Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Mechanisms and Clinical Effects in Youth
4.2. Current Approvals and Clinical Efficacy
4.3. Nutritional and Lifestyle Considerations
4.4. Body Composition, Muscle, and Bone Health
4.5. Monitoring and Clinical Implementation
4.6. Ethical and Psychosocial Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GLP-1 RAs | Glucagon-like peptide-1 receptor agonists |
| BMI | Body mass index |
| BMD | Bone mineral density |
| GI | Gastrointestinal |
| T2D | Type 2 diabetes |
| DXA | Dual-energy X-ray absorptiometry |
| BIA | Bioelectrical impedance analysis |
References
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Zaitoon, H.; Lubetzky, R.; Amir, A.Z.; Moran-Lev, H.; Sagi, L.; Yacobi-Bach, M.; Borger, O.; Chorna, E.; Lebenthal, Y.; Brener, A. Glucagon-like peptide-1 analog therapy in rare genetic diseases: Monogenic obesity, monogenic diabetes, and spinal muscular atrophy. Acta Diabetol. 2023, 60, 1099–1108. [Google Scholar] [CrossRef]
- Haymond, M.; Anderson, B.; Barrera, P.; Brosnan, P.; Bush, C.; Green, T.; Holden, H.; Jeha, G.; Jones, M.; McGirk, S.; et al. Treatment options for type 2 diabetes in adolescents and youth: A study of the comparative efficacy of metformin alone or in combination with rosiglitazone or lifestyle intervention in adolescents with type 2 diabetes. Pediatr. Diabetes 2007, 8, 74. [Google Scholar] [CrossRef]
- TODAY Study Group. Long-Term Complications in Youth-Onset Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 416–426. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Haymond, M.W.; Dunger, D.; Shankar, R.; Gubitosi-Klug, R.; Bethin, K.; Karres, J.; Tomasi, P.; Libman, I.; Hale, P.H.; et al. Expanding treatment options for youth with type 2 diabetes: Current problems and proposed solutions: A White Paper from the NICHD Diabetes Working Group. Diabetes Care 2016, 39, 323–329. [Google Scholar] [CrossRef]
- Berman, C.; Vidmar, A.P.; Chao, L.C. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes in youth. touchREVIEWS Endocrinol. 2023, 19, 38–45. [Google Scholar] [CrossRef]
- Shamim, M.A.; Patil, A.N.; Amin, U.; Roy, T.; Tiwari, K.; Husain, N.; Kumar, J.; Chenchula, S.; Rao, P.; Ganesh, V.; et al. Glucagon-like peptide-1 receptor agonists in adolescents with overweight or obesity with or without type 2 diabetes multimorbidity—A systematic review and network meta-analysis. Diabetes Obes. Metab. 2024, 26, 4302–4317. [Google Scholar] [CrossRef]
- Ryan, P.M.; Seltzer, S.; Hayward, N.E.; Rodriguez, D.A.; Sless, R.T.; Hawkes, C.P. Safety and efficacy of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity: A meta-analysis. J. Pediatr. 2021, 236, 137–147.e13. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.K.; Barrientos-Pérez, M.; Bomberg, E.M.; D’Cruz, J.; Gies, I.; Harder-Lauridsen, N.M.; Jalaludin, M.Y.; Sahu, K.; Weimers, P.; Zueger, T.; et al. Liraglutide for children 6 to <12 years of age with obesity—A randomized trial. N. Engl. J. Med. 2025, 392, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, H.; Shi, Y.; Wang, A.; Guo, N.; Tao, H.; Nahata, M.C. Comparative efficacy and safety of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity or overweight: A systematic review and network meta-analysis. Pharmaceuticals 2024, 17, 828. [Google Scholar] [CrossRef] [PubMed]
