Preliminary Evidence Linking Maternal Sleep-Disordered Breathing During Pregnancy to Early Childhood Development: A 3-Year Pilot Cohort Study in Japan
Highlights
- Obstructive sleep apnea (OSA) during pregnancy may be associated with lower cognitive and language development in 3-year-old children.
- No clear associations were found with children’s physical growth or occlusal status.
- Early screening for maternal sleep-disordered breathing using home sleep tests may help identify high-risk pregnancies.
- Raising awareness on maternal sleep health may help prevent developmental differences during early childhood.
- Feasible prenatal screening tools, such as home sleep apnea testing, could enable early identification and management of maternal OSA.
- Integrating sleep health assessments into routine prenatal care may improve long-term outcomes for both mothers and children.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Maternal Characteristics and Questionnaire
2.3. Assessment of Maternal OSA
2.4. Assessment of Physical and Dental Development of Offspring at 3 Years of Age
2.5. Assessment of Offspring Psychological Development at 3 Years of Age
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Physical Growth Outcomes
3.3. Occlusal Status
3.4. Associations Between the Maternal AHI and Developmental Indices
3.5. Multivariate Regression Analysis
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AHI | Apnea–hypopnea index |
| BMI | Body mass index |
| CI | Confidence interval |
| HSAT | Home sleep apnea testing |
| OSA | Obstructive sleep apnea |
| SD | Standard deviation |
References
- Lacagnina, S. The developmental origins of health and disease (DOHaD). Am. J. Lifestyle Med. 2020, 14, 47–50. [Google Scholar] [CrossRef]
- Sánchez-Garrido, M.A.; García-Galiano, D.; Tena-Sempere, M. Early programming of reproductive health and fertility: Novel neuroendocrine mechanisms and implications in reproductive medicine. Hum. Reprod. Update 2022, 28, 346–375. [Google Scholar] [CrossRef]
- Gyllenhammer, L.E.; Rasmussen, J.M.; Bertele, N.; Halbing, A.; Entringer, S.; Wadhwa, P.D.; Buss, C. Maternal inflammation during pregnancy and offspring brain development: The role of mitochondria. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 498–509. [Google Scholar] [CrossRef]
- Kwon, H.K.; Choi, G.B.; Huh, J.R. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol. 2022, 43, 230–244. [Google Scholar] [CrossRef]
- Maniaci, A.; La Via, L.; Pecorino, B.; Chiofalo, B.; Scibilia, G.; Lavalle, S.; Scollo, P. Obstructive sleep apnea in pregnancy: A comprehensive review of maternal and fetal implications. Neurol. Int. 2024, 16, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.E.; Habib, A.S. Obstructive sleep apnea in pregnant women. Int. Anesthesiol. Clin. 2022, 60, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Izci Balserak, B. Sleep disordered breathing in pregnancy. Breathe 2015, 11, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Lui, K.T.; Kimoff, R.J.; Panyarath, P.; Pamidi, S. Persistence and prevalence of sleep-disordered breathing after delivery: A scoping review of longitudinal and cross-sectonal studies. Sleep Med. Rev. 2022, 65, 101674. [Google Scholar] [CrossRef]
- Pien, G.W.; Pack, A.I.; Jackson, N.; Maislin, G.; Macones, G.A.; Schwab, R.J. Risk Factors for Sleep-Disordered Breathing in Pregnancy. Thorax 2014, 69, 371–377. [Google Scholar] [CrossRef]
