Evaluation of the Viscoelastic Properties of Lower-Extremity Muscles of Pediatric Hemophilia Patients Using Myotonometric Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- Patients who did not have a history of acute bleeding in the lower extremities;
- -
- Receiving regular prophylaxis treatment;
- -
- Consent obtained from parents of children who volunteered to participate in the study.
- -
- Patients with a history of lower-extremity surgery;
- -
- Neurological disease;
- -
- Patients with a history of lower-extremity hemarthrosis or hematoma within the last month.
2.2. Measurements
- M. vastus medialis obliquus (VMO);
- M. rectus femoris (RF);
- M. vastus lateralis (VL);
- M. biceps femoris (BF);
- M. tibialis anterior (TA);
- M. gastrocinemius (GM, GL).
MyotonPRO
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berntorp, E.; Fischer, K.; Hart, D.P.; Mancuso, M.E.; Stephensen, D.; Shapiro, A.D.; Blanchette, V. Haemophilia. Nat. Rev. Dis. Primers. 2021, 7, 45. [Google Scholar] [CrossRef]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W. WFH Guidelines for the Management of Hemophilia panelists and co-authors. Haemophilia 2020, 26, 1–158. [Google Scholar] [CrossRef]
- Herbert, R.D.; Bolsterlee, B.; Gandevia, S.C. Passive changes in muscle length. J. Appl. Physiol. 2019, 126, 1445–1453. [Google Scholar] [CrossRef]
- Stefaniak, W.; Marusiak, J.; Bączkowicz, D. Heightened tone and stiffness with concurrent lowered elasticity of peroneus longus and tibialis anterior muscles in athletes with chronic ankle instability as measured by myotonometry. J. Biomech. 2022, 144, 111339. [Google Scholar] [CrossRef]
- Ramazanoğlu, E.; Usgu, S.; Yakut, Y. Assessment of the mechanical characteristics of the lower extremity muscles with myotonometric measurements in healthy individuals. Physiother. Q. 2020, 28, 1–12. [Google Scholar] [CrossRef]
- Menkes, D.L.; Pierce, R. Needle EMG muscle identification: A systematic approach to needle EMG examination. Clin. Neurophysiol. Pract. 2019, 4, 199–211. [Google Scholar] [CrossRef]
- Feng, Y.N.; Li, Y.P.; Liu, C.L.; Zhang, Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018, 1, 17064. [Google Scholar] [CrossRef] [PubMed]
- Correa-de-Araujo, R.; Harris-Love, M.O.; Miljkovic, I.; Fragala, M.S.; Anthony, B.W.; Manini, T.M. The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: A symposium report. Front. Physiol. 2017, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.P.; Koppenhaver, S.L.; Michener, L.A.; Proulx, L.; Bisagni, F.; Cleland, J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kurashina, W.; Iijima, Y.; Sasanuma, H.; Saito, T.; Takeshita, K. Evaluation of muscle stiffness in adhesive capsulitis with Myoton PRO. J. Shoulder Elbow Surg. 2023, 7, 25–29. [Google Scholar] [CrossRef]
