Sleep Duration and Screen Time in Young Children with Mild Language Delays
Highlights
- Excessive screen time was significantly associated with lower expressive language scores, while sleep duration showed no direct correlation with language outcomes.
 - Sociodemographic factors such as race, insurance status, and caregiver education were strongly correlated with both sleep and screen time behaviors.
 
- Interventions should address reducing screen time in young children with mild language delays, as findings suggest this modifiable risk factor can impact expressive language development.
 - Programs should also consider underlying sociodemographic factors, tailoring interventions to each family to increase adherence to national health guidelines and optimize developmental outcomes.
 
Abstract
1. Introduction
1.1. Sleep Duration and Language Development
1.2. Screen Time and Language Development
1.3. Relationship Between Sleep and Screen Time
1.4. Family and Sociodemographic Differences
1.5. Purpose of the Study
- Children with mild language delays who exceed recommended screen time guidelines will have lower expressive communication scores compared to those who meet the guidelines.
 - Children with mild language delays who do not meet recommended sleep duration guidelines will have lower expressive and receptive communication scores compared to those who meet the guidelines.
 - Sociodemographic factors, including lower household income, Medicaid insurance status, and lower caregiver education levels, will be associated with increased screen time and decreased sleep duration in children with mild language delays.
 - Children with mild language delays who meet both AAP sleep guidelines and the CFOC screen time guidelines will have significantly better language development outcomes than those who do not meet one or both guidelines.
 
2. Materials and Methods
2.1. Early Discovery Program
2.2. Participants
2.3. Measures
- How many hours on average does this child sleep at night per day?
 - On a typical day, how much time is spent watching television, watching DVDs or videos, playing computer games, game consoles, or on an iPad or smartphone/tablet apps?
 
2.4. Statistical Analyses
3. Results
4. Discussion
Implications
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAP | American Academy of Pediatrics | 
| CFOC | Caring for Our Children | 
| SES | Socioeconomic status | 
| PLS-5 | Preschool Language Scales, 5th Edition | 
| AC | Auditory Comprehension | 
| EC | Expressive Communication | 
| SWOT | Strengths, Weaknesses, Opportunities, and Threats | 
| Ref | Reference | 
References
- Rideout, V.; Robb, M.B. The Common Sense Census: Media Use by Kids Age Zero to Eight, 2020; Common Sense: San Francisco, CA, USA, 2020. [Google Scholar]
 - Cheung, C.H.; Bedford, R.; Saez De Urabain, I.R.; Karmiloff-Smith, A.; Smith, T.J. Daily touchscreen use in infants and toddlers is associated with reduced sleep and delayed sleep onset. Sci. Rep. 2017, 7, 46104. [Google Scholar] [CrossRef]
 - American Academy of Pediatrics. Program Activities for Healthy Development. In Caring for Our Children: National Health and Safety Performance Standards; American Academy of Pediatrics: Itasca, IL, USA, 2019. [Google Scholar] [CrossRef]
 - Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef]
 - Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef]
 - Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
 - Jenco, M. AAP Endorses New Recommendations on Sleep Times. Available online: https://publications.aap.org/aapnews/news/6630/AAP-endorses-new-recommendations-on-sleep-times (accessed on 22 October 2024).