- Kember, A.J.; Elangainesan, P.; Ferraro, Z.M.; Jones, C.; Hobson, S.R. Common Sleep Disorders in Pregnancy: A Review. Front. Med. 2023, 10, 1235252. [Google Scholar] [CrossRef]
- Dominguez, J.E.; Street, L.; Louis, J. Management of Obstructive Sleep Apnea in Pregnancy. Obstet. Gynecol. Clin. N. Am. 2018, 45, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Bin, Y.S.; Cistulli, P.A.; Ford, J.B. Population-Based Study of Sleep Apnea in Pregnancy and Maternal and Infant Outcomes. J. Clin. Sleep Med. 2016, 12, 871–877. [Google Scholar] [CrossRef]
- Fung, A.M.; Wilson, D.L.; Lappas, M.; Howard, M.; Barnes, M.; O’Donoghue, F.; Tong, S.; Esdale, H.; Fleming, G.; Walker, S.P. Effects of Maternal Obstructive Sleep Apnoea on Fetal Growth: A Prospective Cohort Study. PLoS ONE 2013, 8, e68057. [Google Scholar] [CrossRef]
- Johnson, S.M.; Randhawa, K.S.; Epstein, J.J.; Gustafson, E.; Hocker, A.D.; Huxtable, A.G.; Baker, T.L.; Watters, J.J. Gestational Intermittent Hypoxia Increases Susceptibility to Neuroinflammation and Alters Respiratory Motor Control in Neonatal Rats. Respir. Physiol. Neurobiol. 2018, 256, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Dhamelia, P.; Gupta, V.; Agarwal, S.; Singh, B.; Jain, R. Obstructive Sleep Apnea in Pregnancy and Its Impact on Maternal–Fetal Health: A Hidden Threat—Narrative Review. Open Respir. Med. J. 2025, 19, e18743064411633. [Google Scholar] [CrossRef]
- Gardner, J.J.; Oliveira da Silva, R.N.; Bradshaw, J.L.; Mabry, S.; Wilson, E.N.; Hula, N.; Tucker, S.M.; Gorham, I.K.; Escalera, D.; Lopez, L.; et al. Gestational Chronic Intermittent Hypoxia Triggers Maternal Inflammation and Disrupts Placental Stress Responses. Am. J. Physiol. Cell Physiol. 2025, 329, C630–C645. [Google Scholar] [CrossRef]
- Ma, Q.; Xiong, F.; Zhang, L. Gestational Hypoxia and Epigenetic Programming of Brain Development Disorders. Drug Discov. Today 2014, 19, 1883–1896. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, H.; Liu, J.; Sun, M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front. Neurosci. 2021, 15, 755554. [Google Scholar] [CrossRef]
- Álvarez-Mejía, D.; Rodas, J.A.; Leon-Rojas, J.E. From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders. Int. J. Mol. Sci. 2025, 26, 6096. [Google Scholar] [CrossRef]
- Bustelo, M.; Barkhuizen, M.; van den Hove, D.L.A.; Steinbusch, H.W.M.; Bruno, M.A.; Loidl, C.F.; Gavilanes, A.W.D. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic–Ischemic Brain Damage. Front. Neurol. 2020, 11, 483. [Google Scholar] [CrossRef]
- Kneitel, A.W.; Treadwell, M.C.; O’Brien, L.M. Effects of maternal obstructive sleep apnea on fetal growth: A case–control study. J. Perinatol. 2018, 38, 982–988. [Google Scholar] [CrossRef]
- Cànaves-Gómez, L.; Fleischer, A.; Muncunill-Farreny, J.; Gimenez, M.P.; Álvarez Ruiz De Larrinaga, A.; Sánchez Baron, A.; Codina Marcet, M.; De-La-Peña, M.; Morell-Garcia, D.; Peña Zarza, J.; et al. Effect of obstructive sleep apnea during pregnancy on fetal development: Gene expression profile of cord blood. Int. J. Mol. Sci. 2024, 25, 5537. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Nielsen, T.C.; Mohammad, S.S.; Hofer, M.J.; Gold, W.; Brilot, F.; Lain, S.J.; Nassar, N.; et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: A systematic review. Transl. Psychiatry 2021, 11, 71. [Google Scholar] [CrossRef]
- Lubrano, C.; Parisi, F.; Cetin, I. Impact of maternal environment and inflammation on fetal neurodevelopment. Antioxidants 2024, 13, 453. [Google Scholar] [CrossRef]