- Romariz, L.M.; de Melo, A.A.C.; Finnegan, E.; Mesquita, Y.; Janovsky, C.C.P.S. GLP-1 receptor agonists for the treatment of obesity in children and adolescents: A meta-analysis of randomized controlled trials. Pediatr. Res. 2025, in press. [Google Scholar] [CrossRef]
- Sedenho-Prado, L.G.; Yugar, L.B.T.; Whitaker, A.R.; Martins, M.P.; Jesus, D.C.; Ferreira, I.M.C.d.S.; Silva, C.A.M.; Nadruz, W.; Cercato, C.; Sposito, A.C. Metabolic outcomes and safety of GLP-1 receptor agonists in children and adolescents with obesity: A systematic review and meta-analysis: Clinical research. Int. J. Obes. 2025, in press. [Google Scholar] [CrossRef]
- Fox, C.K.; Kelly, A.S.; Reilly, J.L.; Theis-Mahon, N.; Raatz, S.J. Current and future state of pharmacological management of pediatric obesity: Pediatrics. Int. J. Obes. 2025, 49, 388–396. [Google Scholar] [CrossRef]
- Stefater-Richards, M.A.; Jhe, G.; Zhang, Y.J. GLP-1 receptor agonists in pediatric and adolescent obesity. Pediatrics 2025, 155, e2024068119. [Google Scholar] [CrossRef] [PubMed]
- Kavarian, P.N.; Mosher, T.L.; Abu El Haija, M. Use of glucagon-like peptide-1 receptor agonist in the treatment of childhood obesity. Curr. Opin. Pediatr. 2024, 36, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Rudser, K.D.; Nathan, B.M.; Fox, C.K.; Metzig, A.M.; Coombes, B.J.; Fitch, A.K.; Bomberg, E.M.; Abuzzahab, M.J. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: A randomized, placebo-controlled, clinical trial. JAMA Pediatr. 2013, 167, 355–360. [Google Scholar] [CrossRef]
- Klein, D.J.; Battelino, T.; Chatterjee, D.J.; Jacobsen, L.V.; Hale, P.M.; Arslanian, S.; De Schepper, J.; Barrett, T.; Bone, M.; Randel, T.; et al. Liraglutide’s safety, tolerability, pharmacokinetics, and pharmacodynamics in pediatric type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes 2014, 16, 679–687. [Google Scholar] [CrossRef]
- Danne, T.; Biester, T.; Kapitzke, K.; Jacobsen, S.H.; Jacobsen, L.V.; Petri, K.C.C.; Hale, P.M.; Kordonouri, O. Liraglutide in an adolescent population with obesity: A randomized, double-blind, placebo-controlled 5-week trial to assess safety, tolerability, and pharmacokinetics of liraglutide in adolescents aged 12–17 years. J. Pediatr. 2017, 181, 146–153.e3. [Google Scholar] [CrossRef] [PubMed]
- Tamborlane, W.V.; Barrientos-Pérez, M.; Fainberg, U.; Frimer-Larsen, H.; Hafez, M.; Hale, P.M.; Jalaludin, M.Y.; Kovarenko, M.; Libman, I.; Lynch, J.L.; et al. Liraglutide in children and adolescents with type 2 diabetes. N. Engl. J. Med. 2019, 381, 637–646. [Google Scholar] [CrossRef]
- Mastrandrea, L.D.; Witten, L.; Carlsson Petri, K.C.; Hale, P.M.; Hedman, H.K.; Riesenberg, R.A. Liraglutide effects in a paediatric (7–11 y) population with obesity: A randomized, double-blind, placebo-controlled, short-term trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics. Pediatr. Obes. 2019, 14, e12495. [Google Scholar] [CrossRef]
- Kelly, A.S.; Auerbach, P.; Barrientos-Pérez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Weghuber, D.; Forslund, A.; Ahlström, H.; Alderborn, A.; Bergström, K.; Brunner, S.; Cadamuro, J.; Ciba, I.; Dahlbom, M.; Heu, V.; et al. A 6-month randomized, double-blind, placebo-controlled trial of weekly exenatide in adolescents with obesity. Pediatr. Obes. 2020, 15, e12624. