Cystic Fibrosis and CFTR Modulators: The Impact on Bone Density, Muscle Mass and Strength in Children and Young Adolescents
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Database Search and Study Characteristics
3.2. The Impact of CFTR Modulators on Bone Density in Children and Young Adolescents with CF
3.3. The Interplay Between CFTR Modulators and Muscle Mass and Strength in Children and Young Adolescents with CF
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myer, H.; Chupita, S.; Jnah, A. Cystic Fibrosis: Back to the Basics. Neonatal Netw. 2023, 42, 23–30. [Google Scholar] [CrossRef]
- Rafeeq, M.M.; Murad, H.A.S. Cystic fibrosis: Current therapeutic targets and future approaches. J. Transl. Med. 2017, 15, 84. [Google Scholar] [CrossRef]
- Baroni, D. Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 119. [Google Scholar] [CrossRef]
- De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.M.; Morrison, L.; Robinson, K.A. Airway clearance techniques for cystic fibrosis: An overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2019, 1, CD011231. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.W.; Zeng, X.L.; Li, F.Y.; Ma, M.M.; Yuan, F.; Liu, J.; Lv, X.F.; Wang, G.L.; Guan, Y.Y. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells. Apoptosis 2014, 19, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, J.; Hu, P.; Du, W.; Chen, J.; Zhang, X.; Zhou, W.; Gao, J.; Zhang, Y.; Dai, B.; et al. Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis. J. Cachexia Sarcopenia Muscle 2025, 16, e13708. [Google Scholar] [CrossRef]
- Davis, P.B. Cystic fibrosis since 1938. Am. J. Respir. Crit. Care Med. 2006, 173, 475–482. [Google Scholar] [CrossRef]
- Rubin, J.L.; McKinnon, C.; Pedra, G.G.; Morgan, D.A.; Zweig, K.; Liou, T.G. Impact of CFTR Modulators on Longitudinal Cystic Fibrosis Survival and Mortality: Review and Secondary Analysis. Pulm. Ther. 2025, 11, 365–386. [Google Scholar] [CrossRef]
- Kelly, A.; Marks, B.E.; Stalvey, M.S. Endocrine Complications of Cystic Fibrosis. Clin. Chest Med. 2022, 43, 773–789. [Google Scholar] [CrossRef]
- Paccou, J.; Zeboulon, N.; Combescure, C.; Gossec, L.; Cortet, B. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: A systematic literature review with meta-analysis. Calcif. Tissue Int. 2010, 86, 1–7. [Google Scholar] [CrossRef]
- Douros, K.; Loukou, I.; Nicolaidou, P.; Tzonou, A.; Doudounakis, S. Bone mass density and associated factors in cystic fibrosis patients of young age. J. Paediatr. Child Health 2008, 44, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Sermet-Gaudelus, I.; Souberbielle, J.C.; Ruiz, J.C.; Vrielynck, S.; Heuillon, B.; Azhar, I.; Cazenave, A.; Lawson-Body, E.; Chedevergne, F.; Lenoir, G. Low bone mineral density in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 175, 951–957. [Google Scholar] [CrossRef]
- Chirita-Emandi, A.; Shepherd, S.; Kyriakou, A.; McNeilly, J.D.; Dryden, C.; Corrigan, D.; Devenny, A.; Ahmed, S.F. A retrospective analysis of longitudinal changes in bone mineral content in cystic fibrosis. J. Pediatr. Endocrinol. Metab. 2017, 30, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.C.; Madsen, C.D. Bone density in children and adolescents with cystic fibrosis. J. Pediatr. 1996, 128, 28–34. [Google Scholar] [CrossRef]