 - Kahn, M.; Schnabel, O.; Gradisar, M.; Rozen, G.S.; Slone, M.; Atzaba-Poria, N.; Tikotzky, L.; Sadeh, A. Sleep, screen time and behaviour problems in preschool children: An actigraphy study. Eur. Child Adolesc. Psychiatry 2021, 30, 1793–1802. [Google Scholar] [CrossRef] [PubMed]
 - Feltner, C.; Wallace, I.F.; Nowell, S.W.; Orr, C.J.; Raffa, B.; Middleton, J.C.; Vaughan, J.; Baker, C.; Chou, R.; Kahwati, L. Screening for Speech and Language Delay and Disorders in Children 5 Years or Younger: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2024, 331, 335–351. [Google Scholar] [CrossRef] [PubMed]
 - Roberts, M.Y.; Curtis, P.R.; Sone, B.J.; Hampton, L.H. Association of Parent Training with Child Language Development: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 671–680. [Google Scholar] [CrossRef] [PubMed]
 - Force, U.S.P.S.T.; Barry, M.J.; Nicholson, W.K.; Silverstein, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaen, C.R.; Li, L.; et al. Screening for Speech and Language Delay and Disorders in Children: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 331, 329–334. [Google Scholar] [CrossRef]
 - Chilosi, A.M.; Pfanner, L.; Pecini, C.; Salvadorini, R.; Casalini, C.; Brizzolara, D.; Cipriani, P. Which linguistic measures distinguish transient from persistent language problems in Late Talkers from 2 to 4 years? A study on Italian speaking children. Res. Dev. Disabil. 2019, 89, 59–68. [Google Scholar] [CrossRef]
 - McLaughlin, M.R. Speech and language delay in children. Am. Fam. Physician 2011, 83, 1183–1188. [Google Scholar]
 - Tonn, C.R.; Grundfast, K.M. What an otolaryngologist should know about evaluation of a child referred for delay in speech development. JAMA Otolaryngol.-Head Neck Surg. 2014, 140, 259–265. [Google Scholar] [CrossRef] [PubMed]
 - Cai, S.; Tham, E.K.H.; Xu, H.Y.; Fu, X.; Goh, R.S.M.; Gluckman, P.D.; Chong, Y.S.; Yap, F.; Shek, L.P.; Hoe Teoh, O.; et al. Trajectories of reported sleep duration associate with early childhood cognitive development. Sleep 2023, 46, zsac264. [Google Scholar] [CrossRef] [PubMed]
 - Tham, E.K.H.; Xu, H.Y.; Fu, X.; Goh, R.S.M.; Gluckman, P.D.; Chong, Y.S.; Yap, F.; Shek, L.P.; Teoh, O.H.; Gooley, J.; et al. Associations between sleep trajectories up to 54 months and cognitive school readiness in 4 year old preschool children. Front. Psychol. 2023, 14, 1136448. [Google Scholar] [CrossRef] [PubMed]
 - Turnbull, K.L.P.; Cubides Mateus, D.M.; LoCasale-Crouch, J.; Lewin, D.S.; Williford, A.P. Sleep Patterns and School Readiness of Pre-Kindergarteners from Racially and Ethnically Diverse, Low-Income Backgrounds. J. Pediatr. 2022, 251, 178–186. [Google Scholar] [CrossRef]
 - Smithson, L.; Baird, T.; Tamana, S.K.; Lau, A.; Mariasine, J.; Chikuma, J.; Lefebvre, D.L.; Subbarao, P.; Becker, A.B.; Turvey, S.E.; et al. Shorter sleep duration is associated with reduced cognitive development at two years of age. Sleep Med. 2018, 48, 131–139. [Google Scholar] [CrossRef]
 - Knowland, V.C.P.; Berens, S.; Gaskell, M.G.; Walker, S.A.; Henderson, L.M. Does the maturation of early sleep patterns predict language ability at school entry? A Born in Bradford study. J. Child Lang. 2022, 49, 1–23. [Google Scholar] [CrossRef]
 - Horvath, K.; Plunkett, K. Frequent daytime naps predict vocabulary growth in early childhood. J. Child Psychol. Psychiatry 2016, 57, 1008–1017. [Google Scholar] [CrossRef]
 - Chan, P.H.Y.; Lai, C.M.; Wong, P.C.M.; Lam, H.S. Interaction effect of gestational age on the association between sleep and neurodevelopmental outcomes in early childhood: A longitudinal study from birth to 24 months. Early Hum. Dev. 2025, 210, 106354. [Google Scholar] [CrossRef]
 - Botting, N.; Baraka, N. Sleep behaviour relates to language skills in children with and without communication disorders. Int. J. Dev. Disabil. 2017, 64, 238–243. [Google Scholar] [CrossRef]
