Laser Pulpotomies’ Clinical and Radiographic Success in Primary Teeth by Type of Laser
Highlights
- •
- Different types of lasers used in pulpotomy for primary teeth show varying levels of clinical success, with diode and Nd:YAG lasers demonstrating high success while evidence for CO2 lasers remains limited.
- •
- Success rates and outcomes of laser pulpotomies may be influenced by laser type, device settings, and clinical protocols.
- •
- Laser pulpotomy is potentially a viable alternative to traditional methods, but optimal results may depend on careful selection of laser type and clinical protocols.
- •
- Further research is needed to establish clear guidelines and improve consistency in outcomes for laser pulpotomy in pediatric dentistry.
Abstract
1. Introduction
2. Literature Search
- •
- Laser OR Erbium: Yttrium-Aluminum-Garnet (Er:YAG) OR Er:YAG OR Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) OR Er,Cr:YSGG OR Neodymium-Doped: Yttrium Aluminum Garnet (Nd:YAG) OR Nd:YAG OR Diode OR Low-level laser therapy OR LLLT OR CO2 laser.
- •
- Pulp OR vital pulp treatment OR vital pulp therapy OR pulpotomy OR primary tooth OR primary teeth OR primary molar OR primary incisor OR primary dentition OR deciduous teeth OR deciduous dentition OR deciduous molar OR deciduous incisor.
3. Results
3.1. Diode Laser
3.2. LLLT/Photobiomodulation
3.3. Nd:YAG Laser
3.4. Er:YAG Laser
3.5. Er,Cr:YSGG Laser
3.6. CO2 Laser
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Er:YAG | Erbium: Yttrium-Aluminum-Garnet |
| Er,Cr:YSGG | Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet |
| Nd:YAG | Neodymium-Doped: Yttrium Aluminum Garnet |
| LLLT | Low-level laser therapy |
| RCT | Randomized clinical trial |
| MTA | Mineral Trioxide Aggregate |
| FC | Formocresol |
| FS | Ferric sulphate |
| CH | Calcium Hydroxide |
| ZOE | zinc oxide eugenol |
| GIC | glass ionomer cement |
| SSC | stainless steel crown |
| ES | Electrosurgery |
| NaOCl | Sodium hypochlorite |
| IRM | Intermediate restorative material |
| CEM | Calcium Enriched Mixture |
| HHA | Herbal haemostatic agent |
| SG | Simvastatin gel |
| NR | not reported |
References
- Coll, J.A.; Dhar, V.; Chen, C.Y.; Crystal, Y.O.; Guelmann, M.; Marghalani, A.A.; AlShamali, S.; Xu, Z.; Glickman, G.; Wedeward, R. Primary Tooth Vital Pulp Treatment Interventions: Systematic Review and Meta-Analyses. Pediatr. Dent. 2023, 45, 474–496. [Google Scholar]
- Fuks, A.B. Pulp therapy with new materials for primary teeth: New directions and treatment perspectives. Pediatr. Dent. 2008, 30, 211–219. [Google Scholar] [CrossRef]
- Igna, A. Vital Pulp Therapy in Primary Dentition: Pulpotomy-A 100-Year Challenge. Children 2021, 8, 841. [Google Scholar] [CrossRef] [PubMed]
- Fuks, A.B. Current concepts in vital primary pulp therapy. Eur. J. Paediatr. Dent. 2002, 3, 115–120. [Google Scholar]
- Al-Dlaigan, Y.H. Pulpotomy Medicaments used in Deciduous Dentition: An Update. J. Contemp. Dent. Pract. 2015, 16, 486–503. [Google Scholar] [CrossRef]
- Dhar, V.; Marghalani, A.A.; Crystal, Y.O.; Kumar, A.; Ritwik, P.; Tulunoglu, O.; Graham, L. Use of Vital Pulp Therapies in Primary Teeth with Deep Caries Lesions. Pediatr. Dent. 2017, 39, E146–E159. [Google Scholar]
- de Alencar Filho, A.V.; Dos Santos Junior, V.E.; da Silva Calixto, M.; Santos, N.; Heimer, M.V.; Rosenblatt, A. Evaluation of the genotoxic effects of formocresol application in vital pulp therapy of primary teeth: A clinical study and meta-analysis. Clin. Oral Investig. 2018, 22, 2553–2558. [Google Scholar] [CrossRef]