- Calella, P.; Valerio, G.; Brodlie, M.; Donini, L.M.; Siervo, M. Cystic fibrosis, body composition, and health outcomes: A systematic review. Nutrition 2018, 55–56, 131–139. [Google Scholar] [CrossRef]
- Anabtawi, A.; Le, T.; Putman, M.; Tangpricha, V.; Bianchi, M.L. Cystic fibrosis bone disease: Pathophysiology, assessment and prognostic implications. J. Cyst. Fibros. 2019, 18 (Suppl. S2), S48–S55. [Google Scholar] [CrossRef]
- Brookes, D.S.; Briody, J.N.; Munns, C.F.; Davies, P.S.; Hill, R.J. Cystic fibrosis-related bone disease in children: Examination of peripheral quantitative computed tomography (pQCT) data. J. Cyst. Fibros. 2015, 14, 668–677. [Google Scholar] [CrossRef]
- Putman, M.S.; Anabtawi, A.; Le, T.; Tangpricha, V.; Sermet-Gaudelus, I. Cystic fibrosis bone disease treatment: Current knowledge and future directions. J. Cyst. Fibros. 2019, 18 (Suppl. S2), S56–S65. [Google Scholar] [CrossRef]
- Le Heron, L.; Guillaume, C.; Velard, F.; Braux, J.; Touqui, L.; Moriceau, S.; Sermet-Gaudelus, I.; Laurent-Maquin, D.; Jacquot, J. Cystic fibrosis transmembrane conductance regulator (CFTR) regulates the production of osteoprotegerin (OPG) and prostaglandin (PG) E2 in human bone. J. Cyst. Fibros. 2010, 9, 69–72. [Google Scholar] [CrossRef]
- Le Henaff, C.; Gimenez, A.; Hay, E.; Marty, C.; Marie, P.; Jacquot, J. The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am. J. Pathol. 2012, 180, 2068–2075. [Google Scholar] [CrossRef]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef]
- Jih, K.Y.; Li, M.; Hwang, T.C.; Bompadre, S.G. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. J. Physiol. 2011, 589, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
- Zaher, A.; ElSaygh, J.; Elsori, D.; ElSaygh, H.; Sanni, A. A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus 2021, 13, e16144. [Google Scholar] [CrossRef] [PubMed]
- Gentzsch, M.; Mall, M.A. Ion Channel Modulators in Cystic Fibrosis. Chest 2018, 154, 383–393. [Google Scholar] [CrossRef]
- Kapouni, N.; Moustaki, M.; Douros, K.; Loukou, I. Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. Children 2023, 10, 554. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.B.; Yasothan, U.; Kirkpatrick, P. Ivacaftor. Nat. Rev. Drug Discov. 2012, 11, 349–350. [Google Scholar] [CrossRef]
- Deeks, E.D. Lumacaftor/Ivacaftor: A Review in Cystic Fibrosis. Drugs 2016, 76, 1191–1201. [Google Scholar] [CrossRef]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; Van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Drevinek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Putman, M.S.; Greenblatt, L.B.; Bruce, M.; Joseph, T.; Lee, H.; Sawicki, G.; Uluer, A.; Sicilian, L.; Neuringer, I.; Gordon, C.M.; et al. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J. Clin. Endocrinol. Metab. 2021, 106, e1248–e1261. [Google Scholar] [CrossRef] [PubMed]
- Gur, M.; Bar-Yoseph, R.; Hanna, M.; Abboud, D.; Keidar, Z.; Palchan, T.; Toukan, Y.; Masarweh, K.; Alisha, I.; Zuckerman-Levin, N.; et al. Effect of Trikafta on bone density, body composition and exercise capacity in CF: A pilot study. Pediatr. Pulmonol. 2023, 58, 577–584. [Google Scholar] [CrossRef]
