Sleep-Disordered Breathing and Central Respiratory Control in Children: A Comprehensive Review
Abstract
:1. Introduction
Aim of the Study
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nosetti, L.; Zaffanello, M.; Simoncini, D.; Dellea, G.; Vitali, M.; Amoudi, H.; Agosti, M. Prioritising Polysomnography in Children with Suspected Obstructive Sleep Apnoea: Key Roles of Symptom Onset and Sleep Questionnaire Scores. Children 2024, 11, 1228. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, A.C.; Lafontaine, A.L.; Kimoff, R.J.; Kaminska, M. Obstructive Sleep Apnea in Neurodegenerative Disorders: Current Evidence in Support of Benefit from Sleep Apnea Treatment. J. Clin. Med. 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Hashimoto, T.; Iwata, H.; Takahashi, K.; Fukumizu, M.; Sasaki, M.; Hanaoka, S.; Sugai, K. Apneustic breathing in children with brainstem damage due to hypoxic-ischemic encephalopathy. Dev. Med. Child. Neurol. 1999, 41, 560–567. [Google Scholar] [CrossRef]
- Moss, I.R. Canadian Association of Neuroscience Review: Respiratory control and behavior in humans: Lessons from imaging and experiments of nature. Can. J. Neurol. Sci. 2005, 32, 287–297. [Google Scholar] [CrossRef]
- Philby, M.F.; Macey, P.M.; Ma, R.A.; Kumar, R.; Gozal, D.; Kheirandish-Gozal, L. Reduced Regional Grey Matter Volumes in Pediatric Obstructive Sleep Apnea. Sci. Rep. 2017, 7, 44566. [Google Scholar] [CrossRef]
- Gourine, A.V.; Funk, G.D. On the existence of a central respiratory oxygen sensor. J. Appl. Physiol. (1985) 2017, 123, 1344–1349. [Google Scholar] [CrossRef]
- Rehan, V.; Haider, A.Z.; Alvaro, R.E.; Nowaczyk, B.; Cates, D.B.; Kwiatkowski, K.; Rigatto, H. The biphasic ventilatory response to hypoxia in preterm infants is not due to a decrease in metabolism. Pediatr. Pulmonol. 1996, 22, 287–294. [Google Scholar] [CrossRef]
- Freislich, Z.; Stoecklin, B.; Hemy, N.; Pillow, J.J.; Hall, G.L.; Wilson, A.C.; Simpson, S.J. The ventilatory response to hypoxia is blunted in some preterm infants during the second year of life. Front. Pediatr. 2022, 10, 974643. [Google Scholar] [CrossRef]
- Joubert, F.; Loiseau, C.; Perrin-Terrin, A.S.; Cayetanot, F.; Frugière, A.; Voituron, N.; Bodineau, L. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants. Front. Physiol. 2016, 7, 609. [Google Scholar] [CrossRef]
- Zaffanello, M.; Ersu, R.H.; Nosetti, L.; Beretta, G.; Agosti, M.; Piacentini, G. Cardiac Implications of Adenotonsillar Hypertrophy and Obstructive Sleep Apnea in Pediatric Patients: A Comprehensive Systematic Review. Children 2024, 11, 208. [Google Scholar] [CrossRef]
- Zaffanello, M.; Ferrante, G.; Zoccante, L.; Ciceri, M.L.; Nosetti, L.; Tenero, L.; Piazza, M.; Piacentini, G. Predictive Power of Oxygen Desaturation Index (ODI) and Apnea-Hypopnea Index (AHI) in Detecting Long-Term Neurocognitive and Psychosocial Outcomes of Sleep-Disordered Breathing in Children: A Questionnaire-Based Study. J. Clin. Med. 2023, 12, 3060. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Lee, S.K.; Kim, S.; Kim, R.E.Y.; Nam, H.R.; Siddiquee, A.T.; Thomas, R.J.; Hwang, I.; Yoon, J.E.; Yun, C.H.; et al. Association of Obstructive Sleep Apnea with White Matter Integrity and Cognitive Performance Over a 4-Year Period in Middle to Late Adulthood. JAMA Netw. Open 2022, 5, e2222999. [Google Scholar] [CrossRef] [PubMed]
- Macey, P.M.; Kumar, R.; Woo, M.A.; Valladares, E.M.; Yan-Go, F.L.; Harper, R.M. Brain structural changes in obstructive sleep apnea. Sleep 2008, 31, 967–977. [Google Scholar] [PubMed]
- Wang, J.; Christensen, D.; Coombes, S.A.; Wang, Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 163, 105782. [Google Scholar] [CrossRef]