- Ko, C.Y.; Choi, H.J.; Ryu, J.; Kim, G. Between-day reliability of MyotonPRO for the non-invasive measurement of muscle material properties in the lower extremities of patients with a chronic spinal cord injury. J. Biomech. 2018, 73, 60–65. [Google Scholar] [CrossRef]
- Usgu, S.; Ramazanoğlu, E.; Yakut, Y. The relation of body mass index to muscular viscoelastic properties in normal and overweight individuals. Medicina 2021, 57, 1022. [Google Scholar] [CrossRef]
- Gacto-Sánchez, M.; Medina-Mirapeix, F.; Benítez-Martínez, J.C.; Montilla-Herrador, J.; Palanca, A.; Martín-San Agustín, R. Estimating Quadriceps and Hamstrings Strength Through Myoton Among Recreational Athletes. J. Sport. Rehabil. 2023, 32, 827–833. [Google Scholar] [CrossRef]
- Aird, L.; Samuel, D.; Stokes, M. Quadriceps muscle tone, elasticity and stiffness in older males: Reliability and symmetry using the MyotonPRO. Arch. Gerontol. Geriatr. 2012, 55, e31–e39. [Google Scholar] [CrossRef]
- Chuang, L.L.; Wu, C.Y.; Lin, K.C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Martínez, J.C.; Overberg, J.A.; Torreno, N.; Suarez-Arrones, L. Hamstring muscle architecture and myotonometer measurements in elite professional football players with a prior strained hamstring. Biol. Sport. 2022, 40, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Havuc, S.; Aydeniz, A.; Basaran, S. Serebral palsili çocuklarda spastisitenin myotonometri ile değerlendirilmesi ve spastisitede elektrik stimulasyonun etkinliği. Cukurova Med. J. 2018, 43, 56–62. [Google Scholar] [CrossRef]
- Akduman, V.; Zübeyir, S.; Aydoğdu, O. Evaluation of the Effect of Bobath Therapy on Spasticity in Children with Cerebral Palsy Using Subjective and Objective Methods. Göbeklitepe Sağlık Bilim. Derg. 2022, 5, 79–85. [Google Scholar] [CrossRef]
- Delioğlu, K. Obstetrik Brakiyal Pleksus Paralizisi Olan Çocuklarda Kaslarin Viskoelastik Özellikleri İle Motor Fonksiyonlari Arasindaki İlişkinin Araştırılması. Master’s Thesis, Hacettepe University, Ankara, Turkey, 2015. [Google Scholar]
- Seo, H.; Kim, J.; Yu, C.; Lim, H. Intra-Rater and Inter-Rater Reliability Analysis of Muscle-Tone Evaluation Using a Myotonometer for Children with Developmental Disabilities. Healthcare 2023, 11, 782. [Google Scholar] [CrossRef]
- Pamukoff, D.N.; Bell, S.E.; Ryan, E.D.; Blackburn, J.T. The myotonometer: Not a valid measurement tool for active hamstring musculotendinous stiffness. J. Sport Rehabil. 2016, 25, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Mullix, J.; Warner, M.; Stokes, M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: Relative ratios and reliability. Work. Paper Health Sci. 2012, 1, 1–8. [Google Scholar]
- Agoriwo, M.W.; Muckelt, P.E.; Yeboah, C.O.; Sankah, B.E.; Agyapong-Badu, S.; Akpalu, A.; Stokes, M. Feasibility and reliability of measuring muscle stiffness in Parkinson’s Disease using MyotonPRO device in a clinical setting in Ghana. Ghana. Med. J. 2022, 56, 78–85. [Google Scholar] [CrossRef]