- Smaïl-Faugeron, V.; Glenny, A.M.; Courson, F.; Durieux, P.; Muller-Bolla, M.; Chabouis, H.F. Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst. Rev. 2018, 2018, CD003220. [Google Scholar] [CrossRef]
- Tewari, N.; Goel, S.; Mathur, V.P.; O’Connell, A.C.; Johnson, R.M.; Rahul, M.; Sultan, F.; Goswami, M.; Srivastav, S.; Ritwik, P. Success of medicaments and techniques for pulpotomy of primary teeth: An overview of systematic reviews. Int. J. Paediatr. Dent. 2022, 32, 828–842. [Google Scholar] [CrossRef]
- Caprioglio, C.; Olivi, G.; Genovese, M.D. Paediatric laser dentistry. Part 1: General introduction. Eur. J. Paediatr. Dent. 2017, 18, 80–82. [Google Scholar] [CrossRef]
- Nazemisalman, B.; Farsadeghi, M.; Sokhansanj, M. Types of Lasers and Their Applications in Pediatric Dentistry. J. Lasers Med. Sci. 2015, 6, 96–101. [Google Scholar] [CrossRef]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Current Concepts of Laser–Oral Tissue Interaction. Dent. J. 2020, 8, 61. [Google Scholar] [CrossRef]
- Olivi, G.; Caprioglio, C.; Olivi, M.; Genovese, M.D. Paediatric laser dentistry. Part 4: Soft tissue laser applications. Eur. J. Paediatr. Dent. 2017, 18, 332–334. [Google Scholar] [CrossRef]
- Mizutani, K.; Aoki, A.; Coluzzi, D.; Yukna, R.; Wang, C.Y.; Pavlic, V.; Izumi, Y. Lasers in minimally invasive periodontal and peri-implant therapy. Periodontology 2000 2016, 71, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, A.; Sanei, M.; Badrian, H. Application of Laser Irradiation for Restorative Treatments. Open Dent. J. 2016, 10, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.M.; Mathew, S.; Altawash, M.M.; Madan, B.M. Lasers: A Review With Their Applications in Oral Medicine. J. Lasers Med. Sci. 2019, 10, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Ansari, G.; Aghdam, H.S.; Taheri, P.; Ahsaie, M.G. Laser pulpotomy-an effective alternative to conventional techniquesa systematic review of literature and meta-analysis. Lasers Med. Sci. 2018, 33, 1621–1629. [Google Scholar] [CrossRef]
- Boutsiouki, C.; Frankenberger, R.; Krämer, N. Clinical and radiographic success of (partial) pulpotomy and pulpectomy in primary teeth: A systematic review. Eur. J. Paediatr. Dent. 2021, 22, 273–285. [Google Scholar] [CrossRef]
- De Coster, P.; Rajasekharan, S.; Martens, L. Laser-assisted pulpotomy in primary teeth: A systematic review. Int. J. Paediatr. Dent. 2013, 23, 389–399. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, N.; Cheng, Y. Comparative efficacy of medicaments or techniques for pulpotomy of primary molars: A network meta-analysis. Clin. Oral Investig. 2023, 27, 91–104. [Google Scholar] [CrossRef]
- Nematollahi, H.; Shirazi, A.S.; Mehrabkhani, M.; Sabbagh, S. Clinical and radiographic outcomes of laser pulpotomy in vital primary teeth: A systematic review and meta-analysis. Eur. Arch. Paediatr. Dent. 2018, 19, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Pandiyan, R.; Lehl, G.K.; Kumar, R.; Sharma, U.; Jagachandiran, V.V. Assessing the efficacy of Laser pulpotomy versus conventional pulpotomy in primary teeth: A systematic review and meta-analysis of clinical trials. Lasers Med. Sci. 2024, 39, 198. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, M.; Xu, J. Clinical efficacy of diode laser for pulpotomy in primary teeth: A meta-analysis of randomised controlled trials. Acta Odontol. Scand. 2025, 84, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Rostami, G.; Xu, C.; Peters, O.A. The application of lasers in vital pulp therapy: Clinical and radiographic outcomes. BMC Oral Health 2024, 24, 333. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, B.; Sigal, M.; Clokie, C.; Rukavina, J.; Titley, K.; Kulkarni, G.V. Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: Diode laser-mineral trioxide aggregate pulpotomy. Int. J. Paediatr. Dent. 2005, 15, 437–447. [Google Scholar] [CrossRef]