- Fukushi, I.; Yokota, S.; Okada, Y. The role of the hypothalamus in modulation of respiration. Respir. Physiol. Neurobiol. 2019, 265, 172–179. [Google Scholar] [CrossRef]
- Choudhary, S.S.; Choudhary, S.R. Sleep effects on breathing and respiratory diseases. Lung India 2009, 26, 117–122. [Google Scholar] [CrossRef]
- Si, L.; Zhang, J.; Wang, Y.; Cao, J.; Chen, B.Y.; Guo, H.J. Obstructive sleep apnea and respiratory center regulation abnormality. Sleep. Breath. 2021, 25, 563–570. [Google Scholar] [CrossRef]
- Duffin, J.; Mahamed, S. Adaptation in the respiratory control system. Can. J. Physiol. Pharmacol. 2003, 81, 765–773. [Google Scholar] [CrossRef]
- Tamanyan, K.; Weichard, A.; Biggs, S.N.; Davey, M.J.; Nixon, G.M.; Walter, L.M.; Horne, R.S.C. The impact of central and obstructive respiratory events on cerebral oxygenation in children with sleep disordered breathing. Sleep 2019, 42, zsz044. [Google Scholar] [CrossRef]
- Hughes, B.H.; Brinton, J.T.; Ingram, D.G.; Halbower, A.C. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study. Sleep 2017, 40, zsx120. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Cammaroto, G. Treatment of sleep disordered breathing relapse after surgery. Acta Otorhinolaryngol. Ital. 2023, 43, S103–S110. [Google Scholar] [CrossRef] [PubMed]
- Harper, R.M.; Kumar, R.; Ogren, J.A.; Macey, P.M. Sleep-disordered breathing: Effects on brain structure and function. Respir. Physiol. Neurobiol. 2013, 188, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, C.; Ramar, K. Neurologic aspects of sleep apnea: Is obstructive sleep apnea a neurologic disorder? Semin. Neurol. 2009, 29, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Takashima, S.; Becker, L.E. Prenatal and postnatal maturation of medullary ‘respiratory centers’. Brain Res. 1986, 391, 173–177. [Google Scholar] [CrossRef]
- Schlaefke, M.E.; Schaefer, T.; Kronberg, H.; Ullrich, G.J.; Hopmeier, J. Transcutaneous monitoring as trigger for therapy of hypoxemia during sleep. Adv. Exp. Med. Biol. 1987, 220, 95–100. [Google Scholar] [CrossRef]
- Curzi-Dascalova, L.; Peirano, P.; Christova, E. Respiratory characteristics during sleep in healthy small-for- gestational age newborns. Pediatrics 1996, 97, 554–559. [Google Scholar] [CrossRef]
- Fukumizu, M.; Kohyama, J. Central respiratory pauses, sighs, and gross body movements during sleep in children. Physiol. Behav. 2004, 82, 721–726. [Google Scholar] [CrossRef]
- Foo, J.Y.; Parsley, C.L.; Wilson, S.J.; Williams, G.R.; Harris, M.; Cooper, D.M. Detection of central respiratory events using pulse transit time in infants. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 2005, 2579–2582. [Google Scholar] [CrossRef]
- Foo, J.Y.; Wilson, S.J.; Lim, C.S. Use of the pulse transit time trend to relate tidal breathing and central respiratory events. Proc. Inst. Mech. Eng. H 2008, 222, 1005–1011. [Google Scholar] [CrossRef]
- Schlüter, B.; Buschatz, D.; Trowitzsch, E.; Aksu, F.; Andler, W. Respiratory control in children with Prader-Willi syndrome. Eur. J. Pediatr. 1997, 156, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Curzi-Dascalova, L.; Del Gracco, S.; Elia, M.; Musumeci, S.A.; Stefanini, M.C. Respiratory patterns during sleep in Down’s syndrome:importance of central apnoeas. J. Sleep Res. 1997, 6, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Renault, F.; Flores-Guevara, R.; Soupre, V.; Vazquez, M.P.; Baudon, J.J. Neurophysiological brainstem investigations in isolated Pierre Robin sequence. Early Hum. Dev. 2000, 58, 141–152. [Google Scholar] [CrossRef]
