Artificial Intelligence (AI) Competency and Educational Needs: Results of an AI Survey of Members of the European Society of Pediatric Endoscopic Surgeons (ESPES)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics and Background Information
3.2. General Awareness and Knowledge of AI/ML
3.3. Current Use of AI/ML in Clinical Practice
3.4. Educational Needs and Training
3.5. Attitudes Towards AI/ML, Challenges, and Barriers
3.6. Future Perspectives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Till, T.; Tschauner, S.; Singer, G.; Lichtenegger, K.; Till, H. Development and optimization of AI algorithms for wrist fracture detection in children using a freely available dataset. Front. Pediatr. 2023, 11, 1291804. [Google Scholar] [CrossRef] [PubMed]
- Soguero-Ruiz, C.; Fei, W.M.; Jenssen, R.; Augestad, K.M.; Alvarez, J.L.; Jimenez, I.M.; Lindsetmo, R.O.; Skrovseth, S.O. Data-driven Temporal Prediction of Surgical Site Infection. AMIA Annu. Symp. Proc. 2015, 2015, 1164–1173. [Google Scholar] [PubMed]
- Chadaga, K.; Khanna, V.; Prabhu, S.; Sampathila, N.; Chadaga, R.; Umakanth, S.; Bhat, D.; Swathi, K.S.; Kamath, R. An interpretable and transparent machine learning framework for appendicitis detection in pediatric patients. Sci. Rep. 2024, 14, 24454. [Google Scholar] [CrossRef] [PubMed]
- Rey, R.; Gualtieri, R.; La Scala, G.; Posfay Barbe, K. Artificial Intelligence in the Diagnosis and Management of Appendicitis in Pediatric Departments: A Systematic Review. Eur. J. Pediatr. Surg. 2024, 34, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.Y.; Carter, S.R.; Greene, A.C. Artificial intelligence in pediatric surgery. Semin. Pediatr. Surg. 2024, 33, 151390. [Google Scholar] [CrossRef] [PubMed]
- Nakanuma, H.; Endo, Y.; Fujinaga, A.; Kawamura, M.; Kawasaki, T.; Masuda, T.; Hirashita, T.; Etoh, T.; Shinozuka, K.; Matsunobu, Y.; et al. An intraoperative artificial intelligence system identifying anatomical landmarks for laparoscopic cholecystectomy: A prospective clinical feasibility trial (J-SUMMIT-C-01). Surg. Endosc. 2023, 37, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Fazlollahi, A.M.; Yilmaz, R.; Winkler-Schwartz, A.; Mirchi, N.; Ledwos, N.; Bakhaidar, M.; Alsayegh, A.; Del Maestro, R.F. AI in Surgical Curriculum Design and Unintended Outcomes for Technical Competencies in Simulation Training. JAMA Netw. Open 2023, 6, e2334658. [Google Scholar] [CrossRef] [PubMed]
- Varas, J.; Coronel, B.V.; Villagran, I.; Escalona, G.; Hernandez, R.; Schuit, G.; Duran, V.; Lagos-Villaseca, A.; Jarry, C.; Neyem, A.; et al. Innovations in surgical training: Exploring the role of artificial intelligence and large language models (LLM). Rev. Colégio Bras. Cir. 2023, 50, e20233605. [Google Scholar] [CrossRef]
- Bhagat, T.; Bhagat, R.; Gulati, G. Embarking on the journey of artificial intelligence for teaching surgery to medical students. Santosh Univ. J. Health Sci. 2024, 10, 3–7. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Balla, Y.; Tirunagari, S.; Windridge, D. Pediatrics in Artificial Intelligence Era: A Systematic Review on Challenges, Opportunities, and Explainability. Indian Pediatr. 2023, 60, 561–569. [Google Scholar] [CrossRef]
- Nagy, M.; Sisk, B.; Lai, A.; Kodish, E. Will artificial intelligence widen the therapeutic gap between children and adults? Pediatr. Investig. 2024, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.L.; Parmesar, K.; Saleem, M.A.; Ramanan, A.V. Future of machine learning in paediatrics. Arch. Dis. Child. 2022, 107, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.Y.; Yuan, F. Legal regulation of clinical application of artificial intelligence. Zhonghua Yi Xue Za Zhi 2023, 103, 1363–1366. [Google Scholar] [CrossRef]
- Barua, R.; Datta, S.; Sarkar, A. Artificial Intelligence and Robotics-Based Minimally Invasive Surgery: Innovations and Future Perceptions. In Contemporary Applications of Data Fusion for Advanced Healthcare Informatics; IGI Global: Hershey, PA, USA, 2023; pp. 350–368. [Google Scholar] [CrossRef]
- Ryan Yimeng, L.; Alyssa Imperatore, Z.; Lauryn, U.; Stanislaw, P.S. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines. In Artificial Intelligence in Medicine and Surgery; Stanislaw, P.S., Ed.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Reddy, K.; Venkata, D. Advancements in Deep Learning for Minimally Invasive Surgery: A Journey through Surgical System Evolution. J. Artif. Intell. Gen. Sci. (JAIGS) 2024, 4, 111–120. [Google Scholar] [CrossRef]
- Sone, K.; Tanimoto, S.; Toyohara, Y.; Taguchi, A.; Miyamoto, Y.; Mori, M.; Iriyama, T.; Wada-Hiraike, O.; Osuga, Y. Evolution of a surgical system using deep learning in minimally invasive surgery (Review). Biomed. Rep. 2023, 19, 45. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Till, H.; Elsayed, H.; Escolino, M.; Esposito, C.; Shehata, S.; Singer, G. Artificial Intelligence (AI) Competency and Educational Needs: Results of an AI Survey of Members of the European Society of Pediatric Endoscopic Surgeons (ESPES). Children 2025, 12, 6. https://doi.org/10.3390/children12010006
Till H, Elsayed H, Escolino M, Esposito C, Shehata S, Singer G. Artificial Intelligence (AI) Competency and Educational Needs: Results of an AI Survey of Members of the European Society of Pediatric Endoscopic Surgeons (ESPES). Children. 2025; 12(1):6. https://doi.org/10.3390/children12010006
Chicago/Turabian StyleTill, Holger, Hesham Elsayed, Maria Escolino, Ciro Esposito, Sameh Shehata, and Georg Singer. 2025. "Artificial Intelligence (AI) Competency and Educational Needs: Results of an AI Survey of Members of the European Society of Pediatric Endoscopic Surgeons (ESPES)" Children 12, no. 1: 6. https://doi.org/10.3390/children12010006
APA StyleTill, H., Elsayed, H., Escolino, M., Esposito, C., Shehata, S., & Singer, G. (2025). Artificial Intelligence (AI) Competency and Educational Needs: Results of an AI Survey of Members of the European Society of Pediatric Endoscopic Surgeons (ESPES). Children, 12(1), 6. https://doi.org/10.3390/children12010006