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.K.; Clark, J.M.; Rudser, K.D.; Ryder, J.R.; Gross, A.C.; Nathan, B.M.; Sunni, M.; Dengel, D.R.; Billington, C.J.; Bensignor, M.O.; et al. Exenatide for weight-loss maintenance in adolescents with severe obesity: A randomized, placebo-controlled trial. Obesity 2022, 30, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S. Once-weekly semaglutide in adolescents with obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Arslanian, S.A.; Hannon, T.; Zeitler, P.; Chao, L.C.; Boucher-Berry, C.; Barrientos-Pérez, M.; Bismuth, E.; Dib, S.; Cho, J.I.; Cox, D. Once-weekly dulaglutide for the treatment of youths with type 2 diabetes. N. Engl. J. Med. 2022, 387, 433–443. [Google Scholar] [CrossRef]
- Paternoster, S.; Falasca, M. Dissecting the physiology and pathophysiology of glucagon-like peptide-1. Front. Endocrinol. 2018, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J.; Knop, F.K.; Vilsbøll, T.; Krarup, T.; Madsbad, S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011, 34, S226–S231. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jun, H.S. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014, 63, 9–19. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Zhang, Y.; George, J.; Cobbs, A.; Wang, G.; Li, L.; Emmett, N. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int. J. Mol. Sci. 2019, 20, 3406. [Google Scholar] [CrossRef]
- Fineman, M.S.; Cirincione, B.B.; Maggs, D.; Diamant, M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes. Metab. 2012, 14, 675–688. [Google Scholar] [CrossRef]
- Hare, K.J.; Vilsbøll, T.; Asmar, M.; Deacon, C.F.; Knop, F.K.; Holst, J.J. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 2010, 59, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Outeiriño-Iglesias, V.; Romani-Perez, M.; Gonzalez-Matias, L.C.; Vigo, E.; Mallo, F. GLP-1 increases preovulatory LH release and the number of mature follicles, as well as synchronizing the onset of puberty in female rats. Endocrinology 2015, 156, 4226–4237. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J.P.; et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Szczesnowicz, A.; Szeliga, A.; Niwczyk, O.; Bala, G.; Meczekalski, B. Do GLP-1 analogs have a place in the treatment of PCOS? New insights and promising therapies. J. Clin. Med. 2023, 12, 5915. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Madsen, L.W.; Andersen, S.; Almholt, K.; De Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010, 151, 1473–1486. [Google Scholar] [CrossRef]
- Müller, D.R.P.; Stenvers, D.J.; Malekzadeh, A.; Holleman, F.; Painter, R.C.; Siegelaar, S.E. Effects of GLP-1 agonists and SGLT2 inhibitors during pregnancy and lactation on offspring outcomes: A systematic review of the evidence. Front. Endocrinol. 2023, 14, 1215356. [Google Scholar] [CrossRef]
- Dao, K.; Shechtman, S.; Weber-Schoendorfer, C.; Diav-Citrin, O.; Murad, R.H.; Berlin, M.; Hazan, A.; Richardson, J.L.; Eleftheriou, G.; Rousson, V.; et al. Use of GLP-1 receptor agonists in early pregnancy and reproductive safety: A multicentre, observational, prospective cohort study based on the databases of six teratology information services. BMJ Open 2024, 14, e083550. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; le Roux, C.W.; Stefanski, A.; Aronne, L.J.; Halpern, B.; Wharton, S.; Wilding, J.P.H.; Perreault, L.; Zhang, S.; Battula, R.; et al. Tirzepatide for obesity treatment and diabetes prevention. N. Engl. J. Med. 2025, 392, 958–971. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Triple-hormone-receptor agonist retatrutide for obesity—A Phase 2 trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef]