- Latshang, T.D.; Nussbaumer-Ochsner, Y.; Henn, R.M.; Ulrich, S.; Lo Cascio, C.M.; Ledergerber, B.; Kohler, M.; Bloch, K.E. Effect of acetazolamide and autoCPAP therapy on breathing disturbances among patients with obstructive sleep apnea syndrome who travel to altitude: A randomised controlled trial. JAMA 2012, 308, 2390–2398. [Google Scholar] [CrossRef]
- Ferri, R.; Curzi-Dascalova, L.; Del Gracco, S.; Elia, M.; Musumeci, S.A.; Pettinato, S. Heart rate variability and apnea during sleep in Down’s syndrome. J. Sleep Res. 1998, 7, 282–287. [Google Scholar] [CrossRef]
- Gourine, A.V. On the peripheral and central chemoreception and control of breathing: An emerging role of ATP. J. Physiol. 2005, 568, 715–724. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, D.; Wu, Y.; Xu, Z. Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways. Nat. Sci. Sleep 2024, 16, 2029–2043. [Google Scholar] [CrossRef]
- Molkov, Y.I.; Bacak, B.J.; Dick, T.E.; Rybak, I.A. Control of breathing by interacting pontine and pulmonary feedback loops. Front. Neural Circuits 2013, 7, 16. [Google Scholar] [CrossRef]
- Zoccal, D.B.; Vieira, B.N.; Mendes, L.R.; Evangelista, A.B.; Leirão, I.P. Hypoxia sensing in the body: An update on the peripheral and central mechanisms. Exp. Physiol. 2024, 109, 461–469. [Google Scholar] [CrossRef]
- Smith, D.F.; Vikani, A.R.; Benke, J.R.; Boss, E.F.; Ishman, S.L. Weight gain after adenotonsillectomy is more common in young children. Otolaryngol. Head Neck Surg. 2013, 148, 488–493. [Google Scholar] [CrossRef]
- Papesh, M.A.; Hurley, L.M. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear. Res. 2016, 332, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Goodall, S.; Twomey, R.; Amann, M. Acute and chronic hypoxia: Implications for cerebral function and exercise tolerance. Fatigue 2014, 2, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, W.; Li, S.; Ding, Y.; Wang, Y.; Ji, X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int. J. Med. Sci. 2023, 20, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Oyarce, M.P.; Iturriaga, R. Contribution of Oxidative Stress and Inflammation to the Neurogenic Hypertension Induced by Intermittent Hypoxia. Front. Physiol. 2018, 9, 893. [Google Scholar] [CrossRef]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Sheldon, S.H.; Spruyt, K.; Ward, S.D.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 218. [Google Scholar] [CrossRef]
- Fabries, P.; Gomez-Merino, D.; Sauvet, F.; Malgoyre, A.; Koulmann, N.; Chennaoui, M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front. Physiol. 2022, 13, 1046166. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Ji, L.; Su, T.; Cheng, C.; Han, F.; Cox, D.J.; Wang, E.; Chen, R. The complex interplay of hypoxia and sleep disturbance in gray matter structure alterations in obstructive sleep apnea patients. Front. Aging Neurosci. 2023, 15, 1090547. [Google Scholar] [CrossRef]
- Dempsey, J.A. Central sleep apnea: Misunderstood and mistreated! F1000Res 2019, 8, F1000-Faculty. [Google Scholar] [CrossRef]
- Nuding, S.C.; Segers, L.S.; Iceman, K.E.; O’Connor, R.; Dean, J.B.; Bolser, D.C.; Baekey, D.M.; Dick, T.E.; Shannon, R.; Morris, K.F.; et al. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea. J. Neurophysiol. 2015, 114, 2162–2186. [Google Scholar] [CrossRef]
- Rybak, I.A.; Shevtsova, N.A.; Paton, J.F.; Dick, T.E.; St-John, W.M.; Mörschel, M.; Dutschmann, M. Modeling the ponto-medullary respiratory network. Respir. Physiol. Neurobiol. 2004, 143, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B. Watershed infarcts in the fetal and neonatal brainstem. An aetiology of central hypoventilation, dysphagia, Möibius syndrome and micrognathia. Eur. J. Paediatr. Neurol. 2004, 8, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Macey, P.M.; Henderson, L.A.; Macey, K.E.; Alger, J.R.; Frysinger, R.C.; Woo, M.A.; Harper, R.K.; Yan-Go, F.L.; Harper, R.M. Brain morphology associated with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2002, 166, 1382–1387. [Google Scholar] [CrossRef]