- Ansari, G.; Chitsazan, A.; Fekrazad, R.; Javadi, F. Clinical and radiographic evaluation of diode laser pulpotomy on human primary teeth. Laser Ther. 2018, 27, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Simunovic, L.; Spiljak, B.; Vranic, L.; Basic, R.; Vranic, D.N. Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth? Appl. Sci. 2022, 12, 11667. [Google Scholar] [CrossRef]
- Aripirala, M.; Bansal, K.; Mathur, V.P.; Tewari, N.; Gupta, P.; Logani, A. Comparative evaluation of diode laser and simvastatin gel in pulpotomy of primary molars: A randomized clinical trial. J. Indian. Soc. Pedod. Prev. Dent. 2021, 39, 303–309. [Google Scholar] [CrossRef]
- Durmus, B.; Tanboga, I. In Vivo Evaluation of the Treatment Outcome of Pulpotomy in Primary Molars Using Diode Laser, Formocresol, and Ferric Sulphate. Photomed. Laser Surg. 2014, 32, 289–295. [Google Scholar] [CrossRef]
- Yadav, P.; Indushekar, K.; Saraf, B.; Sheoran, N.; Sardana, D. Comparative evaluation of Ferric Sulfate, Electrosurgical and Diode Laser on human primary molars pulpotomy: An “in-vivo” study. Laser Ther. 2014, 23, 41–47. [Google Scholar] [CrossRef]
- Gupta, G.; Rana, V.; Srivastava, N.; Chandna, P. Laser Pulpotomy-An Effective Alternative to Conventional Techniques: A 12 Months Clinicoradiographic Study. Int. J. Clin. Pediatr. Dent. 2015, 8, 18–21. [Google Scholar] [CrossRef]
- Niranjani, K.; Prasad, M.G.; Vasa, A.A.K.; Divya, G.; Thakur, M.S.; Saujanya, K. Clinical Evaluation of Success of Primary Teeth Pulpotomy Using Mineral Trioxide Aggregate®, Laser and Biodentine ™-An In Vivo Study. J. Clin. Diagn. Res. 2015, 9, ZC35–ZC37. [Google Scholar] [CrossRef]
- Joshi, P.R.; Baliga, S.M.; Rathi, N.V.; Thosar, N.R.; Dharmadhikari, P.M.; Chandak, P. A comparative evaluation between Formocresol and diode laser assisted pulpotomy in primary molars–an in vivo study. Eur. J. Pharm. Med. Res. 2017, 4, 569–575. [Google Scholar]
- Kuo, H.Y.; Lin, J.R.; Huang, W.H.; Chiang, M.L. Clinical outcomes for primary molars treated by different types of pulpotomy: A retrospective cohort study. J. Formos. Med. Assoc. 2018, 117, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Pratima, B.; Chandan, G.D.; Nidhi, T.; Nitish, I.; Sankriti, M.; Nagaveni, S.; Shweta, S. Postoperative assessment of diode laser zinc oxide eugenol and mineral trioxide aggregate pulpotomy procedures in children: A comparative clinical study. J. Indian Soc. Pedod. Prev. Dent. 2018, 36, 308–314. [Google Scholar] [CrossRef]
- Shaikh, M.; Jha, M.; Undre, M.; Ershad, A.; Shaikh, T. Outcome of pulpotomy in primary teeth using diode laser. J. Contemp. Dent. 2019, 9, 72–77. [Google Scholar] [CrossRef]
- Pei, S.L.; Shih, W.Y.; Liu, J.F. Outcome comparison between diode laser pulpotomy and formocresol pulpotomy on human primary molars. J. Dent. Sci. 2020, 15, 163–167. [Google Scholar] [CrossRef]
- Satyarth, S.; Alkhamis, A.M.; Almunahi, H.F.; Abdulaziz Alsuhaymi, M.O.; Vadde, H.B.; Senapathi, S.N.; Shami, A.O.; Aldrewesh, R.F.; Nayyar, A.S. Comparative Evaluation of Mineral Trioxide Aggregate Pulpotomy and Laser-Assisted Mineral Trioxide Aggregate Pulpotomy: An Original Research Article. J. Microsc. Ultrastruct. 2021, 9, 7–11. [Google Scholar] [CrossRef]