- Christensen, S.; Robinson, K.; Thomas, S.; Williams, D.R. Dietary intake by patients taking GLP-1 and dual GIP/GLP-1 receptor agonists: A narrative review and discussion of research needs. Obes. Pillars 2024, 11, 100121. [Google Scholar] [CrossRef] [PubMed]
- Poli, V.F.S.; Sanches, R.B.; Moraes, A.d.S.; Fidalgo, J.P.N.; Nascimento, M.A.; Bresciani, P.; Andrade-Silva, S.G.; Cipullo, M.A.T.; Clemente, J.C.; Caranti, D.A. The excessive caloric intake and micronutrient deficiencies related to obesity after a long-term interdisciplinary therapy. Nutrition 2017, 38, 113–119. [Google Scholar] [CrossRef]
- Almandoz, J.P.; Wadden, T.A.; Tewksbury, C.; Apovian, C.M.; Fitch, A.; Ard, J.D.; Li, Z.; Richards, J.; Butsch, W.S.; Jouravskaya, I.; et al. Nutritional considerations with antiobesity medications. Obesity 2024, 32, 1613–1631. [Google Scholar] [CrossRef]
- Raymond, J.; Morrow, K. Krause and Mahan’s Food and the Nutrition Care Process, 15th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Kobylińska, M.; Antosik, K.; Decyk, A.; Kurowska, K. Malnutrition in obesity: Is it possible? Obes. Facts 2022, 15, 19–25. [Google Scholar] [CrossRef]
- Neeland, I.J.; Linge, J.; Birkenfeld, A.L. Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes. Metab. 2024, 26, 16–27. [Google Scholar] [CrossRef]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving healthy muscle during weight loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Yang, S.; McCarthy, C.; Brown, J.B.; Martin, C.K.; Redman, L.M.; Ravussin, E.; Shen, W.; Müller, M.J.; Bosy-Westphal, A. Proportion of caloric restriction-induced weight loss as skeletal muscle. Obesity 2024, 32, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chaston, T.B.; Dixon, J.B.; O’Brien, P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007, 31, 743–750. [Google Scholar] [CrossRef]
- Szekeres, Z.; Nagy, A.; Jahner, K.; Szabados, E. Impact of selected glucagon-like peptide-1 receptor agonists on serum lipids, adipose tissue, and muscle metabolism—A narrative review. Int. J. Mol. Sci. 2024, 25, 8214. [Google Scholar] [CrossRef] [PubMed]
- Anyiam, O.; Ardavani, A.; Rashid, R.S.A.; Panesar, A.; Idris, I. How do glucagon-like peptide-1 receptor agonists affect measures of muscle mass in individuals with, and without, type 2 diabetes: A systematic review and meta-analysis. Obes. Rev. 2025, 26, e13916. [Google Scholar] [CrossRef] [PubMed]
- Shapses, S.A.; Riedt, C.S. Bone, body weight, and weight reduction: What are the concerns? J. Nutr. 2006, 136, 1453–1456. [Google Scholar] [CrossRef]
- Hunter, G.R.; Plaisance, E.P.; Fisher, G. Weight loss and bone mineral density. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 358–362. [Google Scholar] [CrossRef]
- Al Refaie, A.; Baldassini, L.; Mondillo, C.; Gonnelli, S.; Ceccarelli, E.; Tarquini, R.; Gonnelli, S.; Gennari, L.; Caffarelli, C. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) for the treatment of type 2 diabetes mellitus: Friends or foes to bone health? A narrative review of clinical studies. Endocrine 2025, 89, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liu, S.; Tang, Q. Effect of GLP-1 receptor agonists on bone mineral density, bone metabolism markers, and fracture risk in type 2 diabetes: A systematic review and meta-analysis. Acta Diabetol. 2025, 62, 589–606. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Lei, C. Effects of glucagon-like peptide-1 receptor agonists on bone metabolism in type 2 diabetes mellitus: A systematic review and meta-analysis. Int. J. Endocrinol. 2024, 2024, 1785321. [Google Scholar] [CrossRef]