- Oliveira, B.; Flôr, D.E.L.F.; Rocha, G.; Rodrigues, M.; Ladeiras, R.; Guimarães, H. The impact of intrauterine growth restriction on respiratory outcomes. Minerva Pediatr. 2021, 73, 426–434. [Google Scholar] [CrossRef]
- Geva, R.; Feldman, R. A neurobiological model for the effects of early brainstem functioning on the development of behavior and emotion regulation in infants: Implications for prenatal and perinatal risk. J. Child. Psychol. Psychiatry 2008, 49, 1031–1041. [Google Scholar] [CrossRef]
- Geva, R.; Sopher, K.; Kurtzman, L.; Galili, G.; Feldman, R.; Kuint, J. Neonatal brainstem dysfunction risks infant social engagement. Soc. Cogn. Affect. Neurosci. 2013, 8, 158–164. [Google Scholar] [CrossRef]
- Oros, M.; Baranga, L.; Plaiasu, V.; Cozma, S.R.; Neagos, A.; Paduraru, L.; Necula, V.; Martu, C.; Dima-Cozma, L.C.; Gheorghe, D.C. Obstructing Sleep Apnea in Children with Genetic Disorders-A Special Need for Early Multidisciplinary Diagnosis and Treatment. J. Clin. Med. 2021, 10, 2156. [Google Scholar] [CrossRef]
- Bisogni, V.; Pengo, M.F.; Maiolino, G.; Rossi, G.P. The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J. Thorac. Dis. 2016, 8, 243–254. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Feng, J.; Cao, J.; Chen, B. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: The potential roles played by microglia. Neuropsychiatr. Dis. Treat. 2013, 9, 1077–1086. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Peng, Y.J.; Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Invest. 2020, 130, 5042–5051. [Google Scholar] [CrossRef]
- Zhan, G.; Fenik, P.; Pratico, D.; Veasey, S.C. Inducible nitric oxide synthase in long-term intermittent hypoxia: Hypersomnolence and brain injury. Am. J. Respir. Crit. Care Med. 2005, 171, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.J., III; Zanella, S.; Dashevskiy, T.; Khan, S.A.; Khuu, M.A.; Prabhakar, N.R.; Ramirez, J.M. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex. Front. Neurosci. 2016, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- O’Nions, E.; Gould, J.; Christie, P.; Gillberg, C.; Viding, E.; Happé, F. Identifying features of ‘pathological demand avoidance’ using the Diagnostic Interview for Social and Communication Disorders (DISCO). Eur. Child. Adolesc. Psychiatry 2016, 25, 407–419. [Google Scholar] [CrossRef]
- Xu, W.; Chi, L.; Row, B.W.; Xu, R.; Ke, Y.; Xu, B.; Luo, C.; Kheirandish, L.; Gozal, D.; Liu, R. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004, 126, 313–323. [Google Scholar] [CrossRef]
- Pae, E.K.; Chien, P.; Harper, R.M. Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci. Lett. 2005, 375, 123–128. [Google Scholar] [CrossRef]
- Xie, H.; Yung, W.H. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: A role for brain-derived neurotrophic factor. Acta Pharmacol. Sin. 2012, 33, 5–10. [Google Scholar] [CrossRef]
- Fei, W.; Jiao, W.; Feng, X.; Chen, X.; Wang, Y. Intermittent hypoxia mimicking obstructive sleep apnea aggravates early brain injury following ICH via neuroinflammation and apoptosis. Mol. Med. Rep. 2021, 24, 824. [Google Scholar] [CrossRef]
- Shogan, M.G.; Schumann, L.L. The effect of environmental lighting on the oxygen saturation of preterm infants in the NICU. Neonatal Netw. 1993, 12, 7–13. [Google Scholar]
- Alvaro, R.E.; Weintraub, Z.; Kwiatkowski, K.; Cates, D.B.; Rigatto, H. A respiratory sensory reflex in response to CO2 inhibits breathing in preterm infants. J. Appl. Physiol. (1985) 1992, 73, 1558–1563. [Google Scholar] [CrossRef]