- Tauman, R.; Zuk, L.; Uliel-Sibony, S.; Ascher-Landsberg, J.; Katsav, S.; Farber, M.; Sivan, Y.; Bassan, H. The effect of maternal sleep-disordered breathing on the infant’s neurodevelopment. Am. J. Obstet. Gynecol. 2015, 212, 656.e1–656.e7. [Google Scholar] [CrossRef] [PubMed]
- Morrakotkhiew, W.; Chirdkiatgumchai, V.; Tantrakul, V.; Thampratankul, L. Early developmental outcome in children born to mothers with obstructive sleep apnea. Sleep Med. 2021, 88, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.; Huang, J.Y.; Chang, R.; Hung, Y.M.; Wei, J.C. Epidemiological study of parental obstructive sleep apnea and subsequent risk of ADHD in their children: A nationwide population-based study. J. Atten. Disord. 2023, 27, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Micai, M.; Fulceri, F.; Caruso, A.; Guzzetta, A.; Gila, L.; Scattoni, M.L. Early behavioral markers for neurodevelopmental disorders in the first 3 years of life: An overview of systematic reviews. Neurosci. Biobehav. Rev. 2020, 116, 183–201. [Google Scholar] [CrossRef]
- Yasumitsu-Lovell, K.; Thompson, L.; Fernell, E.; Eitoku, M.; Suganuma, N.; Gillberg, C.; Japan Environment and Children’s Study Group. Pre-/perinatal reduced optimality and neurodevelopment at 1 month and 3 years of age: Results from the Japan Environment and Children’s Study (JECS). PLoS ONE 2023, 18, e0280249. [Google Scholar] [CrossRef]
- Kim, S.H.; Bal, V.H.; Lord, C. Longitudinal follow-up of academic achievement in children with autism from age 2 to 18. J. Child Psychol. Psychiatry 2018, 59, 258–267. [Google Scholar] [CrossRef]
- Sasser, T.R.; Bierman, K.L.; Heinrichs, B. Executive functioning and school adjustment: The mediational role of pre-kindergarten learning-related behaviors. Early Child. Res. Q. 2015, 30, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Hasegawa, J.; Katsuragi, S.; Tanaka, K.; Arakaki, T.; Nakamura, M.; Hayata, E.; Nakata, M.; Murakoshi, T.; Sekizawa, A.; et al. High Maternal Mortality Rate Associated with Advanced Maternal Age in Japan. Sci. Rep. 2023, 13, 12918. [Google Scholar] [CrossRef]
- Saijo, Y.; Yoshioka, E.; Sato, Y.; Kunori, Y.; Kanaya, T.; Nakanishi, K.; Kato, Y.; Nagaya, K.; Takahashi, S.; Ito, Y.; et al. Maternal Pre-Pregnancy Body Mass Index and Related Factors: A Cross-Sectional Analysis from the Japan Environment and Children’s Study. PLoS ONE 2024, 19, e0304844. [Google Scholar] [CrossRef]
- Tagawa, K.; Tsunematsu, M.; Kakehashi, M. Factors of Having Difficulties Raising 3-Year-Old Children in Japan: Usefulness of Maternal and Child Health Information Accumulated by the Local Government. Children 2021, 8, 1084. [Google Scholar] [CrossRef]
- Ozonoff, S.; Gangi, D.; Corona, L.; Foster, T.; Hill, M.M.; Honaker, M.; Maqbool, S.; Ni, R.; Nicholson, A.; Parikh, C.; et al. Measuring Developmental Delays: Comparison of Parent Report and Direct Testing. J. Autism Dev. Disord. 2024, 55, 4492–4498. [Google Scholar] [CrossRef]
- Sices, L.; Stancin, T.; Kirchner, L.; Bauchner, H. PEDS and ASQ Developmental Screening Tests May Not Identify the Same Children. Pediatrics 2009, 124, e640–e647. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders—Age-Dependent Challenges and Opportunities. J. Clin. Med. 2021, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Nugent, R.; Wee, A.; Kearney, L.; de Costa, C. The Effectiveness of Continuous Positive Airway Pressure for Treating Obstructive Sleep Apnoea in Pregnancy: A Systematic Review. Aust. N. Z. J. Obstet. Gynaecol. 2023, 63, 290–300. [Google Scholar] [CrossRef]