- Fadhil, W.A.; Noori, A.J. Clinical and Radiographic Evaluation of Diode and Er,Cr:YSGG Lasers as an Alternative to Formocresol and Sodium Hypochlorite for Pulpotomy Techniques in Primary Molars: A Randomized Controlled Clinical Trial. Cureus J. Med. Sci. 2024, 16, e65902. [Google Scholar] [CrossRef]
- Simonoska, J.; Bjelica, R.; Dimkov, A.; Simjanovska, J.; Gabric, D.; Gjorgievska, E. Efficacy of Laser Pulpotomy vs. Conventional Vital Pulpotomy in Primary Teeth: A Comparative Clinical Analysis. Children 2025, 12, 341. [Google Scholar] [CrossRef]
- Alamoudi, N.; Nadhreen, A.; Sabbagh, H.; El Meligy, O.; Al Tuwirqi, A.; Elkhodary, H. Clinical and Radiographic Success of Low-Level Laser Therapy Compared with Formocresol Pulpotomy Treatment in Primary Molars. Pediatr. Dent. 2020, 42, 359–366. [Google Scholar] [PubMed]
- Kaya, C.; Elbay, Ü.; Elbay, M.; Uçar, G. The comparison of calcium hydroxide plus biostimulation, calcium hydroxide, formocresol, and MTA pulpotomies without biostimulation in primary teeth: 12-months clinical and radiographic follow-up. Lasers Med. Sci. 2022, 37, 2545–2554. [Google Scholar] [CrossRef]
- Golpayegani, M.V.; Ansari, G.; Tadayon, N. Clinical and radiographic success of low level laser therapy (LLLT) on primary molars pulpotomy. Res. J. Biol. Sci. 2010, 5, 51–55. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Neto, N.L.; Marques, N.C.T.; Moretti, A.B.S.; Sakai, V.T.; Silva, T.C.; Machado, M.; Oliveira, T.M. Clinical and radiographic outcomes of the use of Low-Level Laser Therapy in vital pulp of primary teeth. Int. J. Paediatr. Dent. 2015, 25, 144–150. [Google Scholar] [CrossRef]
- Uloopi, K.S.; Vinay, C.; Ratnaditya, A.; Gopal, A.S.; Mrudula, K.J.N.; Rao, R.C. Clinical Evaluation of Low Level Diode Laser Application For Primary Teeth Pulpotomy. J. Clin. Diagn. Res. 2016, 10, ZC67–ZC70. [Google Scholar] [CrossRef] [PubMed]
- Ansari, G.; Morovati, S.P.; Asgary, S. Evaluation of Four Pulpotomy Techniques in Primary Molars: A Randomized Controlled Trial. Iran. Endod. J. 2018, 13, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Nadhreen, A.; Sabbagh, H.; Alamoudi, N.; Elkhodary, H. Photobiomodulation 810 nm diode laser and formocresol for primary molar pulpotomy: A randomized clinical trial. Egypt. Dent. J. 2021, 67, 19–30. [Google Scholar] [CrossRef]
- Yavagal, C.M.; Lal, A.; Chavan Patil, V.V.; Yavagal, P.C.; Neelakantappa, K.K.; Hariharan, M. Efficacy of laser photobiomodulation pulpotomy in human primary teeth: A randomized controlled trial. J. Indian Soc. Pedod. Prev. Dent. 2021, 39, 436–441. [Google Scholar] [CrossRef]
- Haghgoo, R.; Molaasadolah, F.; Taghizade, F.; Ansari, G.; Asgary, S. Three-Year Outcome Of Diode Laser Pulpotomy Of Primary Molars Using Three Pulp Capping Agents: A Split-Mouth Randomized Clinical Trial. J. Evid.-Based Dent. Pract. 2023, 23, 101920. [Google Scholar] [CrossRef]
- Furze, H.A.; Furze, M.E. Pulpotomy with Laser in Primary and Young Permanent Teeth. J. Oral Laser Appl. 2006, 6, 53. [Google Scholar]
- Liu, J.F. Effects of Nd:YAG laser pulpotomy on human primary molars. J. Endod. 2006, 32, 404–407. [Google Scholar] [CrossRef]
- Odabas, M.E.; Bodur, H.; Baris, E.; Demir, C. Clinical, radiographic, and histopathologic evaluation of Nd: YAG laser pulpotomy on human primary teeth. J. Endod. 2007, 33, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Huth, K.C.; Hajek-Al-Khatar, N.; Wolf, P.; Ilie, N.; Hickel, R.; Paschos, E. Long-term effectiveness of four pulpotomy techniques: 3-year randomised controlled trial. Clin. Oral Investig. 2012, 16, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Chen, Y.J.; Zhang, B.Z.; Ge, X.; Wang, X.J. Clinical efficacy of Er:YAG laser application in pulpotomy of primary molars: A 2-year follow-up study. Lasers Med. Sci. 2022, 37, 3705–3712. [Google Scholar] [CrossRef]