- Abdel-Hady, H.; Nasef, N.; Shabaan, A.E.; Nour, I. Caffeine therapy in preterm infants. World J. Clin. Pediatr. 2015, 4, 81–93. [Google Scholar] [CrossRef]
- Pavone, M.; Caldarelli, V.; Khirani, S.; Colella, M.; Ramirez, A.; Aubertin, G.; Crinò, A.; Brioude, F.; Gastaud, F.; Beydon, N.; et al. Sleep disordered breathing in patients with Prader-Willi syndrome: A multicenter study. Pediatr. Pulmonol. 2015, 50, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Betavani, V.M.P.; Davey, M.J.; Nixon, G.M.; Walter, L.M.; Horne, R.S.C. Effects of Treatment of Sleep Disordered Breathing on Sleep Macro- and Micro-Architecture in Children with Down Syndrome. Children 2022, 9, 984. [Google Scholar] [CrossRef] [PubMed]
- Amaddeo, A.; Frapin, A.; Fauroux, B. Long-term non-invasive ventilation in children. Lancet Respir. Med. 2016, 4, 999–1008. [Google Scholar] [CrossRef]
Author(s) (Year of Publication) | Country | Design | Subjects | Methods | Results | Conclusions | Relationship Between SDB/OSA and Neurology |
---|---|---|---|---|---|---|---|
Hughes BH (2017) [20] | U.S.A. (Colorado) | Crossover study | 10 children (4.9 to 12.7 years; 60% males); high altitude; SDB | Home PSG (high altitude) vs. laboratory PSG (low altitude) comparison | Elevated AHI, worse oxygenation, increased heart rate, and sleep fragmentation at high altitude (AHI 10.95/h, ODI 19.5/h) vs. low altitude (AHI 2.4/h, ODI 3.6/h) | High altitude worsens the symptoms of SDB; home tests more indicative of severity | Neurophysiological impact; altitude; severity of SDB; major neurological impairment |
Tamanyan K (2019) [19] | Australia | Observational study | 60 children (3–12 years) with suspected SDB | PSG, detailed analysis of cerebral and peripheral oxygenation, blood pressure, heart rate changes | Greater variation in cerebral oxygenation during central respiratory events compared to obstructive ones, especially in NREM sleep | Central respiratory events affect cerebral oxygenation like obstructive events | Significant impact of CA on neurocognitive and cardiovascular health like obstructive events |
Authors and Date | Type of Apnoea | Apnoea Assessment Methods | Impact on Respiratory Centres and CNS | Evaluation of Respiratory Centres and CNS | Clinical Implications | Conclusions | |
Hughes BH (2017) [20] | U.S.A. (Colorado) | Obstructive and central apnoea | AHI, SpO2, CAI, CHI | Altitude exacerbates the severity of SRBDs. It influences central breathing control and cardiovascular stress. | AHI, SpO2, heart monitoring | High altitude increases respiratory interruptions and lowers SpO2, impacting CNS and cardiovascular health. | Environmental factors such as altitude critically influence the severity of SRBDs and their physiological impact on the respiratory and cardiovascular systems. Need for specific strategies for altitude. |
Tamanyan (2019) [19] | Australia | Central and obstructive sleep apnoea | TOI, PTT, HR monitoring | Changes in TOI, PTT, and HR during respiratory events reflect the role of the CNS and the autonomic nervous system in regulating cardiovascular and respiratory responses. | TOI, PTT, HR monitoring during sleep, differentiation between REM and NREM sleep | Significant physiological changes do not result in clinically meaningful findings, underscoring the complexity of diagnosis and treatment based on physiological responses alone. | Need for more refined methodologies to differentiate the impacts of various types of respiratory events on physiological parameters and implications for respiratory control and CNS in children. |