- Gapeyeva, H.; Vain, A. Methodical Guide: Principles of Applying Myoton in Physical Medicine and Rehabilitation; Müomeetria Ltd.: Tartu, Estonia, 2008. [Google Scholar]
- Gavronski, G.; Veraksitš, A.; Vasar, E.; Maaroos, J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol. Meas. 2007, 28, 625. [Google Scholar] [CrossRef] [PubMed]
- Sakkool, T.; Meerits, T.; Gapeyeva, H. Intrarater and interrater reliability of muscle tone, elasticity and stiffness characteristics measurements by myoton-3 in healthy children aged 5–7 years. Balt. J. Sport. Health Sci. 2016, 1, 38–46. [Google Scholar] [CrossRef]
- Gualtierotti, R.; Solimeno, L.P.; Peyvandi, F. Hemophilic arthropathy: Current knowledge and future perspectives. J. Thromb. Haemost. 2021, 19, 2112–2121. [Google Scholar] [CrossRef]
- Jones, E.J.; Bishop, P.A.; Woods, A.K.; Green, J.M. Cross-sectional area and muscular strength: A brief review. Sport. Med. 2008, 38, 987–994. [Google Scholar] [CrossRef]
- Zamboni, M.; Zoico, E.; Scartezzini, T.; Mazzali, G.; Tosoni, P.; Zivelonghi, A.; Bosello, O. Body composition changes in stable-weight elderly subjects: The effect of sex. Aging Clinc Exp. Res. 2003, 15, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Eby, S.F.; Cloud, B.A.; Brandenburg, J.E.; Giambini, H.; Song, P.; Chen, S.; An, K.N. Shear wave elastography of passive skeletal muscle stiffness: Influences of sex and age throughout adulthood. Clin. Biomech. 2015, 30, 22–27. [Google Scholar] [CrossRef]
- Kocur, P.; Grzeskowiak, M.; Wiernicka, M.; Goliwas, M.; Lewandowski, J.; Łochyński, D. Effects of aging on mechanical properties of sternocleidomastoid and trapezius muscles during transition from lying to sitting position—A cross-sectional study. Arch. Gerontol. Geriatr. 2017, 70, 14–18. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef]
- Zhou, J.P.; Yu, J.F.; Feng, Y.N.; Liu, C.L.; Su, P.; Shen, S.H.; Zhang, Z.J. Modulation in the elastic properties of gastrocnemius muscle heads in individuals with plantar fasciitis and its relationship with pain. Sci. Rep. 2020, 10, 2770. [Google Scholar] [CrossRef] [PubMed]
- Lidström, A.; Ahlsten, G.; Hirchfeld, H.; Norrlin, S. Intrarater and interrater reliability of myotonometer measurements of muscle tone in children. J. Child. Neurol. 2009, 24, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, J.A.; Anderton, W.; Sowa, G.A.; Piva, S.R.; Farrokhi, S. Dynamic knee joint stiffness and contralateral knee joint loading during prolonged walking in patients with unilateral knee osteoarthritis. Gait Posture 2019, 68, 44–49. [Google Scholar] [CrossRef]