 - Berenguer, C.; Rosa, E.; De Stasio, S.; Olsson, N.C. Sleep quality relates to language impairment in children with autism spectrum disorder without intellectual disability. Sleep Med. 2024, 117, 99–106. [Google Scholar] [CrossRef]
 - Edgin, J.O.; Tooley, U.; Demara, B.; Nyhuis, C.; Anand, P.; Spano, G. Sleep Disturbance and Expressive Language Development in Preschool-Age Children with Down Syndrome. Child. Dev. 2015, 86, 1984–1998. [Google Scholar] [CrossRef]
 - Li, Q.K.W.; MacKinnon, A.L.; Tough, S.; Graham, S.; Tomfohr-Madsen, L. Does Where You Live Predict What You Say? Associations between Neighborhood Factors, Child Sleep, and Language Development. Brain Sci. 2022, 12, 223. [Google Scholar] [CrossRef]
 - Al Hosani, S.S.; Darwish, E.A.; Ayanikalath, S.; AlMazroei, R.S.; AlMaashari, R.S.; Wedyan, A.T. Screen time and speech and language delay in children aged 12–48 months in UAE: A case–control study. Middle East Curr. Psychiatry 2023, 30, 47. [Google Scholar] [CrossRef]
 - Liu, J.; Riesch, S.; Tien, J.; Lipman, T.; Pinto-Martin, J.; O’Sullivan, A. Screen Media Overuse and Associated Physical, Cognitive, and Emotional/Behavioral Outcomes in Children and Adolescents: An Integrative Review. J. Pediatr. Health Care 2022, 36, 99–109. [Google Scholar] [CrossRef] [PubMed]
 - Sanchez-Bravo, D.; Sandre, A.; Amarante, M.; Wiltshire, C.A.; Noble, K.G. Screen exposure, sleep quality, and language development in 6-month-old infants. Front. Dev. Psychol. 2025, 3, 1440605. [Google Scholar] [CrossRef]
 - McArthur, B.A.; Tough, S.; Madigan, S. Screen time and developmental and behavioral outcomes for preschool children. Pediatr. Res. 2022, 91, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
 - Madigan, S.; McArthur, B.A.; Anhorn, C.; Eirich, R.; Christakis, D.A. Associations Between Screen Use and Child Language Skills: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 665–675. [Google Scholar] [CrossRef] [PubMed]
 - Takahashi, I.; Obara, T.; Ishikuro, M.; Murakami, K.; Ueno, F.; Noda, A.; Onuma, T.; Shinoda, G.; Nishimura, T.; Tsuchiya, K.J.; et al. Screen Time at Age 1 Year and Communication and Problem-Solving Developmental Delay at 2 and 4 Years. JAMA Pediatr. 2023, 177, 1039–1046. [Google Scholar] [CrossRef]
 - Sugiyama, M.; Tsuchiya, K.J.; Okubo, Y.; Rahman, M.S.; Uchiyama, S.; Harada, T.; Iwabuchi, T.; Okumura, A.; Nakayasu, C.; Amma, Y.; et al. Outdoor Play as a Mitigating Factor in the Association Between Screen Time for Young Children and Neurodevelopmental Outcomes. JAMA Pediatr. 2023, 177, 303–310. [Google Scholar] [CrossRef]
 - Gastaud, L.M.; Trettim, J.P.; Scholl, C.C.; Rubin, B.B.; Coelho, F.T.; Krause, G.B.; Ferreira, N.M.; de Matos, M.B.; Pinheiro, R.T.; de Avila Quevedo, L. Screen time: Implications for early childhood cognitive development. Early Hum. Dev. 2023, 183, 105792. [Google Scholar] [CrossRef]
 - Lin, L.Y.; Cherng, R.J.; Chen, Y.J.; Chen, Y.J.; Yang, H.M. Effects of television exposure on developmental skills among young children. Infant Behav. Dev. 2015, 38, 20–26. [Google Scholar] [CrossRef]
 - Duch, H.; Fisher, E.M.; Ensari, I.; Font, M.; Harrington, A.; Taromino, C.; Yip, J.; Rodriguez, C. Association of screen time use and language development in Hispanic toddlers: A cross-sectional and longitudinal study. Clin. Pediatr. 2013, 52, 857–865. [Google Scholar] [CrossRef]
 - Rayce, S.B.; Okholm, G.T.; Flensborg-Madsen, T. Mobile device screen time is associated with poorer language development among toddlers: Results from a large-scale survey. BMC Public Health 2024, 24, 1050. [Google Scholar] [CrossRef] [PubMed]
 - Schwarzer, C.; Grafe, N.; Hiemisch, A.; Kiess, W.; Poulain, T. Associations of media use and early childhood development: Cross-sectional findings from the LIFE Child study. Pediatr. Res. 2022, 91, 247–253. [Google Scholar] [CrossRef] [PubMed]