Author(s) (Year of Publication) | Country | Design | Subjects | Methods | Results | Conclusions | Relationship Between SDB/OSA and Neurology |
---|---|---|---|---|---|---|---|
INFANTS | |||||||
Takashima S. and Becker L.E. (1986) [25] | Canada | Observational study | 26 individuals, foetuses (gestational age 18 to 42 weeks) and newborns (from 0 to 11 months) | Neurons in the medulla oblongata Golgi impregnation methods | Increase in pre-birth dendritic spines, decrease post-birth | Maturation of respiratory neurons occurs in prenatal and postnatal stages | Development of central respiratory control influenced by dendritic changes, implications for SIDS and apnoea of prematurity |
Schlaefke M.E. et al. (1987) [26] | Germany | Experimental study | 30 patients aged 6 to 78 months | Paired stimuli (light and O2/CO2), transcutaneous pO2 monitoring | Effective prevention of sleep hypoxemia in unventilated infants | Potential preventive/therapeutic approach for central respiratory failure and sleep apnoea | Direct intervention on central respiratory control mechanisms can modify neurological responses |
Curzi-Dascalova L. et al. (1996) [27] | France | Observational study | 57 infants (31 AGA and 26 SGA) | Postnatal polygraphic records | SGA infants show more central breathing pauses than AGA | Impaired respiratory control in SGA infants; possible brainstem changes | Neurological changes from IUGR affect central respiratory control |
CHILDREN | |||||||
Fukumizu and Kohyama (2004) [28] | Japan | Clinical trial | 19 healthy children (3 months–7 years, mean 28 months) | PSG, respiratory plethysmography | Correlation between sighs, body movements, and central breathing pauses | Age- and status-related changes in breathing pauses | CSA related to central sleep disorders |
Foo JY (2005) et al. [29] | Australia | Experimental study | 5 infants (mean age 7.8 months) | PSG, PTT analysis | PTT sensitive in detecting central respiratory events | PTT as a non-invasive method of monitoring CA | Detection of central respiratory events in newborns |
Foo JY et al. (2008) [30] | Singapore | Observational study | 28 children (age 6.2 ± 3.6 years) | PTT analysis during CSA and tidal breathing | Differences in PTT oscillations between CSA and normal breathing; PTT increase during clustered CSA | Predictive models for characteristics of respiratory events | Changes in vascular dynamics during sleep events reflect neurological and respiratory control alterations |
Author(s) (Year of Publication) | Type of Apnoea | Apnoea Assessment Methods | Impact on Respiratory Centres and CNS | Evaluation of Respiratory Centres and CNS | Clinical Implications | Conclusions |
---|---|---|---|---|---|---|
INFANTS | ||||||
Takashima and Becker (1986) [25] | Primary apnoea in prematurity, SIDS | Evaluation of neuronal development | Development of dendritic spines related to maturation of respiratory control | Examination of the density and maturation of dendritic spines | Potential use of neuronal development models as biomarkers or therapeutic targets | Neuronal development in the medulla oblongata crucial for respiratory control; important for research and preventive interventions |
Schlaefke ME (1987) [26] | CSA, Ondine syndrome | Therapy with paired stimuli, transcutaneous pO2 monitoring, and end-tidal pCO2 | Therapy stimulates respiratory responses, preventing hypoxemia | Monitoring of pO2 and pCO2 levels, PSG | Therapeutic and preventive potential for SIDS and CSA | Efficacy of targeted therapeutic stimulation in improving conditions of central respiratory insufficiency |