- Chang, T.T.; Zhu, Y.C.; Li, Z.; Li, F.; Li, Y.P.; Guo, J.Y.; Zhang, Z.J. Modulation in the stiffness of specific muscles of the quadriceps in patients with knee osteoarthritis and their relationship with functional ability. Front. Bioeng. Biotechnol. 2022, 9, 781672. [Google Scholar] [CrossRef] [PubMed]
Variables | Hemophilia Group (n = 20) | Healthy Group (n = 20) | ||||
---|---|---|---|---|---|---|
X ± SD | (Min–Max) | X ± SD | (Min–Max) | t | p | |
Age (y) | 11.9 ± 3.95 | 6–17 | 12.6 ± 3.41 | 6–17 | −0.60 | 0.552 |
Height (cm) | 1.46 ± 2.64 | 1−1.8 | 1.53 ± 1.73 | 1.12–1.8 | −0.55 | 0.584 |
Body mass (kg) | 40.50 ± 17.09 | 14–72 | 44.40 ± 17.17 | 18–79 | −0.72 | 0.476 |
BMI (kg/m2) | 17.89 ± 2.79 | 13.20–23.80 | 18.88 ± 3.76 | 14.30–28.70 | −0.95 | 0.351 |
Parameter | Hemophilia Group (n = 20) (X ± SD) | Healthy Group (n = 20) (X ± SD) | t | p | Cohen d |
---|---|---|---|---|---|
VMO tone (Hz) | 13.25 ± 0.68 | 13.04 ± 1.18 | 0.67 | 0.506 | 0.21 |
VMO stiffness (N/m) | 210.45 ± 28.27 | 200.99 ± 40.13 | 0.86 | 0.394 | 0.27 |
VMO elasticity (log) | 1.01 ± 0.15 | 0.96 ± 0.23 | 0.85 | 0.402 | 0.27 |
RF tone (Hz) | 13.90 ± 0.96 | 13.84 ± 1.39 | 0.17 | 0.864 | 0.05 |
RF stiffness (N/m) | 223.70 ± 33.94 | 230.87 ± 42.55 | −0.59 | 0.560 | 0.19 |
RF elasticity (log) | 1.08 ± 0.22 | 1.08 ± 0.21 | −0.01 | 0.994 | 0.00 |
VL tone (Hz) | 14.13 ± 1 | 14.78 ± 1.48 | −1.63 | 0.112 | 0.51 |
VL stiffness (N/m) | 246.77 ± 32.45 | 260.30 ± 41.90 | −1.14 | 0.261 | 0.36 |
VL elasticity (log) | 1.08 ± 0.19 | 1.24 ± 0.19 | 2.63 | 0.012 | 0.83 |
BF tone (Hz) | 14.34 ± 0.98 | 14.25 ± 3.34 | 0.12 | 0.909 | 0.04 |
BF stiffness (N/m) | 229.54 ± 37.35 | 245.95 ± 32.65 | −1.48 | 0.147 | 0.47 |
BF elasticity (log) | 1.09 ± 0.20 | 1.08 ± 0.18 | 0.20 | 0.842 | 0.06 |
TA tone (Hz) | 17.49 ± 1.81 | 17.72 ± 1.79 | −0.41 | 0.682 | 0.13 |
TA stiffness (N/m) | 351.70 ± 52.72 | 343.06 ± 52.14 | 0.52 | 0.605 | 0.16 |
TA elasticity (log) | 0.80 ± 0.10 | 0.77 ± 0.12 | 0.76 | 0.455 | 0.24 |
GL tone (Hz) | 15.06 ± 1.16 | 14.90 ± 1.69 | 0.36 | 0.721 | 0.11 |
GL stiffness (N/m) | 259.04 ± 29.88 | 253.28 ± 44.06 | 0.48 | 0.632 | 0.15 |
GL elasticity (log) | 1.11 ± 0.16 | 1.03 ± 0.17 | 1.58 | 0.122 | 0.50 |
GM tone (Hz) | 14.30 ± 1.33 | 14.20 ± 1.35 | 0.25 | 0.806 | 0.08 |
GM stiffness (N/m) | 234.40 ± 28.46 | 237.17 ± 32.95 | −0.29 | 0.777 | 0.09 |
GM elasticity (log) | 1.14 ± 0.17 | 1.12 ± 0.20 | 0.41 | 0.686 | 0.13 |
Parameter | Hemophilia Group (n = 20) (X ± SD) | Healthy Group (n = 20) (X ± SD) | t | p | Cohen d |
---|---|---|---|---|---|
VMO tone (Hz) | 13.11 ± 0.91 | 12.91 ± 0.91 | 0.70 | 0.489 | 0.22 |
VMO stiffness (N/m) | 206.31 ± 35.93 | 199.83 ± 36.34 | 0.57 | 0.574 | 0.18 |
VMO elasticity (log) | 1.03 ± 0.15 | 0.98 ± 0.26 | 0.65 | 0.519 | 0.21 |
RF tone (Hz) | 13.60 ± 0.79 | 13.74 ± 1.23 | −0.41 | 0.682 | 0.13 |
RF stiffness (N/m) | 218.90 ± 27.68 | 226.64 ± 34.05 | −0.79 | 0.435 | 0.25 |
