The Relationship Between Refeeding Syndrome and Preterm Morbidities in Preterm Infants
Abstract
Highlights
- The findings suggest that RFS in preterm infants is associated with gestational immaturity, low birth weight, perinatal compromise, and SGA status, and correlates with increased respiratory distres sydrome and prolonged hospitalization.
- With more frequent laboratory assessment of infants with RDS, the necessary electrolyte support can be provided early, thereby reducing respiratory distress in these infants.
- These results highlight the importance of vigilant metabolic monitoring and preventive nutritional strategies for vulnerable preterm populations.
- The early identification of infants at risk and the careful titration of parenteral and enteral nutrition are crucial for minimising complications and improving outcomes.
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RFS | refeeding syndrome |
GA | gestational age |
BW | birth weight |
ANS | antenatal steroid |
RDS | respiratory distress syndrome |
ELBW | extremely low birth weight |
ESPGHAN | European Society of Pediatric Gastroenterology, Hepatology and Nutrition |
TPN | total parenteral nutrition |
VLBW | very low birth weight |
BPD | bronchopulmonary dysplasia |
IVH | intraventricular hemorrhage |
PDA | patent ductus arteriosus |
SGA | small for gestational age |
References
- Kovacs, C.S. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol. Rev. 2016, 96, 449–547. [Google Scholar] [CrossRef]
- Van den Akker, C.H.; Van Goudoever, J.B. Recent advances in our understanding of protein and amino acid metabolism in the human fetus. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Fuentebella, J.; Kerner, J.A. Refeeding syndrome. Pediatr. Clin. N. Am. 2009, 56, 120110. [Google Scholar] [CrossRef]
- Bonsante, F.; Iacobelli, S.; Latorre, G.; Rigo, J.; De Felice, C.; Robillard, P.Y.; Gouyon, J.B. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants—It is time to change the composition of the early parenteral nutrition. PLoS ONE 2013, 8, e72880. [Google Scholar] [CrossRef]
- da Silva, J.S.V.; Seres, D.S.; Sabino, K.; Adams, S.C.; Berdahl, G.J.; Citty, S.W.; Cober, M.P.; Evans, D.C.; Greaves, J.R.; Gura, K.M.; et al. ASPEN Consensus Recommendations for Refeeding Syndrome. Nutr. Clin. Pract. 2020, 35, 178–195. [Google Scholar] [CrossRef]
- Cormack, B.E.; Jiang, Y.; Harding, J.E.; Crowther, C.A.; Bloomfield, F.H.; ProVIDe Trial Group. Neonatal refeeding syndrome and clinical outcome in extremely low-birth-weight babies: Secondary cohort analysis from the ProVIDe trial. J. Parenter. Enter. Nutr. 2021, 45, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, H.M.; Moledina, J.; Travis, J. Refeeding syndrome: What it is, and how to prevent and treat it. BMJ 2008, 336, 1495–1498. [Google Scholar] [CrossRef]
- Hakan, N.; Aydin, M.; Dilli, D.; Zenciroglu, A.; Okumus, N. Transient hyperinsulinemia may be responsible from electrolyte abnormalities of refeeding syndrome seen in very low birth weight infants with intrauterine growth-restriction. J. Perinatol. 2014, 34, 247. [Google Scholar] [CrossRef]
- Skipper, A. Refeeding syndrome or refeeding hypophosphatemia: A systematic review of cases. Nutr. Clin. Pract. 2012, 27, 34–40. [Google Scholar] [CrossRef]