Curzi-Dascalova L. (1996) [27] | Apnoea in SGA infants | Not specified | Increased breathing pauses and apnoea index indicate impairment of respiratory centres | Comparison of periodic breathing patterns and developmental parameters | Importance of monitoring and supporting respiratory functions in SGA infants | Complex interplay between delayed growth, respiratory control, and CNS development |
CHILDREN | ||||||
Fukumizu and Kohyama (2004) [28] | Sleep apnoea, OSA | Observation of central pauses, sighs, and gross movements during sleep | Central respiratory events related to neurological controls of breathing, influenced by age and sleep stage | Analysis of patterns of respiratory events and their correlation with neurological development | Need to understand age- and sleep stage-related changes to manage respiratory disorders | Importance of targeted therapeutic strategies based on sleep development and behaviour |
Foo JY et al. [29,30] | CSA | Respiratory inductance plethysmography, PTT analysis | Decreased variability and command during episodes of apnoea, indicating less active neurological control | PTT analysis during normal breathing cycles and CSA | Reduced breathing effort and alterations in oxygen saturation during apnoea can compromise tissue oxygenation | Importance of targeted treatment strategies to improve respiratory regulation and patient outcomes |
Author(s) (Year of Publication) | Aims | Subjects | Methods | Results and Conclusions | Relationship Between SDB/OSA and Neurology |
---|---|---|---|---|---|
Schlüter B et al. (1997) [31] | Respiratory control in Prader–Willi syndrome | 8 patients (6 weeks–12.5 years) | Comparative study with PSG | Primary central respiratory control disorder in Prader–Willi syndrome, aggravated by obesity | It shows a direct relationship between central respiratory dysfunction and the presence of SDB in Prader–Willi syndrome |
Ferri R et al. (1997) [32] | Breathing patterns during sleep in Down syndrome | 10 subjects (8.6–32.2 years) | Comparative study | Higher prevalence of CSA in Down syndrome, suggesting brainstem dysfunction | Links CSA to central respiratory control dysfunctions in brainstem Down syndrome |
Renault F et al. (2000) [33] | Neurophysiological investigations of the brainstem in the Pierre Robin sequence | 25 newborns (age not available) | Observational study with PSG and EMG | Functional disturbances in motor organisation affect breathing but absence of structural damage to the brainstem | Despite the absence of structural damage, functional motor control disorders contribute to SDB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffanello, M.; Pietrobelli, A.; Nosetti, L.; Ferrante, G.; Rigotti, E.; Ganzarolli, S.; Piacentini, G. Sleep-Disordered Breathing and Central Respiratory Control in Children: A Comprehensive Review. Children 2025, 12, 279. https://doi.org/10.3390/children12030279
Zaffanello M, Pietrobelli A, Nosetti L, Ferrante G, Rigotti E, Ganzarolli S, Piacentini G. Sleep-Disordered Breathing and Central Respiratory Control in Children: A Comprehensive Review. Children. 2025; 12(3):279. https://doi.org/10.3390/children12030279
Chicago/Turabian StyleZaffanello, Marco, Angelo Pietrobelli, Luana Nosetti, Giuliana Ferrante, Erika Rigotti, Stefania Ganzarolli, and Giorgio Piacentini. 2025. "Sleep-Disordered Breathing and Central Respiratory Control in Children: A Comprehensive Review" Children 12, no. 3: 279. https://doi.org/10.3390/children12030279
APA StyleZaffanello, M., Pietrobelli, A., Nosetti, L., Ferrante, G., Rigotti, E., Ganzarolli, S., & Piacentini, G. (2025). Sleep-Disordered Breathing and Central Respiratory Control in Children: A Comprehensive Review. Children, 12(3), 279. https://doi.org/10.3390/children12030279