- Huth, K.C.; Paschos, E.; Hajek-Al-Khatar, N.; Hollweck, R.; Crispin, A.; Hickel, R.; Folwaczny, M. Effectiveness of 4 pulpotomy techniques-Randomized controlled trial. J. Dent. Res. 2005, 84, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Ramanandvignesh, P.; Gyanendra, K.; Jatinder Kaur Goswami Mridula, D. Clinical and Radiographic Evaluation of Pulpotomy using MTA, Biodentine and Er,Cr:YSGG Laser in primary teeth- A Clinical Study. Laser Ther. 2020, 29, 29–34. [Google Scholar] [CrossRef]
- Sahin, N.D.; Arikan, V.; Öe, F. Comparative evaluation of the success of Er,Cr:YSGG laser, ferric sulfate, or a herbal hemostatic agent for hemostasis in primary molar pulpotomy. Eur. J. Oral Sci. 2025, 133, e70022. [Google Scholar] [CrossRef]
- Pescheck, A.; Pescheck, B.; Moritz, A. Pulpotomy of Primary Molars with the Use of a Carbon Dioxide Laser: Results of a Long-term In Vivo Study. J. Oral Laser Appl. 2002, 2, 165. [Google Scholar]
- Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Ortolani-Seltenerich, P.S.; Álvarez-Muro, T.; Lozano, A.; Forner, L.; Llena, C.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int. Endod. J. 2017, 50 (Suppl. 2), e19–e30. [Google Scholar] [CrossRef]
- Martens, L.C. Laser physics and a review of laser applications in dentistry for children. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2011, 12, 61–67. [Google Scholar] [CrossRef]
- Promklay, A.; Fuangtharnthip, P.; Surarit, R.; Atsawasuwan, P. Response of dental pulp cells to Er:YAG irradiation. Photomed. Laser Surg. 2010, 28, 793–799. [Google Scholar] [CrossRef]
- Zhang, O.L.; Yin, I.X.; Yu, O.Y.; Luk, K.; Niu, J.Y.; Chu, C.H. Advanced Lasers and Their Applications in Dentistry. Dent. J. 2025, 13, 37. [Google Scholar] [CrossRef]

| Author Year Location | n Subjects Age Study Design | n Teeth in Groups | Clinical Specifications and Procedures of Using the Diode Laser | Dressing Restoration | Follow Up in Months | Clinical Success at the Last Follow Up | Radiographic Success at the Last Follow Up |
|---|---|---|---|---|---|---|---|
| Saltzman et al., 2005 [25] Canada | 16 subjects 3–8 years RCT Split-mouth | 26 Diode + MTA 26 FC + ZOE | - 980 nm; 3 W; continuous pulse - 0.55 mm optical fibre - In contact with pulp tissue - Multiple applications until hemostasis achieved | MTA ZOE SSC | 2, 5, 10, 16 | 13/13 (100%) Diode + MTA 7/7 (100%) FC + ZOE | 11/13 (85%) Diode + MTA 5/7 (71%) FC + ZOE |
| Durmus and Tanbuga 2014 [29] Turkey | 58 subjects 5–9 years RCT | 40 Diode 40 FC 40 FS | - 810 nm; 50 mJ; 1.5 W; 30 Hz - 10 s exposure time - Fibre tip 1–2 mm away from tissue - Air cooling without water | ZOE + GIC SSC | 1, 3, 6, 9, 12 | 40/40 (100%) Diode 39/40 (98%) FC 38/39 (93)% FS | 30/40 (75%) Diode 35/40 (88%) FC 31/39 (80)% FS |
| Yadav et al., 2014 [30] India | 37 subjects 4–7 years RCT | 15 Diode 15 FS 15 ES | - wavelength NR; 3 W; Continuous wave - Non-contact mode for 2–3 s - 400 µm optical fibre - Multiple applications until hemostasis achieved | ZOE + GIC SSC | 1, 3, 6, 9 | 15/15 (100%) Diode 13/15 (87%) FS 15/15 (100%) ES | 12/15 (80%) Diode 12/15 (80%) FS 12/15 (80%) ES |
| Gupta et al., 2015 [31] India | 30 subjects 4–10 years RCT | 10 Diode 10 FS 10 ES | - 980 nm; 4 J/cm2; 3 W; Continuous pulse mode - 0.5 mm optical fibre - 2 min and 31 s exposure time - Multiple applications | ZOE SSC | 3, 6, 9, 12 | 10/10 (100%) Diode 8/10 (80%) FS 8/10 (80%) ES | 10/10 (100%) Diode 8/10 (80%) FS 8/10 (80%) ES |