- Cooke, R.W. Conventional birth weight standards obscure fetal growth restriction in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F189–F192. [Google Scholar] [CrossRef]
- Fenton, T.R.; Lyon, A.W.; Rose, M.S. Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants. BMC Pediatr. 2011, 11, 76. [Google Scholar] [CrossRef]
- Turkish Neonatology Association. Guidelines for Fluid and Electrolyte Balance in Newborns; Turkish Neonatology Association: Ankara, Turkey, 2021. [Google Scholar]
- Kültürsay, N.; Bilgen, H.; Türkyılmaz, C. Turkish Neonatal Society guideline on enteral feeding of the preterm infant. Turk. Arch. Pediatr. 2018, 53 (Suppl. 1), S109–S118. [Google Scholar] [CrossRef]
- Türkyılmaz, C.; Bilgen, H.; Kültürsay, N. Turkish Neonatal Society guideline on parenteral nutrition in preterm infants. Turk. Arch. Pediatr. 2018, 53 (Suppl. 1), S119–S127. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Report on the Expert Meeting on Neonatal and Pediatric Sepsis; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2010. [Google Scholar]
- Berka, I.; Korček, P.; Straňák, Z. C-reactive protein, interleukin-6, and procalcitonin in diagnosis of late-onset bloodstream infection in very preterm infants. J. Pediatr. Infect. Dis. Soc. 2021, 10, 1004–1008. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.; Erdeve, O.; Kutman, H.G.K. Turkish Neonatal Society guideline on the management of respiratory distress syndrome and surfactant treatment. Turk. Arch. Pediatr. 2018, 53 (Suppl. 1), 45–54. [Google Scholar] [CrossRef] [PubMed]
- Inder, T.E.; Perlman, J.M.; Volpe, J.J. Preterm Intraventricular Hemorrhage/Posthemorrhagic Hydrocephalus. In Volpe’s Neurology of the Newborn, 6th ed.; Volpe, J.J., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 637–698. [Google Scholar]
- Erdeve, O.; Yurttutan, S.; Altuğ, N.; Ozdemir, R.; Gokmen, T.; Dilmen, U.; Oguz, S.S.; Uras, N. Oral versus intravenous ibuprofen for patent ductus arteriosus closure: A randomised controlled trial in extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F279–F283. [Google Scholar] [CrossRef]
- Rigo, J.; Pieltain, C.; Viellevoye, R.; Bagnoli, F. Calcium and phosphorus homeostasis: Pathophysiology. In Neonatology. A Practical Approach to Neonatal Management; Buonocore, G., Bracci, R., Weindling, M., Eds.; Springer: Milan, Italy, 2012; p. 333e53. [Google Scholar]
- Al-Wassia, H.; Lyon, A.W.; Rose, S.M.; Sauve, R.S.; Fenton, T.R. Hypophosphatemia is prevalent among preterm infants less than 1,500 Grams. Am. J. Perinatol. 2019, 36, 1412–1419. [Google Scholar] [CrossRef]
- Asfour, S.S.; Alshaikh, B.; Mathew, M.; Fouda, D.I.; Al-Mouqdad, M.M. Incidence and risk factors of refeeding syndrome in preterm infants. Nutrients 2024, 16, 2557. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.R.; Finch, C.; Ebeling, M.; Taylor, S.N. Refeeding syndrome in very-low-birth-weight intrauterine growth-restricted neonates. J. Perinatol. 2013, 33, 717–720. [Google Scholar] [CrossRef]
