, F.; Saveanu, A.; Reynaud, R.; Quentien, M.H.; Buffin, A.; Brauner, R.; Kaffel, N.; Albarel, F.; Guedj, A.M.; El Kholy, M.; et al. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. J. Clin. Endocrinol. Metab. 2008, 93, 2790–2799. [Google Scholar] [CrossRef]
- Gregory, L.C.; Humayun, K.N.; Turton, J.P.; McCabe, M.J.; Rhodes, S.J.; Dattani, M.T. Novel Lethal Form of Congenital Hypopituitarism Associated with the First Recessive LHX4 Mutation. J. Clin. Endocrinol. Metab. 2015, 100, 2158–2164. [Google Scholar] [CrossRef]
- Machinis, K.; Pantel, J.; Netchine, I.; Léger, J.; Camand, O.J.; Sobrier, M.-L.; Moal, F.D.-L.; Duquesnoy, P.; Abitbol, M.; Czernichow, P.; et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am. J. Hum. Genet. 2001, 69, 961–968. [Google Scholar] [CrossRef]
- Vishnopolska, S.A.; Mercogliano, M.F.; Camilletti, M.A.; Mortensen, A.H.; Braslavsky, D.; Keselman, A.; Bergadá, I.; Olivieri, F.; Miranda, L.; Marino, R.; et al. Comprehensive Identification of Pathogenic Gene Variants in Patients with Neuroendocrine Disorders. J. Clin. Endocrinol. Metab. 2021, 106, 1956–1976. [Google Scholar] [CrossRef]
- Tajima, T.; Yorifuji, T.; Ishizu, K.; Fujieda, K. A novel mutation (V101A) of the LHX4 gene in a Japanese patient with combined pituitary hormone deficiency. Exp. Clin. Endocrinol. Diabetes 2010, 118, 405–409. [Google Scholar] [CrossRef]
- Takagi, M.; Ishii, T.; Inokuchi, M.; Amano, N.; Narumi, S.; Asakura, Y.; Muroya, K.; Hasegawa, Y.; Adachi, M.; Hasegawa, T. Gradual loss of ACTH due to a novel mutation in LHX4: Comprehensive mutation screening in Japanese patients with congenital hypopituitarism. PLoS ONE 2012, 7, e46008. [Google Scholar] [CrossRef]
- Hemwong, N.; Phokaew, C.; Srichomthong, C.; Tongkobpetch, S.; Srilanchakon, K.; Supornsilchai, V.; Suphapeetiporn, K.; Porntaveetus, T.; Shotelersuk, V. A patient with combined pituitary hormone deficiency and osteogenesis imperfecta associated with mutations in LHX4 and COL1A2. J. Adv. Res. 2019, 21, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, Y.; Cai, J.; Lu, T.; Hu, J.; Yuan, F.; Chen, P. Identification of novel candidate pathogenic genes in pituitary stalk interruption syndrome by whole-exome sequencing. J. Cell. Mol. Med. 2020, 24, 11703–11717. [Google Scholar] [CrossRef] [PubMed]
- Dateki, S.; Fukami, M.; Uematsu, A.; Kaji, M.; Iso, M.; Ono, M.; Mizota, M.; Yokoya, S.; Motomura, K.; Kinoshita, E.; et al. Mutation and gene copy number analyses of six pituitary transcription factor genes in 71 patients with combined pituitary hormone deficiency: Identification of a single patient with LHX4 deletion. J. Clin. Endocrinol. Metab. 2010, 95, 4043–4047. [Google Scholar] [CrossRef]
- Filges, I.; Bischof-Renner, A.; Röthlisberger, B.; Potthoff, C.; Glanzmann, R.; Günthard, J.; Schneider, J.; Huber, A.R.; Zumsteg, U.; Miny, P.; et al. Panhypopituitarism presenting as life-threatening heart failure caused by an inherited microdeletion in 1q25 including LHX4. Pediatrics 2012, 129, e529–e534. [Google Scholar] [CrossRef]
- Samarasinghe, S.M.; Sundralingam, T.; Hewage, A.S.; de Silva, K.S.H.; Tennekoon, K.H. Novel gross deletion at the LHX4 gene locus in a child with growth hormone deficiency. Growth Horm. IGF Res. 2022, 62, 101443. [Google Scholar] [CrossRef]
- Capra, V.; Severino, M.; Rossi, A.; Nozza, P.; Doneda, C.; Perri, K.; Pavanello, M.; Fiorio, P.; Gimelli, G.; Tassano, E.; et al. Pituitary deficiency and congenital infiltrating lipomatosis of the face in a girl with deletion of chromosome 1q24.3q31.1. Am. J. Med. Genet. A 2014, 164A, 495–499. [Google Scholar] [CrossRef]