| Niranjani et al., 2015 [32] India | 60 subjects 5–9 years RCT | 20 Diode 20 MTA 20 Biodentine | - 810 nm; 1.5 W - Pulse contact mode - 2 s application | ZOE SSC | 3, 6 | 13/15 (87%) Diode 16/16 (100%) MTA 13/15 (87%) Biodentine | 13/15 (87%) Diode 16/16 (100%) MTA 13/15 (87%) Biodentine |
| Joshi et al., 2017 [33] India | 20 subjects 4–9 years RCT | 20 Diode 20 FC | - 980 nm; 1.5 W; Continuous mode - 200 µm optical fibre - 2 s application - Contact mode | ZOE SSC | 3, 6, 12 | 19/19 (100%) Diode 19/19 (100%) FC | 15/19 (79%) Diode 11/19 (58%) FC |
| Ansari et al., 2018 [26] Iran | 14 subjects 3–9 years RCT Split-mouth | 20 Diode 20 FC | - 810 nm; 10 W; 20 Hz - 20 ms pulse duration - 40 ms interval time - Non-contact mode - 800 µm optical fibre - Multiple applications | ZOE SSC | 6, 12 | 20/20 (100%) Diode 20/20 (100%) FC | 18/20 (90%) Diode 20/20 (100%) FC |
| Kuo et al., 2018 [34] Taiwan | 74 subjects 2–6.5 years Retrospective cohort | 41 Diode 80 NaOCl 24 None | - 970 nm; 3 W; 5 Hz - Water cooling | ZOE SSC or composite | 6, 24 | 32/32 (100%) Diode 56/63 (89%) NaOCl 16/16 (100%) None | 30/33 (91%) Diode 44/67 (66%) NaOCl 14/16 (88%) None |
| Pratima et al., 2018 [35] Malaysia | 40 subjects 4–9 years RCT | 20 Diode +MTA 20 Diode +ZOE | - 980 nm; 2.5–3 W; continuous pulse - 0.5 mm optical fibre - In contact with pulp tissue - Multiple applications until hemostasis achieved | 3, 6, 12 | 19/19 (100%) Diode + MTA 16/17 (94%) Diode + ZOE | 19/19 (100%) Diode + MTA 16/17 (94%) Diode + ZOE | |
| Shaikh et al., 2019 [36] India | NR subjects 4–8 years Design NR | 20 Diode 20 Formocresol | NR | NR | 1, 3, 6, 9 | 17/17 (100%) Diode 18/18 (100%) FC | 16/17 (94%) Diode 16/18 (89%) FC |
| Pei et al., 2020 [37] Taiwan | 70 subjects 2–8 years RCT | 45 Diode 45 FC | - 915 nm; 2 W; 100 Hz - Contact mode for 1 s at each orifice 3 times until hemostasis | IRM SSC | 3, 6, 9, 12 | 25/90 teeth after 12 m (93%) Diode (91%) FC | 25/90 teeth after 12 m (79%) Diode (73%) FC |
| Aripirala et al., 2021 [28] India | 98 subjects 4–8 years RCT | 49 Diode 51 SGG | - 940 nm; 4 J/cm2; 2 W; 70–80 Hz - Gated pulse mode - 300 µm optical fibre | GIC SSC | 3, 12 | 35/46 (76%) Diode 37/46 (80%) SG | 24/46 (52%) Diode 30/46 (65%) SG |
| Satyarth et al., 2021 [38] India | 40 subjects 6–8 years RCT | 20 Diode + MTA 20 MTA | - 810 nm; 1.5 W; continuous mode - 2 s exposure - 200 µm optical fibre - In contact mode | MTA + GIC SSC | 3, 6, 9 | 17/18 (94%) Diode + MTA 15/17 (88%) MTA | 16/18 (89%) Diode + MTA 14/17 (82%) MTA |
| Simunovic et al., 2022 [27] Croatia | 128 subjects 5–8 years RCT | 64 Diode + Biodentine 64 Biodentine | - 980 nm; 3 W; continuous mode - 320 µm optical fibre - In contact mode for 2.5 min | Biodentine Composite or GIC | 6, 12, 24 | 55/60 (92%) Diode + Biodentine 52/60 (87%) Biodentine | 52/60 (87%) Diode + Biodentine 44/60 (73%) Biodentine |
| Fadhil and Noori 2024 [39] Iraq | 34 subjects 4–8 years RCT | 15 Diode 15 Er,Cr:YSGG 15 FC 15 NaOCl | - 940 nm; 2 W; continuous mode - 300 µm optical fibre - In contact mode for 1 s at each orifice | MTA SSC | 6, 12 | (100%) Diode (100%) Er,Cr:YSGG (96%) FC (88%) NaOCl | (95%) Diode (97%) Er,Cr:YSGG (85%) FC (88%) NaOCl |
| Simonska et al., 2025 [40] Croatia | 37 subjects 4–8 years RCT | 10 Diode +MTA 10 Diode + CH 10 MTA 10 CH | - 975 nm; 2 W; continuous mode - 10 s application until haemostasis | MTA + GIC CH + GIC Composite | 1, 3, 6 | 7/9 (78%) Diode + MTA 7/10 (70%) Diode + CH 8/10 (80%) MTA 7/10 (70%) Ca(OH)2 | |
| Author Year Location | n Subjects Age Study Design | n Teeth in Groups | Clinical Specifications and Procedures of Using the LLLT/Photobiomodulation | Dressing Restoration | Follow Up in Months | Clinical Success at the Last Follow Up | Radiographic Success at the Last Follow Up |