- Desalermos, A.; Russell, B.; Leggett, C.; Parnell, A.; Ober, K.; Hagerich, K.; Gerlan, C.; Ganji, G.; Lee, E.; Proudfoot, J.A.; et al. Effect of obesogenic medications on weight-loss outcomes in a behavioral weight-management program. Obesity 2019, 27, 716–723. [Google Scholar] [CrossRef]
- Wharton, S.; Lau, D.C.W.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in adults: A clinical practice guideline. CMAJ 2020, 192, E875–E891. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2025. Diabetes Care 2025, 48, S167–S180. [CrossRef] [PubMed]
- Devries, S.; Leib, E.B. Nutrition education in medical training: It’s always been a matter of trust. Am. J. Clin. Nutr. 2024, 120, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Aspry, K.E.; Van Horn, L.; Carson, J.A.S.; Wylie-Rosett, J.; Kushner, R.F.; Lichtenstein, A.H.; Devries, S.; Freeman, A.M.; Crawford, A.; Kris-Etherton, P. Medical nutrition education, training, and competencies to advance guideline-based diet counseling by physicians: A science advisory from the American Heart Association. Circulation 2018, 137, e821–e841. [Google Scholar] [CrossRef]
- Jiao, R.; Lin, C.; Cai, X.; Wang, J.; Wang, Y.; Lv, F.; Yang, W.; Ji, L. Characterizing body composition modifying effects of a glucagon-like peptide 1 receptor-based agonist: A meta-analysis. Diabetes Obes. Metab. 2025, 27, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zou, S.; Liu, X.; Wong, T.Y.P.; Zhang, X.; Xu, K.S.; Zhao, Y.; Hong, Y.; Cen, A.; Wang, Y. The effects of GLP-1 receptor agonists on body composition in patients with type 2 diabetes, overweight or obesity: A meta-analysis of randomized controlled trials. Eur. J. Pharmacol. 2025, 1003, 177885. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Agarwal, M.; Aggarwal, M.; Alexander, L.; Apovian, C.M.; Bindlish, S.; Bonnet, J.; Butsch, W.S.; Christensen, S.; Gianos, E.; et al. Nutritional priorities to support GLP-1 therapy for obesity: A joint advisory from the American College of Lifestyle Medicine, the American Society for Nutrition, the Obesity Medicine Association, and The Obesity Society. Am. J. Clin. Nutr. 2025, 122, 344–367. [Google Scholar] [CrossRef]
- Liu, Z.; Weeldreyer, N.R.; Angadi, S.S. Incretin receptor agonism, fat-free mass, and cardiorespiratory fitness: A narrative review. J. Clin. Endocrinol. Metab. 2025, in press. [Google Scholar] [CrossRef]
- Saxena, A.R.; Frias, J.P.; Brown, L.S.; Gorman, D.N.; Vasas, S.; Tsamandouras, N.; Birnbaum, M.J. Efficacy and safety of oral small molecule glucagon-like peptide 1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: A randomized clinical trial. JAMA Netw. Open 2023, 6, 14493. [Google Scholar] [CrossRef]
- Nguyen, V.H. School-based exercise interventions effectively increase bone mineralization in children and adolescents. Osteoporos. Sarcopenia 2018, 4, 39–46. [Google Scholar] [CrossRef]
- Winer, J.M.; Yule, A.M.; Hadland, S.E.; Bagley, S.M. Addressing adolescent substance use with a public health prevention framework: The case for harm reduction. Ann. Med. 2022, 54, 2123–2136. [Google Scholar] [CrossRef]