- Boni, A.; d’Aniello, F.; Ubertini, G.; Cappa, M.; Ciciriello, F.; Majo, F.; Cristiani, L.; Alghisi, F.; Montemitro, E.; Bella, S.; et al. Height Velocity in Pediatric Cystic Fibrosis Under Triple CFTR Modulator Therapy: A Real-Life Monocentric Experience. J. Clin. Med. 2025, 14, 5259. [Google Scholar] [CrossRef] [PubMed]
- Clayton, L.J.; Shepherd, A.I.; Corbett, J.; Gruet, M.; Connett, G.; Allenby, M.; Legg, J.; Daniels, T.; Urquhart, D.S.; Saynor, Z.L. Peripheral Muscle Function and Body Composition in People With Cystic Fibrosis on Elexacaftor/Tezacaftor/Ivacaftor: A Cross-Sectional Single-Centre Study. Pediatr. Pulmonol. 2025, 60, e71044. [Google Scholar] [CrossRef]
- Stallings, V.A.; Sainath, N.; Oberle, M.; Bertolaso, C.; Schall, J.I. Energy Balance and Mechanisms of Weight Gain with Ivacaftor Treatment of Cystic Fibrosis Gating Mutations. J. Pediatr. 2018, 201, 229–237.e4. [Google Scholar] [CrossRef]
- Boat, T.; Hossain, M.M.; Nakamura, A.; Hjelm, M.; Hardie, W.; Wackler, M.; Amato, A.; Dress, C. Growth, Body Composition, and Strength of Children with Cystic Fibrosis Treated with Elexacaftor/Tezacaftor/Ivacaftor (ETI). Pediatr. Pulmonol. 2025, 60, e27463. [Google Scholar] [CrossRef]
- Imrei, M.; Keri, A.F.; Gacs, E.; Gonczi, I.; Melath, M.; Kosaras, E.; Demeter, B.; Peterfia, C.; Vass, K.; Szekely, G.; et al. Body composition changes and clinical outcomes in pediatric cystic fibrosis during 24 months of lumacaftor ivacaftor therapy based on real-world data. Sci. Rep. 2025, 15, 2247. [Google Scholar] [CrossRef]
- Anne-Sophie, A.; Penelle, M.; Clemence, G.; Berardis, S.; Goubau, C.; Reychler, G.; Gohy, S. One year effect of tezacaftor and ivacaftor on functional exercise capacity and muscle strength in people with cystic fibrosis. Heliyon 2024, 10, e26729. [Google Scholar] [CrossRef]
- Rysgaard, U.K.; Pedersen, C.L.; Jensen, J.H.; Sorensen, L.; Philipsen, L.K.D.; Leo-Hansen, C.; Olesen, H.V. Change in exercise capacity measured by Cardio-pulmonary Exercise Testing (CPET) in Danish people with cystic fibrosis after initiation of treatment with Lumacaftor/Ivacaftor and Tezacaftor/Ivacaftor. J. Cyst. Fibros. 2022, 21, 844–849. [Google Scholar] [CrossRef]
- Garcia-Perez-de-Sevilla, G.; Blanco Velasco, A.; Yvert, T.; Sanz-Santiago, V.; Tirado, A.M.; Lopez Neyra, A.; de Manuel, C.; Ruiz Valbuena, M.; Perez-Ruiz, M. Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies. Children 2025, 12, 878. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; Cavalli, L.; Iurato, C.; Seminara, S.; Brandi, M.L.; de Martino, M. Bone metabolism in children and adolescents: Main characteristics of the determinants of peak bone mass. Clin. Cases Miner. Bone Metab. 2013, 10, 172–179. [Google Scholar]
- Dumortier, C.; Danopoulos, S.; Velard, F.; Al Alam, D. Bone Cells Differentiation: How CFTR Mutations May Rule the Game of Stem Cells Commitment? Front. Cell Dev. Biol. 2021, 9, 611921. [Google Scholar] [CrossRef]
- Wilschanski, M.; Munck, A.; Carrion, E.; Cipolli, M.; Collins, S.; Colombo, C.; Declercq, D.; Hatziagorou, E.; Hulst, J.; Kalnins, D.; et al. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin. Nutr. 2024, 43, 413–445. [Google Scholar] [CrossRef]

| Authors/Ref | Study Design | Study Population | Main Results |
|---|---|---|---|