|---|---|---|---|---|---|---|---|
| Golpayegani et al., 2010 [43] Iran | 11 subjects 4–7 years RCT Split-mouth | 23 LLLT 23 FC | - 632 nm; 4 J/cm2; continuous mode - 0.5 mm diameter optical fibre - 2 mm distance from pulp stums - 2 min 31 s exposure time | ZOE SSC | 6, 12 | 15/15 (100%) LLLT 14/15 (93%) FC | 10/15 (67%) LLLT 10/15 (67%) FC |
| Fernandes et al., 2015 [44] Brazil | n NR 5–9 years RCT | 15 LLLT 15 LLLT + CH 15 CH 15 FC | - 660 nm; 2.5 J/cm2; 10 mW; 50–60 Hz - 320 mm diameter optical fibre; in contact mode - 0.04 cm2 focus beam - Irradiation time 10 s | ZOE RMGIC | 6, 12, 18 | 15/15 (100%) LLLT 12/12 (100%) LLLT + CH 9/9 (100%) CH 15/15 (100%) FC | 11/15 (73%) LLLT 9/12 (75%) LLLT + CH 6/9 (67%) CH 15/15 (100%) FC |
| Uloopi et al., 2016 [45] India | 29 subjects 4–7 years RCT | 20 LLLT 20 MTA | - 810 nm; 2 J/cm2; continuous mode - Applied over radicular stumps for 10 s | GIC SSC | 3, 6, 12 | 16/20 (80%) LLLT 18/19 (95%) MTA | |
| Ansari et al., 2018 [46] Iran | 40 subjects 3–9 years RCT split-mouth | 40 LLLT + CEM 40 CEM 40 FC 40 FS | - 632 nm; 4 J/cm2 - 135 s exposure time | Zonalin SSC | 6, 12 | 40/40 (100%) LLLT + CEM 39/40 (98%) CEM 40/40 (100%) FC 38/40 (95%) FS | 40/40 (100%)LLLT + CEM 38/40 (95%) CEM 40/40 (100%) FC 37/40 (93%) FS |
| Alamoudi et al., 2020 [41] Nadhreen et al., 2021 [47] Saudi Arabia | 36 subjects 5–8 years RCT split-mouth | 53 LLLT 53 FC | - 810 nm; 4 J; 6.7 J/cm2; 3 W; 5 W/cm2 continuous pulse mode - 200 µm diameter optical fibre - 2 mm away from pulp tissue - 105 µm focus beam - 40 s irradiation time | IRM SSC | 6, 12 3, 9 | 49/51 (96%) LLLT 49/51 (96%) FC | 51/51 (100%) LLLT 50/51 (98%) FC |
| Yavagal et al., 2021 [48] India | 4–7 years RCT Split-mouth | 34 PBM 34 FC | - 660 nm; 36 mW - Non-contact mode - 4 min exposure time | GIC SSC | 9 | 32/34 (94%) PBM 33/34 (97%) FC | 32/34 (94%) PBM 20/34 (59%) FC |
| Kaya et al., 2022 [42] Turkey | 94 subjects 5–8 years RCT | 43 PBM + CH 43 CH 43 FC 43 MTA | - 820 nm; 2.5 J/cm2; 10 mW - 12 s exposure time - 1 mm from target tissue - 0.047 cm2 spot size area | Zinc phosphate cement except FC covered with ZOE | 6, 12 | (87%) PBM + CH (71%) CH (97%) FC (97%) MTA | (73%) PBM + CH (45%) CH (92%) FC (95%) MTA |
| Haghgoo et al., 2023 [49] Iran | 34 subjects 3–8 years RCT split-mouth | 34 PBM + MTA 34 PBM + CH 34 PBM + CEM | - 632 nm; 4 J/cm2; 30 mW; 1–50 Hz - Non-contact (2 mm distance); - Photobiomodulation mode - Continuous-wave mode with 0.5 cm2 - Cross-sectioned area of the nozzle tip - Laser was irradiated for 75 s | ZOE SSC | 6, 12, 18, 36 | 29/30 (97%) PBM + MTA 25/30 (83%) PBM + CH 29/30 (97%) PBM + CEM | 28/30 (93%) PBM +MTA 20/30 (67%) PBM + CH 28/30 (93%) PBM + CEM |
| Author Year Location | n Subjects Age Study Design | n Teeth in Groups | Clinical Specifications and Procedures of Using the Nd:YAG Laser | Dressing Restoration | Follow Up in Months | Clinical Success at the Last Follow Up | Radiographic Success at the Last Follow Up |
|---|---|---|---|---|---|---|---|
| Furze and Furze. 2006 [50] Argentina | NR Prospective clinical study | 35 Nd:YAG + CH 20 Nd:YAG + CH + Iodoform 10 Nd:YAG + GIC | - 1064 nm; 2 W; 20 Hz - 10 s application - 2–3 mm distance from the stumps | CH CH + Iodoform GIC NR | 12 | 33/35 (94%) Nd:YAG + CH 20/20 (100%) Nd:YAG + CH + Iodoform 9/10 (90%) Nd:YAG + GIC | NR |
| Liu. 2006 [51] Taiwan | 55 subjects 4–7 years Design NR | 68 Nd:YAG 69 FC | - wavelength NR; 100 mJ; 2 W; 20 Hz - 320 µm optical fibre | IRM SSC or composite | Nd:YAG 6–64 m FC 9–66 m | 66/68 (97%) Nd:YAG 59/69 (86%) FC | 64/68 (94%) Nd:YAG 54/69 (78%) FC |