- Wilksch, S.M.; O’Shea, A.; Ho, P.; Byrne, S.; Wade, T.D. The relationship between social media use and disordered eating in young adolescents. Int. J. Eat. Disord. 2020, 53, 96–106. [Google Scholar] [CrossRef]
- Merikangas, K.R.; He, J.P.; Burstein, M.; Swanson, S.A.; Avenevoli, S.; Cui, L.; Benjet, C.; Georgiades, K.; Swendsen, J. Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication-Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 980–989. [Google Scholar] [CrossRef]
- White, C.M. Counterfeit drugs: A major issue for vulnerable citizens throughout the world and in the United States. J. Am. Pharm. Assoc. 2021, 61, e93–e98. [Google Scholar] [CrossRef] [PubMed]
- Or, F.; Kim, Y.; Simms, J.; Austin, S.B. Taking stock of dietary supplements’ harmful effects on children, adolescents, and young adults. J. Adolesc. Health 2019, 65, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.E.; Perrin, E.M.; Skinner, A.C. Accuracy of child and adolescent weight perceptions and their relationships to dieting and exercise behaviors: A NHANES study. Acad. Pediatr. 2013, 13, 371–378. [Google Scholar] [CrossRef]
- Blumenberg, A.; Hughes, A.; Reckers, A.; Ellison, R.; Gerona, R. Flualprazolam: Report of an outbreak of a new psychoactive substance in adolescents. Pediatrics 2020, 146, e20192953. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Verscheijden, L.F.M.; Koenderink, J.B.; Johnson, T.N.; de Wildt, S.N.; Russel, F.G.M. Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacol. Ther. 2020, 211, 107541. [Google Scholar] [CrossRef]
- Carlsson Petri, K.C.; Hale, P.M.; Hesse, D.; Rathor, N.; Mastrandrea, L.D. Liraglutide pharmacokinetics and exposure-response in adolescents with obesity. Pediatr. Obes. 2021, 16, e12799. [Google Scholar] [CrossRef] [PubMed]
- Probst, L.A.; Welch, T.R. Pediatric drug formulations—Unintended consequences of legislation. N. Engl. J. Med. 2017, 376, 795–796. [Google Scholar] [CrossRef]
- Sandsdal, R.M.; Juhl, C.R.; Jensen, S.B.K.; Lundgren, J.R.; Janus, C.; Blond, M.B.; Rosenkilde, M.; Bogh, A.F.; Gliemann, L.; Jensen, J.E.B.; et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: A randomized controlled trial. Cardiovasc. Diabetol. 2023, 22, 41. [Google Scholar] [CrossRef]
- Karchynskaya, V.; Kopcakova, J.; Klein, D.; Gába, A.; Madarasova-Geckova, A.; van Dijk, J.P.; de Winter, A.F.; Reijneveld, S.A. Is BMI a valid indicator of overweight and obesity for adolescents? Int. J. Environ. Res. Public Health 2020, 17, 4815. [Google Scholar] [CrossRef]
- Rothstein, M.A. Expanding the role of bioethics in translational science. J. Law Med. Ethics 2022, 50, 603–607. [Google Scholar] [CrossRef]
- Krochmal, P.; Cooper, D.M.; Radom-Aizik, S.; Lu, K.D. US school-based physical fitness assessments and data dissemination. J. Sch. Health 2021, 91, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.D.; Cooper, D.; Dubrowski, R.; Barwick, M.; Radom-Aizik, S. Exploration of barriers and facilitators to implementing best practice in exercise medicine in primary pediatric care—Pediatrician perspectives. Pediatr. Exerc. Sci. 2021, 33, 162–169. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics. Building Strong Bones: Why Calcium Counts. Pediatr. Patient Educ. 2025. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Protein. In The Clinician’s Guide to Pediatric Nutrition; American Academy of Pediatrics: Itasca, IL, USA, 2023. [Google Scholar]