- O’Brien, L.M.; Bullough, A.S.; Shelgikar, A.V.; Chames, M.C.; Armitage, R.; Chervin, R.D. Validation of Watch-PAT-200 against Polysomnography during Pregnancy. J. Clin. Sleep Med. 2012, 8, 287–294. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef]
- Facco, F.L.; Ouyang, D.W.; Zee, P.C.; Strohl, A.E.; Gonzalez, A.B.; Lim, C.; Grobman, W.A. Implications of Sleep-Disordered Breathing in Pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 559.e1–559.e6. [Google Scholar] [CrossRef] [PubMed]
- Yalamanchali, S.; Farajian, V.; Hamilton, C.; Pott, T.R.; Samuelson, C.G.; Friedman, M. Diagnosis of Obstructive Sleep Apnea by Peripheral Arterial Tonometry: Meta-Analysis. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 1343–1350. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Xu, L.; Wei, J.; Yang, J.; Strohl, A.E.; Yi, H.; Liu, X.; Zhang, L.; Zhao, R.; et al. Home Monitoring for Clinically Suspected Obstructive Sleep Apnea in Pregnancy. J. Clin. Sleep Med. 2023, 19, 1951–1960. [Google Scholar] [CrossRef] [PubMed]
- Romero-Peralta, S.; Alonso, M.; Mediano, O.; Moncadas, M.C.; Álvarez Ruiz De Larrinaga, A.; Codina Marcet, M.; Giménez Carrero, M.P.; De La Peña, M.; Peña Zarza, J.A.; García-Río, F.; et al. Diagnostic Performance of a Type III Portable Monitoring Device for Obstructive Sleep Apnea in Pregnant Women: A Prospective Validation Study. J. Womens Health 2025, 34, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Hu, C.; Zhu, H. Oxygen desaturation index, lowest arterial oxygen saturation and time spent below 90% oxygen saturation as diagnostic markers for obstructive sleep apnea. Am. J. Transl. Res. 2023, 15, 3597–3606. [Google Scholar]
- Spies, M.; Geyer, K.; Raab, R.; Brandt, S.; Meyer, D.; Günther, J.; Hoffmann, J.; Hauner, H. Child anthropometrics and neurodevelopment at 2 and 3 years of age following an antenatal lifestyle intervention in routine care—A secondary analysis from the cluster-randomized GeliS trial. J. Clin. Med. 2022, 11, 1688. [Google Scholar] [CrossRef]
- Yanovich, E.; Bar-Shalom, S. Static and dynamic balance indices among kindergarten children: A short-term intervention program during COVID-19 lockdowns. Children 2022, 9, 939. [Google Scholar] [CrossRef]
- Koyama, T.; Osada, H.; Tsujii, H.; Kurita, H. Utility of the Kyoto Scale of Psychological Development in cognitive assessment of children with pervasive developmental disorders. Psychiatry Clin. Neurosci. 2009, 63, 241–243. [Google Scholar] [CrossRef]
- Dosman, C.F.; Andrews, D.; Goulden, K.J. Evidence-based milestone ages as a framework for developmental surveillance. Paediatr. Child Health 2012, 17, 561–568. [Google Scholar] [CrossRef]
- Kato, N.; Takimoto, H.; Yokoyama, T.; Yokoya, S.; Tanaka, T.; Tada, H. Updated Japanese Growth References for Infants and Preschool Children, Based on Historical, Ethnic and Environmental Characteristics. Acta Paediatr. 2014, 103, e251–e261. [Google Scholar] [CrossRef]
- Chen, Y.H.; Kang, J.H.; Lin, C.C.; Wang, I.T.; Keller, J.J.; Lin, H.C. Obstructive sleep apnea and the risk of adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2012, 206, 136.e1–136.e5. [Google Scholar] [CrossRef]
- Louis, J.; Auckley, D.; Miladinovic, B.; Shepherd, A.; Mencin, P.; Kumar, D.; Mercer, B.; Redline, S. Perinatal outcomes associated with obstructive sleep apnea in obese pregnant women. Obstet. Gynecol. 2012, 120, 1085–1092. [Google Scholar] [CrossRef]
- Bi, J.; Yu, B.; Zheng, G.; Yan, Y.; Zhang, Y.; Lin, X.; Han, Y.; Song, C. Analysis of cognitive levels and influencing factors in children with obstructive sleep apnea. Children 2024, 11, 1428. [Google Scholar] [CrossRef]