 - Bal, M.; Kara Aydemir, A.G.; Tepetas Cengiz, G.S.; Altindag, A. Examining the relationship between language development, executive function, and screen time: A systematic review. PLoS ONE 2024, 19, e0314540. [Google Scholar] [CrossRef] [PubMed]
 - Alroqi, H.; Serratrice, L.; Cameron-Faulkner, T. The association between screen media quantity, content, and context and language development. J. Child Lang. 2023, 50, 1155–1183. [Google Scholar] [CrossRef]
 - Jing, M.; Ye, T.; Kirkorian, H.L.; Mares, M.L. Screen media exposure and young children’s vocabulary learning and development: A meta-analysis. Child Dev. 2023, 94, 1398–1418. [Google Scholar] [CrossRef]
 - Ribner, A.D.; McHarg, G.G.; New, F.S.T. Why won’t she sleep? Screen exposure and sleep patterns in young infants. Infant Behav. Dev. 2019, 57, 101334. [Google Scholar] [CrossRef]
 - Axelsson, E.L.; Purcell, K.; Asis, A.; Paech, G.; Metse, A.; Murphy, D.; Robson, A. Preschoolers’ engagement with screen content and associations with sleep and cognitive development. Acta Psychol. 2022, 230, 103762. [Google Scholar] [CrossRef]
 - Cameron, E.E.; Watts, D.; Silang, K.; Dhillon, A.; Sohal, P.R.; MacKinnon, A.L.; Roos, L.E.; Tomfohr-Madsen, L.M. Parental socioeconomic status and childhood sleep: A systematic review and meta-analysis. Sleep Epidemiol. 2022, 2, 100047. [Google Scholar] [CrossRef]
 - Lee, S.; Kim, S.; Suh, S.; Han, H.; Jung, J.; Yang, S.; Shin, Y. Relationship between screen time among children and lower economic status during elementary school closures due to the coronavirus disease 2019 pandemic. BMC Public Health 2022, 22, 160. [Google Scholar] [CrossRef]
 - Zhang, Z.; Adamo, K.B.; Ogden, N.; Goldfield, G.S.; Okely, A.D.; Kuzik, N.; Crozier, M.; Hunter, S.; Predy, M.; Carson, V. Longitudinal correlates of sleep duration in young children. Sleep Med. 2021, 78, 128–134. [Google Scholar] [CrossRef]
 - Parsons, A.A.; Ollberding, N.J.; Smith, L.; Copeland, K.A. Sleep matters: The association of race, bedtime, outdoor time, and physical activity with preschoolers’ sleep. Prev. Med. Rep. 2018, 12, 54–59. [Google Scholar] [CrossRef] [PubMed]
 - Dennison, B.A.; Russo, T.J.; Burdick, P.A.; Jenkins, P.L. An intervention to reduce television viewing by preschool children. Arch. Pediatr. Adolesc. Med. 2004, 158, 170–176. [Google Scholar] [CrossRef] [PubMed]
 - Bishop, D.V.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; Catalise Consortium. CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study. Identifying Language Impairments in Children. PLoS ONE 2016, 11, e0158753. [Google Scholar] [CrossRef]
 - Bishop, D.V.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; Catalise-2 Consortium. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry Allied Discip. 2017, 58, 1068–1080. [Google Scholar] [CrossRef]
 - Heymann, P.; Gonzalez, M.; Natale, R.A.; Bagner, D.M. Speech-Language Outcomes in Dual-Language Learners Following Early Intervention: What About Caregiver Language? J. Early Interv. 2025, 47, 330–346. [Google Scholar] [CrossRef]
 - Gonzalez, M.; Rama, C.; Nawab, A.; Robertson, E.; Partridge, P.M.; Ashkenazi, A.; Mansoor, E.; Van Weelden, J.; Peña, K.; Natale, R. Providing virtual support to children with mild developmental delays in response to the pandemic. Infants Young Child. 2023, 36, 195–210. [Google Scholar] [CrossRef]
 - Irla Lee Zimmerman, P.; Violette, G.; Steiner, B.; Roberta Evatt Pond, M. Preschool Language Scales | Fifth Edition. Available online: https://www.pearsonassessments.com/store/usassessments/en/Store/Professional-Assessments/Speech-%26-Language/Preschool-Language-Scales-%7C-Fifth-Edition/p/100000233.html (accessed on 23 February 2022).