- Ichikawa, G.; Watabe, Y.; Suzumura, H.; Sairenchi, T.; Muto, T.; Arisaka, O. Hypophosphatemia in small for gestational age extremely low birth weight infants receiving parenteral nutrition in the first week after birth. J. Pediatr. Endocrinol. Metab. 2012, 25, 317–321. [Google Scholar] [CrossRef]
- Boubred, F.; Herlenius, E.; Bartocci, M.; Jonsson, B.; Vanpée, M. Extremely preterm infants who are small for gestational age have a high risk of early hypophosphatemia and hypokalemia. Acta Paediatr. 2015, 104, 1077–1083. [Google Scholar] [CrossRef]
- Sung, S.I.; Chang, Y.S.; Choi, J.H.; Ho, Y.; Kim, J.; Ahn, S.Y.; Park, W.S. Increased risk of refeeding syndrome-like hypophosphatemia with high initial amino acid intake in small-for-gestational-age, extremely-low-birthweight infants. PLoS ONE 2019, 14, e0221042. [Google Scholar] [CrossRef]
- Bloomfield, F.H.; Jiang, Y.; Harding, J.E.; Crowther, C.A.; Cormack, B.E.; ProVIDe Trial Group. Early amino acids in extremely preterm infants and neurodisability at 2 years. N. Engl. J. Med. 2022, 387, 1661–1672. [Google Scholar] [CrossRef]
- Moltu, S.J.; Strømmen, K.; Blakstad, E.W.; Almaas, A.N.; Westerberg, A.C.; Brække, K.; Rønnestad, A.; Nakstad, B.; Berg, J.P.; Veierød, M.B.; et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia—A randomized, controlled trial. Clin. Nutr. 2013, 32, 207–212. [Google Scholar] [CrossRef]
- Yakubovich, D.; Strauss, T.; Ohana, D.; Taran, C.; Snapiri, O.; Karol, D.L.; Starez-Chaham, O.; Kochavi, B.; Tsur, A.; Morag, I. Factors associated with early phosphate levels in preterm infants. Eur. J. Pediatr. 2020, 179, 1529–1536. [Google Scholar] [CrossRef]
- Cade, R.; Conte, M.; Zauner, C.; Mars, D.; Peterson, J.; Lunne, D.; Hommen, N.; Packer, D. Effects of phosphate loading on 2,3-diphosphoglycerate and maximal oxygen uptake. Med. Sci. Sports Exerc. 1984, 16, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Brener Dik, P.H.; Galletti, M.F.; Fernández Jonusas, S.A.; Alonso, G.; Mariani, G.L.; Fustiñana, C.A. Early hypophosphatemia in preterm infants receiving aggressive parenteral nutrition. J. Perinatol. 2015, 35, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Kalan, G.; Derganc, M.; Primocic, J. Phosphate metabolism in red blood cells of critically ill neonates. Pflug. Arch. 2000, 440 (Suppl. 5), R109–R111. [Google Scholar] [CrossRef] [PubMed]
Variable | Refeeding Syndrome | Total (n = 174) | p-Value | |
Absent (n = 114) | Present (n = 60) | |||
Gestational age (weeks) | 28 (26–30) | 27 (25–28) | 27 (25–29) | 0.03 |
Birth weight (g) | 1033 (800–1310) | 790 (630–1000) | 930 (705–1190) | <0.001 |
Maternal age (years) | 27(22–32) | 30 (25–35) | 28 (23–32) | 0.04 |
Cesarean birth | 105 (92.9) | 60 (100.0) | 165 (95.4) | 0.05 |
Need for resuscitation | 40 (35.4) | 26 (43.3) | 66 (38.2) | 0.3 |
Multiple pregnancy | 24 (21.2) | 12 (20.0) | 36 (20.8) | 0.84 |
Preeclampsia | 12 (10.6) | 11 (18.3) | 23 (13.3) | 0.15 |
Clinical chorioamnionitis | 9 (8.0) | 3 (5.0) | 12 (6.9) | 0.54 |
SGA | 27 (23.9) | 25 (41.7) | 52 (30.1) | 0.015 |
Maternal smoking | 2 (1.8) | 2 (3.3) | 4 (2.3) | 0.61 |
PDA | 2 (1.8) | 0 (0.0) | 2 (1.2) | 0.54 |
ANS | 69 (60.5) | 27 (45.0) | 96 (55.2) | 0.04 |
1-min Apgar score | 6 (5–7) | 5 (5–6) | 6 (5–7) | 0.01 |
5-min Apgar score | 8 (7–9) | 7 (6–8) | 8 (7–8) | 0.02 |