- Gozal, D.; Daniel, J.M.; Dohanich, G.P. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J. Neurosci. 2001, 21, 2442–2450. [Google Scholar] [CrossRef]
- Lavie, L. Oxidative stress, inflammation and endothelial dysfunction in obstructive sleep apnea. Front. Biosci. 2012, 4, 1391–1403. [Google Scholar] [CrossRef]
- Khalyfa, A.; Gozal, D.; Kheirandish-Gozal, L. Plasma exosomes disrupt the blood–brain barrier in children with obstructive sleep apnea and neurocognitive deficits. Am. J. Respir. Crit. Care Med. 2018, 197, 1073–1076. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, P.J.; Xiong, F.; Li, Y.; Zhou, J.; Zhang, L. Fetal hypoxia increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: Role of glucocorticoid receptors. Neurobiol. Dis. 2014, 65, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, J.; Espino-Y-Sosa, S.; Martinez-Portilla, R.; Borboa-Olivares, H.; Estrada-Gutierrez, G.; Acevedo-Gallegos, S.; Ruiz-Ramirez, E.; Velasco-Espin, M.; Cerda-Flores, P.; Ramirez-Gonzalez, A.; et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int. J. Mol. Sci. 2024, 25, 7569. [Google Scholar] [CrossRef] [PubMed]
- Ueda, M.; Tsuchiya, K.J.; Yaguchi, C.; Furuta-Isomura, N.; Horikoshi, Y.; Matsumoto, M.; Suzuki, M.; Oda, T.; Kawai, K.; Itoh, T.; et al. Placental pathology predicts infantile neurodevelopment. Sci. Rep. 2022, 12, 2578. [Google Scholar] [CrossRef]
- Al Darwish, F.M.; Meijerink, L.; Coolen, B.F.; Strijkers, G.J.; Bekker, M.; Lely, T.; Terstappen, F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023, 12, 2080. [Google Scholar] [CrossRef]
- Ehlting, A.; Zweyer, M.; Maes, E.; Schleehuber, Y.; Doshi, H.; Sabir, H.; Bernis, M.E. Impact of hypoxia-ischemia on neurogenesis and structural and functional outcomes in a mild-moderate neonatal hypoxia-ischemia brain injury model. Life 2022, 12, 1164. [Google Scholar] [CrossRef]
- Di Francesco, R.; Monteiro, R.; Paulo, M.L.; Buranello, F.; Imamura, R. Craniofacial morphology and sleep apnea in children with obstructed upper airways: Differences between genders. Sleep Med. 2012, 13, 616–620. [Google Scholar] [CrossRef]
- Suzuki, T.; Hosomichi, J.; Maeda, H.; Ishida, Y.; Usumi-Fujita, R.; Moro, M.; Jariyatheerawong, K.; Ono, T. Gestational intermittent hypoxia reduces mandibular growth with decreased Sox9 expression and increased Hif1a expression in male offspring rats. Front. Physiol. 2024, 15, 1397262. [Google Scholar] [CrossRef]
- Wilson, E.N.; Mabry, S.; Bradshaw, J.L.; Gardner, J.J.; Rybalchenko, N.; Engelland, R.; Fadeyibi, O.; Osikoya, O.; Cushen, S.C.; Goulopoulou, S.; et al. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol. Sex Differ. 2022, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Mabry, S.; Wilson, E.N.; Bradshaw, J.L.; Gardner, J.J.; Fadeyibi, O.; Vera, E., Jr.; Osikoya, O.; Cushen, S.C.; Karamichos, D.; Goulopoulou, S.; et al. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biol. Sex Differ. 2023, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Knickmeyer, R.C.; Belmonte, M.K. Sex differences in the brain: Implications for explaining autism. Science 2005, 310, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L. The placenta and neurodevelopment: Sex differences in prenatal vulnerability. Dial. Clin. Neurosci. 2016, 18, 459–464. [Google Scholar] [CrossRef]