 - R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
 - LeBourgeois, M.K.; Hale, L.; Chang, A.M.; Akacem, L.D.; Montgomery-Downs, H.E.; Buxton, O.M. Digital Media and Sleep in Childhood and Adolescence. Pediatrics 2017, 140, S92–S96. [Google Scholar] [CrossRef]
 - Hutton, J.S.; Dudley, J.; Horowitz-Kraus, T.; DeWitt, T.; Holland, S.K. Associations Between Screen-Based Media Use and Brain White Matter Integrity in Preschool-Aged Children. JAMA Pediatr. 2020, 174, e193869. [Google Scholar] [CrossRef]
 - Hinkley, T.; McCann, J.R. Mothers’ and father’s perceptions of the risks and benefits of screen time and physical activity during early childhood: A qualitative study. BMC Public Health 2018, 18, 1271. [Google Scholar] [CrossRef]
 - Yang, N.; Shi, J.; Lu, J.; Huang, Y. Language Development in Early Childhood: Quality of Teacher-Child Interaction and Children’s Receptive Vocabulary Competency. Front. Psychol. 2021, 12, 649680. [Google Scholar] [CrossRef]
 - Pyper, E.; Harrington, D.; Manson, H. Do parents’ support behaviours predict whether or not their children get sufficient sleep? A cross-sectional study. BMC Public Health 2017, 17, 432. [Google Scholar] [CrossRef] [PubMed]
 - Tomfohr-Madsen, L.; Cameron, E.E.; Dhillon, A.; MacKinnon, A.; Hernandez, L.; Madigan, S.; Tough, S. Neighborhood socioeconomic status and child sleep duration: A systematic review and meta-analysis. Sleep Health 2020, 6, 550–562. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, J.; Li, A.M.; Fok, T.F.; Wing, Y.K. Roles of parental sleep/wake patterns, socioeconomic status, and daytime activities in the sleep/wake patterns of children. J. Pediatr. 2010, 156, 606–612. [Google Scholar] [CrossRef] [PubMed]
 - Spruyt, K. A review of developmental consequences of poor sleep in childhood. Sleep Med. 2019, 60, 3–12. [Google Scholar] [CrossRef]
 - McDowall, P.S.; Elder, D.E.; Campbell, A.J. Relationship between parent knowledge of child sleep, and child sleep practices and problems: A pilot study in a children’s hospital cohort. J. Paediatr. Child Health 2017, 53, 788–793. [Google Scholar] [CrossRef]
 - Bronfenbrenner, U.; Morris, P.A. The Bioecological Model of Human Development. In Handbook of Child Psychology: Theoretical Models of Human Development, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 1, pp. 793–828. [Google Scholar]
 - Vygotsky, L.S. Mind in Society: Development of Higher Psychological Processes; Harvard University Press: Cambridge, MA, USA, 1978. [Google Scholar]
 - Sweller, J. Cognitive Load During Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
 - Walker, M.P.; Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 2006, 57, 139–166. [Google Scholar] [CrossRef]
 - Li, Y.; Chen, Q.; He, M.; Li, S.; Chen, Y.; Ru, T.; Zhou, G. Investigation of bi-directional relations between pre-sleep electronic media use and sleep: A seven-day dairy study. Comput. Hum. Behav. 2024, 161, 108423. [Google Scholar] [CrossRef]
 - Chen, Y.; Li, Y.; Li, S.; He, M.; Chen, Q.; Ru, T.; Zhou, G. When and what: A longitudinal study on the role of screen time and activities in adolescent sleep. Sleep Med. 2024, 117, 33–39. [Google Scholar] [CrossRef]