| Odabas et al., 2007 [52] Turkey | 30 subjects 6–9 years Design NR | 21 Nd:YAG 21 FC | - 1064 nm; 100 mJ; 2 W; 20 Hz - Non-contact | IRM SSC or amalgam | 1, 3, 6, 9, 12 | 18/21 (86%) Nd:YAG 19/21 (90%) FC | 15/21 (71%) Nd:YAG 19–21 (90%) FC |
| Author Year Location | n Subjects Age Study Design | n Teeth in Groups | Clinical Specifications and Procedures of Using the Er:YAG Laser | Dressing Restoration | Follow Up in Months | Clinical Success at the Last Follow Up | Radiographic Success at the Last Follow Up |
|---|---|---|---|---|---|---|---|
| Huth et al., 2005 [55] Huth et al., 2012 [53] Germany | 107 subjects ≤ 8 years RCT | 47 Er:YAG 50 FC 44 CH 50 FS | - 2490 nm; 180 mJ/pulse; 2 Hz - Pulsating mode - Without wate cooling - Mean number of laser pulses per tooth was 31.5 ± 5.9, equally distributed to each pulp stump | IRM SSC or composite | 6, 12, 18, 24, 36 | (89%) Er:YAG (92%) FC (75%) CH (97%) FS | (73%) Er:YAG (72%) FC (46%) CH (76%) FS |
| Wang et al., 2022 [54] China | 40 subjects 3–6 years RCT | 50 Er:YAG + MTA 50 MTA | - 2940 nm; 20 mJ/pulse; 0.64 J/cm2; 9.6 W/cm2; 15 HZ - Pulse duration of 300 ms - Spot with a diameter of 1 mm - 1 mm distance from pulp tissue | MTA + GIC SSC | 6, 12, 18, 24 | 43/48 (90%) Er:YAG + MTA 39/47 (83%) MTA | |
| Author Year Location | n Subjects Age Study Design | n Teeth in Groups | Clinical Specifications and Procedures of Using the Er,Cr:YSGG Laser | Dressing Restoration | Follow Up in Months | Clinical Success at the Last Follow Up | Radiographic Success at the Last Follow Up |
|---|---|---|---|---|---|---|---|
| Ramanandvignesh et al., 2020 [56] India | 45 subjects 4–9 years RCT | 18 Er,Cr:YSGG 18 MTA 18 Biodentine | - Wavelength NR; 75–100 mJ or 100–120 mJ; 1–1.5 W or 1–1.8 W; 10–15 Hz - Water spray - 600 µm tip diameter - 60 s - Repeated three to four times | ZOE SSC | 3, 6, 9 | 13/16 (81%) Er,Cr:YSGG 14/17 (82%) MTA 17/17(100%) Biodentine | 13/16 (81%) Er,Cr:YSGG 14/17 (82%) MTA 17/17(100%) Biodentine |
| Fadhil and Noori 2024 [39] Iraq | 34 subjects 4–8 years RCT | 15 Er,Cr:YSGG 15 Diode 15 FC 15 NaOCl | -2780 nm; 1.5 W; 50 Hz; soft tissue -20% air cooling; no water -tip-type MZ6 was applied for 10 s until a fixed char layer formed over the canal orifice | MTA SSC | 6, 12 | 100% Er,Cr:YSGG 100% Diode 96% FC 88% NaOCl | 97% Er,Cr:YSGG 95% Diode 85% FC 88% NaOCl |
| Sahin et al., 2025 [57] Turkey | 65 subjects 5–9 years RCT | 27 Er,Cr:YSGG 27 FS 27 HHA | -Wavelength NR; 25 mJ; 0.5 W; 50 Hz -Non-caontact 3–4 mm away from tissue -10 s application time -600 mm tip diameter (MZ6) | ZOE SSC | 3, 6, 9, 12 | 26/26(100%) Er,Cr:YSGG 24/25 (96%) FS 26/26 (100%) HHA | 25/26 (96%) Er,Cr:YSGG 19/25 (76%) FS 19/26 (73%) HHA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felemban, O.M. Laser Pulpotomies’ Clinical and Radiographic Success in Primary Teeth by Type of Laser. Children 2025, 12, 1508. https://doi.org/10.3390/children12111508
Felemban OM. Laser Pulpotomies’ Clinical and Radiographic Success in Primary Teeth by Type of Laser. Children. 2025; 12(11):1508. https://doi.org/10.3390/children12111508
Chicago/Turabian StyleFelemban, Osama M. 2025. "Laser Pulpotomies’ Clinical and Radiographic Success in Primary Teeth by Type of Laser" Children 12, no. 11: 1508. https://doi.org/10.3390/children12111508
APA StyleFelemban, O. M. (2025). Laser Pulpotomies’ Clinical and Radiographic Success in Primary Teeth by Type of Laser. Children, 12(11), 1508. https://doi.org/10.3390/children12111508