- Hunter, S.J.; Gozal, D.; Smith, D.L.; Philby, M.F.; Kaylegian, J.; Kheirandish-Gozal, L. Effect of sleep-disordered breathing severity on cognitive performance measures in a large community cohort of young school-aged children. Am. J. Respir. Crit. Care Med. 2016, 194, 739–747. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, X.; Wang, Y.; Li, J.; Xu, Y.; Song, X.; Su, S.; Zhu, X.; Vitiello, M.V.; Shi, J.; et al. Sleep disturbances during pregnancy and adverse maternal and fetal outcomes: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 58, 101436. [Google Scholar] [CrossRef]
- Andersen, C.H.; Thomsen, P.H.; Nohr, E.A.; Lemcke, S. Maternal body mass index before pregnancy as a risk factor for ADHD and autism in children. Eur. Child Adolesc. Psychiatry 2018, 27, 139–148. [Google Scholar] [CrossRef]
- Lee, R.W.; Vasudavan, S.; Hui, D.S.; Prvan, T.; Petocz, P.; Darendeliler, M.A.; Cistulli, P.A. Differences in craniofacial structures and obesity in Caucasian and Chinese patients with obstructive sleep apnea. Sleep 2010, 33, 1075–1080. [Google Scholar] [CrossRef]
- Sutherland, K.; Keenan, B.T.; Bittencourt, L.; Chen, N.H.; Gislason, T.; Leinwand, S.; Magalang, U.J.; Maislin, G.; Mazzotti, D.R.; McArdle, N.; et al. A global comparison of anatomic risk factors and their relationship to obstructive sleep apnea severity in clinical samples. J. Clin. Sleep Med. 2019, 15, 629–639. [Google Scholar] [CrossRef]
- Agarwal, S.; Monsod, P.; Cho, Y.S.; MacRae, S.; Swierz, J.S.; Healy, W.J.; Kwon, Y.; Liu, X.; Cho, Y. Racial disparity in obstructive sleep apnea care and its impact on cardiovascular health. Curr. Sleep Med. Rep. 2024, 10, 414–418. [Google Scholar] [CrossRef] [PubMed]
- May, A.M.; Billings, M.E. Racial differences in positive airway pressure adherence in the treatment of sleep apnea. Sleep Med. Clin. 2022, 17, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Hartley, I.; Elkhoury, F.F.; Heon Shin, J.; Xie, B.; Gu, X.; Gao, Y.; Zhou, D.; Haddad, G.G. Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS ONE 2013, 8, e77859. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Yi, S.J.; Kim, K. Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp. Mol. Med. 2022, 54, 878–889. [Google Scholar] [CrossRef]
- Rahman, F.; Tuli, S.N.; Mondal, P.; Sultana, S.; Hossain, A.; Kundu, S.; Clara, A.A.; Hossain, A. Home environment factors associated with early childhood development in rural areas of Bangladesh: Evidence from a national survey. Front. Public Health 2023, 11, 1209068. [Google Scholar] [CrossRef]


| Developmental Index [Average (SD)] | |||||
|---|---|---|---|---|---|
| Overall | Posture/Motor | Cognitive/Adaptive | Language/Social | ||
| Sex | Boys | 99.3 (21.9) | 105.6 (14.8) | 100.3 (24.3) | 97.5 (25.3) |
| Girls | 106.4 (14.5) | 111.2 (15.8) | 103.1 (14.1) | 109.2 (18.7) | |
| Height (cm) | <93.4 | 105.9 (21.2) | 111.1 (14.8) | 101.1 (21.3) | 109.5 (27.1) |
| ≧93.4 | 99.8 (15.7) | 105.8 (15.9) | 102.3 (18.4) | 97.2 (15.7) | |
| Weight (kg) | <14.1 | 103.8 (21.0) | 111.7 (15.2) | 102.2 (22.8) | 104.9 (25.0) |
| ≧14.1 | 101.9 (16.6) | 105.1 (15.1) | 101.1 (16.6) | 101.8 (20.7) | |
| pAHI (events/h) | <5 | 104.0 (16.5) | 107.1 (14.9) | 103.4 (17.2) | 104.7 (20.2) |
| ≧5 | 97.3 (27.9) | 114.7 (17.1) | 93.5 (29.1) | 97.0 (33.6) | |
| BMI (kg/m2) | <21.6 | 106.6 (16.3) | 111.3 (15.0) | 105.6 (14.0) | 107.4 (22.4) |
| ≧21.6 | 99.5 (20.4) | 105.8 (15.6) | 98.2 (23.4) | 99.7 (22.9) | |
| Overall | Univariable Model | Multivariable Model | ||||||
| B | 95% CI | p-Value | B | 95% CI | p-Value | |||
| Sex | 0.194 | −0.159 | 0.547 | 0.272 | −0.62 | −0.393 | 0.269 | 0.704 |