 - Werner, H.; Molinari, L.; Guyer, C.; Jenni, O.G. Agreement rates between actigraphy, diary, and questionnaire for children’s sleep patterns. Arch. Pediatr. Adolesc. Med. 2008, 162, 350–358. [Google Scholar] [CrossRef]
 - Meltzer, L.J.; Montgomery-Downs, H.E.; Insana, S.P.; Walsh, C.M. Use of actigraphy for assessment in pediatric sleep research. Sleep Med. Rev. 2012, 16, 463–475. [Google Scholar] [CrossRef]
 - Vandewater, E.A.; Rideout, V.J.; Wartella, E.A.; Huang, X.; Lee, J.H.; Shim, M.S. Digital childhood: Electronic media and technology use among infants, toddlers, and preschoolers. Pediatrics 2007, 119, e1006–e1015. [Google Scholar] [CrossRef]
 
| Age Group | AAP Sleep Duration Criteria (Hours/Day)  | CFOC Screen Time Criteria (Hours/Day)  | 
|---|---|---|
| 0 to 3 months | 14 to 17 | 0 | 
| 4 to 11 months | 12 to 16 | 0 | 
| 1 to 2 years | 11 to 14 | 0 | 
| 2 to 5 years | 10 to 13 | ≤1 | 
| Characteristic | Does Not Meet Sleep Guidelines, N = 487 | Meets Sleep Guidelines, N = 255 | Does Not Meet Screen Time Guidelines, N = 383 | Meets Screen Time Guidelines, N = 382 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| n | % | n | % | p-Value a | n | % | n | % | p-Value a | |
| Child Gender | 0.400 | 0.600 | ||||||||
| Female | 198 | 41 | 96 | 38 | 153 | 40 | 145 | 38 | ||
| Male | 289 | 59 | 159 | 62 | 230 | 60 | 237 | 62 | ||
| Child Race | 0.003 * | 0.200 | ||||||||
| White | 350 | 72 | 210 | 83 | 281 | 74 | 303 | 80 | ||
| Black | 100 | 21 | 25 | 9.9 | 68 | 18 | 57 | 15 | ||
| Native American | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| Asian/Pacific Islander | 4 | 0.8 | 2 | 0.8 | 2 | 0.5 | 4 | 1.1 | ||
| Multiracial | 25 | 5.2 | 11 | 4.4 | 23 | 6.1 | 12 | 3.2 | ||
| Other | 5 | 1 | 4 | 1.6 | 5 | 1.3 | 4 | 1.1 | ||
| Child Ethnicity | 0.400 | 0.049 * | ||||||||
| Hispanic | 348 | 71 | 187 | 75 | 273 | 72 | 286 | 75 | ||
| Non-Hispanic | 89 | 18 | 38 | 15 | 75 | 20 | 52 | 14 | ||
| Haitian | 32 | 6.6 | 12 | 4.8 | 22 | 5.8 | 21 | 5.5 | ||
| Other | 16 | 3.3 | 13 | 5.2 | 10 | 2.6 | 19 | 5 | ||
| Unknown | 2 | 0.4 | 0 | 0 | 0 | 0 | 2 | 0.5 | ||
| Parent Gender | 0.600 | 0.600 | ||||||||
| Female | 454 | 94 | 242 | 95 | 362 | 95 | 358 | 94 | ||
| Male | 29 | 6 | 13 | 5.1 | 19 | 5 | 22 | 5.8 | ||
| Parent Race | <0.001 * | 0.100 | ||||||||
| White | 355 | 74 | 214 | 85 | 285 | 76 | 308 | 81 | ||
| Black | 105 | 22 | 25 | 10 | 70 | 19 | 60 | 16 | ||
| Native American | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| Asian/Pacific Islander | 6 | 1.2 | 5 | 2 | 6 | 1.6 | 5 | 1.3 | ||
| Multiracial | 9 | 1.9 | 6 | 2.4 | 11 | 2.9 | 3 | 0.8 | ||
| Other | 6 | 1.2 | 1 | 0.4 | 5 | 1.3 | 2 | 0.5 | ||
| Parent Ethnicity | 0.200 | 0.700 | ||||||||
| Hispanic | 337 | 69 | 179 | 72 | 265 | 70 | 274 | 72 | ||
| Non-Hispanic | 100 | 21 | 45 | 18 | 79 | 21 | 66 | 17 | ||
| Haitian | 34 | 7 | 11 | 4.4 | 22 | 5.8 | 23 | 6.1 | ||
| Other | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| Unknown | 15 | 3.1 | 14 | 5.6 | 14 | 3.7 | 15 | 4 | ||
| Parent Education | <0.001 * | 0.03 * | ||||||||
| Elementary or less | 3 | 0.7 | 0 | 0 | 2 | 0.6 | 0 | 0 | ||
| Some High School | 20 | 4.4 | 5 | 2.1 | 13 | 3.7 | 13 | 3.6 | ||
| High School/GED | 78 | 17 | 20 | 8.5 | 59 | 17 | 42 | 12 | ||
| Technical Training | 20 | 4.4 | 4 | 1.7 | 13 | 3.7 | 12 | 3.3 | ||