| Putman MS et al./[31] | Observational Study | 26 CF subjects (15 adults/11 children) on ivacaftor 26 CF subjects not on ivacaftor 26 healthy volunteers | No differences in aBMD among the cohorts |
| Gur M et al./[32] | Pilot Study | 9 adult CF subjects on ETI 9 CF controls not treated with ETI | ETI group: hip and spine BMD increased Control group: stable BMD |
| Boni A et al./[33] | Prospective study | 24 children on ETI | No differences in baseline BMD among genetic groups |
| Clayton LJ et al./[34] | Cross-Sectional Study | 15 CF subjects on ETI (7 children/adolescents 8 adults) 15 healthy controls | No important differences in BMD between the groups |
| Authors/Ref | Study Design | Study Population | Main Results |
|---|---|---|---|
| Clayton LJ et al./[34] | Cross-Sectional Study | 15 CF subjects on ETI (7 children/adolescents 8 adults) 15 healthy controls | No differences between the groups in muscle strength and body composition |
| Stallings VA et al./[35] | Multicenter Study | 23 CF subjects 5–61 years of age on ivacaftor | Improved fat-free mass and muscle strength |
| Boat et al./[36] | Prospective Study | 27 CF subjects 6–11 years of age on ETI 27 healthy controls | Increased muscle mass and fat mass |
| Imrei M et al./[37] | Observational Study | 49 CF subjects 5.5–14.2 years of age on LUM/IVA | No change in muscle mass Increased fat mass |
| Anne-Sophie A. et al./[38] | Prospective Study | 54 CF subjects 12 children/42 adults on tezacaftor and ivacaftor | No change in muscle strength |
| Rysgaard UK et al./[39] | Observational Study | 91 CF subjects 21 children/70 adults on LUM/IVA and TEZ/IVA treatment. | Stable lean mass Improved muscle strength |
| García-Pérez-de-Sevilla G et al./[40] | Observational, cross-sectional study | 24 CF subjects children and adolescents 6–18 years of age on ETI 24 healthy controls | Respiratory muscle strength comparable to that of healthy controls |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordanidou, K.; Karakousis, N.D.; Hatziagorou, E.; Chrysochoou, E.-A.; Galogavrou, M.; Sopiadou, A.; Papagianni, M. Cystic Fibrosis and CFTR Modulators: The Impact on Bone Density, Muscle Mass and Strength in Children and Young Adolescents. Children 2025, 12, 1434. https://doi.org/10.3390/children12111434
Iordanidou K, Karakousis ND, Hatziagorou E, Chrysochoou E-A, Galogavrou M, Sopiadou A, Papagianni M. Cystic Fibrosis and CFTR Modulators: The Impact on Bone Density, Muscle Mass and Strength in Children and Young Adolescents. Children. 2025; 12(11):1434. https://doi.org/10.3390/children12111434
Chicago/Turabian StyleIordanidou, Katerina, Nikolaos D. Karakousis, Elpis Hatziagorou, Elisavet-Anna Chrysochoou, Maria Galogavrou, Athina Sopiadou, and Maria Papagianni. 2025. "Cystic Fibrosis and CFTR Modulators: The Impact on Bone Density, Muscle Mass and Strength in Children and Young Adolescents" Children 12, no. 11: 1434. https://doi.org/10.3390/children12111434
APA StyleIordanidou, K., Karakousis, N. D., Hatziagorou, E., Chrysochoou, E.-A., Galogavrou, M., Sopiadou, A., & Papagianni, M. (2025). Cystic Fibrosis and CFTR Modulators: The Impact on Bone Density, Muscle Mass and Strength in Children and Young Adolescents. Children, 12(11), 1434. https://doi.org/10.3390/children12111434