| Height (cm) | −0.162 | −0.517 | 0.193 | 0.36 | −0.34 | −0.701 | 0.021 | 0.064 |
| Weight (kg) | −0.047 | −0.407 | 0.312 | 0.79 | 0.002 | −0.343 | 0.34 | 0.991 |
| pAHI (events/h) | −0.553 | −0.853 | −0.253 | <0.001 | −0.579 | −0.899 | −0.258 | <0.001 |
| BMI (kg/m2) | −0.329 | −0.669 | 0.011 | 0.058 | −0.204 | −0.523 | 0.116 | 0.202 |
| Posture/Motor | Univariable Model | Multivariable Model | ||||||
| B | 95% CI | p-value | B | 95% CI | p-value | |||
| Sex | 2.866 | −2.556 | 8.288 | 0.29 | 1.338 | −5.105 | 7.781 | 0.674 |
| Height (cm) | −3.676 | −9.035 | 1.683 | 0.172 | −3.622 | −10.65 | 3.407 | 0.3 |
| Weight (kg) | −1.938 | −7.413 | 3.538 | 0.476 | −0.1 | −6.743 | 6.542 | 0.976 |
| pAHI (events/h) | −1.06 | −6.566 | 4.447 | 0.698 | −1.556 | −7.796 | 4.684 | 0.613 |
| BMI (kg/m2) | −0.805 | −6.317 | 4.707 | 0.768 | −0.432 | −6.646 | 5.782 | 0.888 |
| Cognitive/Adaptative | Univariable Model | Multivariable Model | ||||||
| B | 95% CI | p-value | B | 95% CI | p-value | |||
| Sex | 1.403 | −5.646 | 8.452 | 0.688 | −3.241 | −9.771 | 3.288 | 0.318 |
| Height (cm) | −0.031 | −7.098 | 7.036 | 0.993 | −3.513 | −10.636 | 3.611 | 0.321 |
| Weight (kg) | −0.344 | −7.41 | 6.722 | 0.922 | −1.633 | −8.365 | 5.099 | 0.623 |
| pAHI (events/h) | −11.5 | −17.227 | −5.773 | <0.001 | −11.586 | −17.91 | −5.262 | <0.001 |
| BMI (kg/m2) | −7.074 | −13.666 | −0.482 | 0.036 | −4.854 | −11.152 | 1.443 | 0.126 |
| Language/Social | Univariable Model | Multivariable Model | ||||||
| B | 95% CI | p-value | B | 95% CI | p-value | |||
| Sex | 5.911 | −1.962 | 13.784 | 0.136 | 0.225 | −7.182 | 7.632 | 0.951 |
| Height (cm) | −5.225 | −13.161 | 2.711 | 0.189 | −8.904 | −16.984 | −0.824 | 0.032 |
| Weight (kg) | −1.574 | −9.71 | 6.562 | 0.696 | 0.584 | −7.052 | 8.22 | 0.877 |
| pAHI (events/h) | −12.219 | −19.087 | −5.352 | <0.001 | −13.163 | −20.337 | −5.99 | <0.001 |
| BMI (kg/m2) | −6.368 | −14.195 | 1.459 | 0.107 | −3.179 | −10.322 | 3.965 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takenouchi, Y.; Hosomichi, J.; Suzuki, T.; Niisaka, M.; Miyasaka, N.; Morioka, C.; Sugie, M.; Hayata, M.; Aida, J.; Tamaoka, M.; et al. Preliminary Evidence Linking Maternal Sleep-Disordered Breathing During Pregnancy to Early Childhood Development: A 3-Year Pilot Cohort Study in Japan. Children 2025, 12, 1610. https://doi.org/10.3390/children12121610
Takenouchi Y, Hosomichi J, Suzuki T, Niisaka M, Miyasaka N, Morioka C, Sugie M, Hayata M, Aida J, Tamaoka M, et al. Preliminary Evidence Linking Maternal Sleep-Disordered Breathing During Pregnancy to Early Childhood Development: A 3-Year Pilot Cohort Study in Japan. Children. 2025; 12(12):1610. https://doi.org/10.3390/children12121610
Chicago/Turabian StyleTakenouchi, Yu, Jun Hosomichi, Takumi Suzuki, Mayu Niisaka, Naoyuki Miyasaka, Chikako Morioka, Manabu Sugie, Mari Hayata, Jun Aida, Meiyo Tamaoka, and et al. 2025. "Preliminary Evidence Linking Maternal Sleep-Disordered Breathing During Pregnancy to Early Childhood Development: A 3-Year Pilot Cohort Study in Japan" Children 12, no. 12: 1610. https://doi.org/10.3390/children12121610
APA StyleTakenouchi, Y., Hosomichi, J., Suzuki, T., Niisaka, M., Miyasaka, N., Morioka, C., Sugie, M., Hayata, M., Aida, J., Tamaoka, M., Miyazaki, Y., & Ono, T. (2025). Preliminary Evidence Linking Maternal Sleep-Disordered Breathing During Pregnancy to Early Childhood Development: A 3-Year Pilot Cohort Study in Japan. Children, 12(12), 1610. https://doi.org/10.3390/children12121610