| Some College | 58 | 13 | 28 | 12 | 54 | 15 | 40 | 11 | ||
| Associates Degree | 36 | 7.8 | 19 | 8.1 | 27 | 7.6 | 29 | 8 | ||
| Bachelor’s Degree | 166 | 36 | 84 | 36 | 103 | 29 | 149 | 41 | ||
| Graduate Degree or higher | 78 | 17 | 75 | 32 | 83 | 23 | 78 | 21 | ||
| Child Insurance | <0.001 * | 0.140 | ||||||||
| None | 8 | 1.7 | 3 | 1.2 | 5 | 1.3 | 8 | 2.1 | ||
| Medicaid (HMO) | 211 | 44 | 62 | 24 | 136 | 36 | 149 | 39 | ||
| Medicaid (Medipass) | 28 | 5.9 | 15 | 5.9 | 29 | 7.7 | 14 | 3.7 | ||
| CMS/KidCare | 39 | 8.2 | 11 | 4.3 | 23 | 6.1 | 27 | 7.1 | ||
| Private | 192 | 40 | 163 | 64 | 183 | 49 | 180 | 48 | ||
| Family Household Income | <0.001 * | >0.900 | ||||||||
| USD 0–70,000 | 382 | 81 | 147 | 60 | 278 | 75 | 276 | 74 | ||
| USD 70,001–110,000 | 30 | 6.4 | 39 | 16 | 34 | 9.2 | 34 | 9.1 | ||
| USD 110,001 and above | 60 | 13 | 61 | 25 | 57 | 15 | 62 | 17 | ||
| M | SD | M | SD | M | SD | M | SD | |||
| Child Age (months) | 33 | 24 | 32 | 10 | >0.900 | 32 | 27 | 34 | 8 | <0.001 * | 
| Number of Siblings | 2.04 | 1.11 | 1.81 | 0.86 | 0.035 * | 1.95 | 1.06 | 1.95 | 1.00 | 0.700 | 
| PLS-5 Auditory Comprehension | 89 | 14 | 90 | 14 | 0.500 | 89 | 14 | 90 | 13 | 0.300 | 
| PLS-5 Expressive Communication | 79 | 8 | 79 | 8 | 0.300 | 78 | 8 | 80 | 7 | 0.004 * | 
| Outcome | Main Effect | Univariable Model | Multivariable Model a | Sensitivity Model b | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Beta | 95% CI | p-Value | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value | ||
| PLS-5 Auditory Comprehension | Meets Sleep Guidelines | Ref. | Ref. | Ref. | ||||||
| Does Not Meet Sleep Guidelines | −0.37 | −2.42, 1.69 | 0.73 | 0.89 | −1.43, 3.13 | 0.47 | 1.02 | −1.32, 3.24 | 0.41 | |
| Meets Screen Time Guidelines | Ref. | Ref. | Ref. | |||||||
| Does Not Meet Screen Time Guidelines | −0.25 | −2.17, 1.68 | 0.80 | −0.43 | −2.46, 1.67 | 0.71 | −0.51 | −2.52, 1.60 | 0.66 | |
| PLS-5 Expressive Communication | Meets Sleep Guidelines | Ref. | Ref. | Ref. | ||||||
| Does Not Meet Sleep Guidelines | 0.45 | −0.71, 1.62 | 0.44 | 0.84 | −0.63, 1.96 | 0.32 | 0.87 | −0.60, 2.00 | 0.29 | |
| Meets Screen Time Guidelines | Ref. | Ref. | Ref. | |||||||
| Does Not Meet Screen Time Guidelines | −1.57 | −2.66, −0.49 | 0.004 * | −1.80 | −2.90, −0.57 | 0.004 * | −1.82 | −2.92, −0.59 | 0.003 * | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Gonzalez, M.; Rayneri, P.; Ma, R.; Natale, R.; Mansoor, E. Sleep Duration and Screen Time in Young Children with Mild Language Delays. Children 2025, 12, 1467. https://doi.org/10.3390/children12111467
Malik S, Gonzalez M, Rayneri P, Ma R, Natale R, Mansoor E. Sleep Duration and Screen Time in Young Children with Mild Language Delays. Children. 2025; 12(11):1467. https://doi.org/10.3390/children12111467
Chicago/Turabian StyleMalik, Subul, Melissa Gonzalez, Paris Rayneri, Ruixuan Ma, Ruby Natale, and Elana Mansoor. 2025. "Sleep Duration and Screen Time in Young Children with Mild Language Delays" Children 12, no. 11: 1467. https://doi.org/10.3390/children12111467
APA StyleMalik, S., Gonzalez, M., Rayneri, P., Ma, R., Natale, R., & Mansoor, E. (2025). Sleep Duration and Screen Time in Young Children with Mild Language Delays. Children, 12(11), 1467. https://doi.org/10.3390/children12111467
        