- Tajima, T.; Ishizu, K.; Nakamura, A. Molecular and Clinical Findings in Patients with LHX4 and OTX2 Mutations. Clin. Pediatr. Endocrinol. 2013, 22, 15–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niida, Y.; Togi, S.; Ura, H. Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int. J. Mol. Sci. 2021, 22, 13060. [Google Scholar] [CrossRef]
- Lupu, F.I.; Burnett, J.B.; Eggenschwiler, J.T. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev. Biol. 2018, 434, 24–35. [Google Scholar] [CrossRef]
- Arnhold, I.J.; França, M.M.; Carvalho, L.R.; Mendonca, B.B.; Jorge, A.A. Role of GLI2 in hypopituitarism phenotype. J. Mol. Endocrinol. 2015, 54, R141–R150. [Google Scholar] [CrossRef]
- Wang, Y.; Martin, J.F.; Bai, C.B. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev. Biol. 2010, 348, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Paulo, S.S.; Fernandes-Rosa, F.L.; Turatti, W.; Coeli-Lacchini, F.B.; Martinelli, C.E., Jr.; Nakiri, G.S.; Moreira, A.C.; Santos, A.C.; de Castro, M.; Antonini, S.R. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects. Clin. Endocrinol. 2015, 82, 562–569. [Google Scholar] [CrossRef] [PubMed]
- França, M.M.; Jorge, A.A.; Carvalho, L.R.; Costalonga, E.F.; Otto, A.P.; Correa, F.A.; Mendonca, B.B.; Arnhold, I.J.P. Relatively high frequency of non-synonymous GLI2 variants in patients with congenital hypopituitarism without holoprosencephaly. Clin. Endocrinol. 2013, 78, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Bertolacini, C.D.; Ribeiro-Bicudo, L.A.; Petrin, A.; Richieri-Costa, A.; Murray, J.C. Clinical findings in patients with GLI2 mutations—Phenotypic variability. Clin. Genet. 2012, 81, 70–75. [Google Scholar] [CrossRef]
- Roessler, E.; Du, Y.Z.; Mullor, J.L.; Casas, E.; Allen, W.P.; Gillessen-Kaesbach, G.; Roeder, E.R.; Ming, J.E.; Ruiz i Altaba, A.; Muenke, M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Natl. Acad. Sci. USA 2003, 100, 13424–13429. [Google Scholar] [CrossRef]
- Forbes, B.E.; Blyth, A.J.; Wit, J.M. Disorders of IGFs and IGF-1R signaling pathways. Mol. Cell. Endocrinol. 2020, 518, 111035. [Google Scholar] [CrossRef]
- Klammt, J.; Kiess, W.; Pfäffle, R. IGF1R mutations as cause of SGA. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 191–206. [Google Scholar] [CrossRef]
- Stróżewska, W.; Durda-Masny, M.; Szwed, A. Mutations in GHR and IGF1R Genes as a Potential Reason for the Lack of Catch-Up Growth in SGA Children. Genes 2022, 13, 856. [Google Scholar] [CrossRef]
- Abuzzahab, M.J.; Schneider, A.; Goddard, A.; Grigorescu, F.; Lautier, C.; Keller, E.; Kiess, W.; Klammt, J.; Kratzsch, J.; Osgood, D.; et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 2003, 349, 2211–2222. [Google Scholar] [CrossRef]
- Kawashima, Y.; Kanzaki, S.; Yang, F.; Kinoshita, T.; Hanaki, K.; Nagaishi, J.; Ohtsuka, Y.; Hisatome, I.; Ninomoya, H.; Nanba, E.; et al. Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J. Clin. Endocrinol. Metab. 2005, 90, 4679–4687. [Google Scholar] [CrossRef]