- Lobelo, F.; Muth, N.D.; Hanson, S.; Nemeth, B.A.; LaBella, C.R.; Brooks, M.A.; Canty, G.; Diamond, A.B.; Hennrikus, W.; Logan, K.; et al. Physical Activity Assessment and Counseling in Pediatric Clinical Settings. Pediatrics 2020, 145, e20193992. [Google Scholar] [CrossRef] [PubMed]
| Study (Year) | Agent/Comparator | Population (Age, Condition) | n = Study Group w/o Controls | Duration | Main Efficacy Outcomes |
|---|---|---|---|---|---|
| Kelly et al., 2013 [16] | Exenatide twice daily vs. placebo | 12–<18 y, obesity | n = 13 | 12 weeks | −3.26 kg weight reduction; −1.13 kg/m2 BMI; −2.70% mean BMI (%) change |
| Klein et al., 2014 [17] | Liraglutide 1.8 mg daily vs. placebo | 12–<18 y, type 2 diabetes | n = 14 | 5 weeks | HbA1c −0.86%; body weight remained stable |
| Danne et al., 2017 [18] | Liraglutide 3.0 mg daily vs. placebo | 12–<18 y, obesity | n = 14 | 5 weeks | Results NS: −2.55 kg weight reduction; −0.12 kg/m2 BMI z-score |
| Tamborlane et al., 2019 [19] | Liraglutide 1.8 mg daily vs. placebo | 10–<17 y, type 2 diabetes | n = 66 | 52 weeks | HbA1c −0.50%; −0.34 kg/m2 BMI z-score; improved postprandial glucose |
| Mastrandrea et al., 2019 [20] | Liraglutide daily 3.0 mg vs. placebo | 7–<11 y, obesity | n = 16 | Up to 13 weeks | −0.3 kg/m2 BMI z-score;−0.52 kg weight reduction (NS) |
| Kelly et al., 2020 [21] | Liraglutide 3.0 mg daily vs. placebo | 12–<18 y, obesity | n = 125 | 56 weeks | −5.01% body weight; −0.22 kg/m2 BMI z-score; 43.3% ≥5% BMI reduction |
| Weghuber et al., 2020 [22] | Exenatide 2.0 mg weekly vs. placebo | 12–<18 y, obesity | n = 22 | 24 weeks | −3.0 kg body weight; −0.09 kg/m2 BMI z-score |
| Fox et al., 2022 [23] | Exenatide XR weekly 2.0 mg vs. placebo | 10–<18 y, obesity | n = 33 | 52 weeks | −2.7 mean BMI (kg/m2) reduction; −4.6% mean BMI (%) change |
| Weghuber et al., 2022 [24] | Semaglutide 2.4 mg weekly vs. placebo | 12–<18 y, obesity | n = 201 | 68 weeks | −16.1% body weight, −1.1 kg/m2 BMI z-score; 73% achieved ≥5% weight reduction |
| Arslanian et al., 2022 [25] | Dulaglutide 0.75 mg or 1.5 mg weekly vs. placebo | 10–<18 y, type 2 diabetes | n = 103 (both doses) | 26 weeks | HbA1c reduction (−0.6% to −0.9% dose related); stable weight; improved fasting glucose |
| Fox et al., 2025 [9] | Liraglutide 3.0 mg daily vs. placebo | 6–<12 y, obesity | n = 56 | 56 weeks | −5.8% change in BMI; −0.7 kg/m2 BMI z-score; 46% ≥5% BMI reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaitoon, H.; Wauters, A.D.; Rodriguez, L.M.; Lynch, J.L. Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children. Children 2025, 12, 1427. https://doi.org/10.3390/children12111427
Zaitoon H, Wauters AD, Rodriguez LM, Lynch JL. Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children. Children. 2025; 12(11):1427. https://doi.org/10.3390/children12111427
Chicago/Turabian StyleZaitoon, Hussein, Aimee D. Wauters, Luisa M. Rodriguez, and Jane L. Lynch. 2025. "Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children" Children 12, no. 11: 1427. https://doi.org/10.3390/children12111427
APA StyleZaitoon, H., Wauters, A. D., Rodriguez, L. M., & Lynch, J. L. (2025). Beyond Weight Loss: Optimizing GLP-1 Receptor Agonist Use in Children. Children, 12(11), 1427. https://doi.org/10.3390/children12111427