Variable | Refeeding Syndrome | Total (n = 174) | p-Value | adj. p Value | |
Absent (n = 114) | Present (n = 60) | ||||
RDS | 72 (63.2) | 52 (86.7) | 124 (71.3) | 0.001 | 0.04 |
BPD | 58 (50.9) | 40 (66.7) | 98 (56.3) | 0.04 | 0.45 |
PDA | 52 (45.6) | 39 (66.1) | 91 (52.6) | 0.01 | 0.18 |
Enteral nutrition | 3 (2–4) | 3 (2–4) | 3 (2–4) | 0.56 | 0.05 |
Type of nutrition | |||||
Breast milk (BM) | 90 (81.8) | 37 (69.8) | 127 (77.9) | 0.22 | 0.95 |
Preterm formula (PF) | 15 (13.6) | 12 (22.6) | 27 (16.6) | ||
Mixed (BM + PF) | 5 (4.5) | 4 (7.5) | 9 (5.5) | ||
TPN (days) | 18 (10–31) | 22 (15–37) | 17 (10–30) | 0.07 | 0.38 |
Day of full enteral nutrition (120 kcal/kg/day) | 21 (11–45) | 30 (16–49) | 22 (10–43) | 0.05 | 0.89 |
Feeding intolerance | 70 (61.4) | 43 (71.7) | 114 (64.9) | 0.17 | 0.68 |
Feeding intolerance in first 72 h | 62 (54.4) | 40 (66.7) | 102 (58.6) | 0.11 | 0.82 |
LOS | 73 (64) | 42 (70) | 115 (66) | 0.29 | 0.59 |
IVH (grade 2–3) | 12 (10.5) | 11 (18.3) | 23 (13.2) | 0.14 | 0.41 |
Length of hospital stay (days) | 58 (41–83) | 91 (58–113) | 68 (48–94) | <0.001 | 0.04 |
Variable | Refeeding Syndrome | Total (n = 174) | p-Value † | adj. p-Value † | |
Absent (n = 114) | Present (n = 60) | ||||
Phosphorus (mg/dL) | |||||
Day 1 | 6.20 (5.40–6.90) | 5.70 (5.20–6.40) | 6.00 (5.20–6.80) | 0.08 | 0.44 |
Day 7 | 5.25 (4.60–6.00) | 3.00 (2.35–3.55) | 4.60 (3.50–5.70) | <0.001 | <0.001 |
p-value ‡ | <0.001 | <0.001 | <0.001 | ||
Calcium (mg/dL) | |||||
Day 1 | 8.37 ± 0.90 | 8.07 ± 0.96 | 8.28 ± 0.89 | 0.06 | 0.06 |
Day 7 | 8.98 ± 0.71 | 9.44 ± 1.02 | 9.14 ± 0.85 | 0.002 | 0.001 |
p-value ‡ | <0.001 | <0.001 | <0.001 | ||
Magnesium (mg/dL) | |||||
Day 1 | 2.48 (1.99–2.99) | 2.39 (2.10–3.11) | 2.44 (2.02–3.05) | 0.65 | 0.39 |
Day 7 | 2.29 (1.99–2.69) | 2.32 (1.91–3.12) | 2.30 (1.98–2.75) | 0.65 | 0.25 |
p-value ‡ | 0.023 | 0.552 | 0.029 | ||
Sodium (mmol/L) | |||||
Day 1 | 135.94 ± 3.13 | 136.30 ± 3.64 | 136.14 ± 3.37 | 0.54 | 0.78 |
Day 7 | 136.61 ± 4.40 | 136.10 ± 5.29 | 136.44 ± 4.71 | 0.49 | 0.99 |
p-value ‡ | 0.339 | 0.654 | 0.296 | ||
Potassium (mmol/L) | |||||
Day 1 | 4.81 ± 0.61 | 4.67 ± 0.68 | 4.76 ± 0.64 | 0.24 | 0.99 |
Day 7 | 4.96 ± 0.55 | 4.69 ± 0.88 | 4.87 ± 0.70 | 0.03 | 0.03 |
p-value ‡ | 0.036 | 0.184 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazici, A.; Guney Varal, I.; Tunc, G.; Bagci, O.; Oren, A. The Relationship Between Refeeding Syndrome and Preterm Morbidities in Preterm Infants. Children 2025, 12, 1370. https://doi.org/10.3390/children12101370
Yazici A, Guney Varal I, Tunc G, Bagci O, Oren A. The Relationship Between Refeeding Syndrome and Preterm Morbidities in Preterm Infants. Children. 2025; 12(10):1370. https://doi.org/10.3390/children12101370
Chicago/Turabian StyleYazici, Aybuke, Ipek Guney Varal, Gaffari Tunc, Onur Bagci, and Ayse Oren. 2025. "The Relationship Between Refeeding Syndrome and Preterm Morbidities in Preterm Infants" Children 12, no. 10: 1370. https://doi.org/10.3390/children12101370
APA StyleYazici, A., Guney Varal, I., Tunc, G., Bagci, O., & Oren, A. (2025). The Relationship Between Refeeding Syndrome and Preterm Morbidities in Preterm Infants. Children, 12(10), 1370. https://doi.org/10.3390/children12101370