- Inagaki, K.; Tiulpakov, A.; Rubtsov, P.; Sverdlova, P.; Peterkova, V.; Yakar, S.; Terekhov, S.; LeRoith, D. A familial insulin-like growth factor-I receptor mutant leads to short stature: Clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 2007, 92, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Prontera, P.; Micale, L.; Verrotti, A.; Napolioni, V.; Stangoni, G.; Merla, G. A New Homozygous IGF1R Variant Defines a Clinically Recognizable Incomplete Dominant form of SHORT Syndrome. Hum. Mutat. 2015, 36, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Walenkamp, M.J.; Losekoot, M.; Wit, J.M. Molecular IGF-1 and IGF-1 receptor defects: From genetics to clinical management. Endocr. Dev. 2013, 24, 128–137. [Google Scholar] [CrossRef]
- Göpel, E.; Rockstroh, D.; Pfäffle, H.; Schlicke, M.; Pozza, S.B.; Gannagé-Yared, M.H.; Gucev, Z.; Mohn, A.; Harmel, E.-M.; Volkmann, J.; et al. A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children. J. Clin. Endocrinol. Metab. 2020, 105, dgz165. [Google Scholar] [CrossRef] [PubMed]
- Rochette, C.; Jullien, N.; Saveanu, A.; Caldagues, E.; Bergada, I.; Braslavsky, D.; Pfeifer, M.; Reynaud, R.; Herman, J.P.; Barlier, A.; et al. Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue. PLoS ONE 2015, 10, e0126648. [Google Scholar] [CrossRef]
FAMILY A | FAMILY B | ||||||||
---|---|---|---|---|---|---|---|---|---|
II.2 | II.4 | III.1 | II.1 | II.11 | III.1 | III.2 | III.3 | III.4 | |
Gender | M | F | M | M | F | M | F | M | F |
Age at last examination (yrs) | 36.7 | 31.4 | 1.8 | 41.3 | 36.7 | 21.0 | 15.3 | 4.7 | 0.4 |
Genotype | LHX4 c.481C>G | GLI2 c.2105C>A | LHX4 c.481C>G; GLI2 c.2105C>A | IGF1R c.166G>A | LHX4 c.481C>G | IGF1R c.166G>A | LHX4 c.481C>G, IGF1R c.166G>A | LHX4 c.481C>G, IGF1R c.166G>A | LHX4 c.481C>G |
Clinical features | |||||||||
SGA birth | - | - | - | - | - | + | + | + | - |
Growth failure/short stature | - | - | + | + | - | + | + | + | + |
MPHD | - | - | + | N.A. | - | - | + | + | + |
Poor rGH response | N.A. | N.A. | - | N.A. | N.A. | N.A. | + | + | N.A. |
Neuroradiological features | |||||||||
Posterior pituitary gland ectopy | - | - | + | N.A. | - | N.A. | + | + | + |
Small sella turcica | - | - | + | N.A. | - | N.A. | + | + | - |
Anterior pituitary hypoplasia | - | - | + | N.A. | - | N.A. | + | + | + |
Thinner pituitary stalk | - | - | - | N.A. | - | N.A. | + | + | + |
Interrupted pituitary stalk | - | - | + | N.A. | - | N.A. | - | - | - |
Minor pituitary abnormalities | + | - | - | - | + | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, C.; Aiello, F.; Farina, A.; Miraglia del Giudice, E.; Pascarella, F.; Licenziati, M.R.; Improda, N.; Piluso, G.; Torella, A.; Del Vecchio Blanco, F.; et al. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. Children 2025, 12, 364. https://doi.org/10.3390/children12030364
Santoro C, Aiello F, Farina A, Miraglia del Giudice E, Pascarella F, Licenziati MR, Improda N, Piluso G, Torella A, Del Vecchio Blanco F, et al. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. Children. 2025; 12(3):364. https://doi.org/10.3390/children12030364
Chicago/Turabian StyleSantoro, Claudia, Francesca Aiello, Antonella Farina, Emanuele Miraglia del Giudice, Filomena Pascarella, Maria Rosaria Licenziati, Nicola Improda, Giulio Piluso, Annalaura Torella, Francesca Del Vecchio Blanco, and et al. 2025. "A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant" Children 12, no. 3: 364. https://doi.org/10.3390/children12030364
APA StyleSantoro, C., Aiello, F., Farina, A., Miraglia del Giudice, E., Pascarella, F., Licenziati, M. R., Improda, N., Piluso, G., Torella, A., Del Vecchio Blanco, F., Cirillo, M., Nigro, V., & Grandone, A. (2025). A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. Children, 12(3), 364. https://doi.org/10.3390/children12030364