RF elasticity (log) | 0.99 ± 0.14 | 1.08 ± 0.18 | −1.61 | 0.115 | 0.51 |
VL tone (Hz) | 14.19 ± 1.41 | 14.38 ± 1.42 | −0.44 | 0.665 | 0.14 |
VL stiffness (N/m) | 243.42 ± 38.50 | 247.87 ± 31.95 | −0.40 | 0.693 | 0.13 |
VL elasticity (log) | 1.22 ± 0.16 | 1.15 ± 0.33 | 0.87 | 0.388 | 0.28 |
BF tone (Hz) | 14.32 ± 1.10 | 14.58 ± 1.27 | −0.70 | 0.486 | 0.22 |
BF stiffness (N/m) | 232.35 ± 41.67 | 239.05 ± 31.92 | −0.57 | 0.571 | 0.18 |
BF elasticity (log) | 1.09 ± 0.20 | 1.07 ± 0.19 | 0.34 | 0.735 | 0.11 |
TA tone (Hz) | 18.03 ± 1.59 | 17.78 ± 1.99 | 0.43 | 0.669 | 0.14 |
TA stiffness (N/m) | 366.16 ± 63.24 | 349.26 ± 60.82 | 0.86 | 0.395 | 0.27 |
TA elasticity (log) | 0.96 ± 0.67 | 0.78 ± 0.09 | 1.16 | 0.254 | 0.37 |
GL tone (Hz) | 15.09 ± 1.37 | 15.04 ± 1.92 | 0.09 | 0.932 | 0.03 |
GL stiffness (N/m) | 259.10 ± 34.83 | 259.52 ± 44.25 | −0.03 | 0.974 | 0.01 |
GL elasticity (log) | 1.07 ± 0.15 | 1.03 ± 0.24 | 0.71 | 0.483 | 0.22 |
GM tone (Hz) | 14.52 ± 1.10 | 14.21 ± 1.26 | 0.83 | 0.412 | 0.26 |
GM stiffness (N/m) | 235.23 ± 23.73 | 232.96 ± 27.33 | 0.28 | 0.780 | 0.09 |
GM elasticity (log) | 1.12 ± 0.19 | 1.12 ± 0.16 | 0.07 | 0.944 | 0.02 |
Variables | Moderate-Severity Group X ± SD | Severe-Severity Group X ± SD | Healthy Group X ± SD | f | p |
---|---|---|---|---|---|
Age (y) | 11.92 ± 4.32 | 11.88 ± 3.60 | 12.6 ± 3.40 | 0.176 | 0.840 |
Height (cm) | 145.25 ± 30.15 | 148.25 ± 21.52 | 150.35 ± 17.34 | 0.191 | 0.827 |
Body mass (kg) | 40.33 ± 18.58 | 40.75 ± 15.0 | 44.4 ± 17.16 | 0.254 | 0.777 |
BMI (kg/m2) | 17.87 ± 2.56 | 17.9 ± 3.29 | 18.87 ± 3.76 | 0.435 | 0.651 |
RVMO tone (Hz) | 13.42 ± 0.50 | 12.97 ± 0.85 | 13.04 ± 1.18 | 0.749 | 0.480 |
RVMO stiffness (N/m) | 217.44 ± 23.70 | 199.96 ± 32.2 | 200.99 ± 40.13 | 0.986 | 0.383 |
RVMO elasticity (log) | 1.04 ± 0.16 | 0.96 ± 0.12 | 0.96 ± 0.22 | 0.767 | 0.472 |
LVMO tone (Hz) | 13.34 ± 0.98 | 12.76 ± 0.68 | 12.91 ± 0.90 | 1.257 | 0.296 |
LVMO stiffness (N/m) | 215.25 ± 38.16 | 192.87 ± 29.52 | 199.83 ± 36.33 | 1.107 | 0.341 |
LVMO elasticity (log) | 1.05 ± 0.17 | 0.97 ± 0.12 | 0.98 ± 0.25 | 0.6 | 0.554 |
RRF tone (Hz) | 13.88 ± 0.84 | 13.92 ± 1.18 | 13.83 ± 1.38 | 0.017 | 0.983 |
RRF stiffness (N/m) | 227.69 ± 24.18 | 217.71 ± 46.25 | 230.86 ± 42.55 | 0.329 | 0.722 |
RRF elasticity (log) | 1.04 ± 0.16 | 1.13 ± 0.29 | 1.07 ± 0.21 | 0.424 | 0.658 |
LRF tone (Hz) | 13.72 ± 0.77 | 13.41 ± 0.84 | 13.73 ± 1.23 | 0.299 | 0.743 |
LRF stiffness (N/m) | 224.16 ± 25.95 | 210.98 ± 30.03 | 226.63 ± 34.04 | 0.742 | 0.483 |
LRF elasticity (log) | 1.00 ± 0.16 | 0.97 ± 0.11 | 1.07 ± 0.18 | 1.337 | 0.275 |
RVL tone (Hz) | 14.16 ± 1.06 | 14.07 ± 0.97 | 14.78 ± 1.47 | 1.301 | 0.284 |
RVL stiffness (N/m) | 251.08 ± 30.08 | 240.28 ± 36.82 | 260.3 ± 41.90 | 0.838 | 0.441 |
RVL elasticity (log) | 1.21 ± 0.22 | 1.28 ± 0.15 | 1.08 ± 0.19 | 3.793 | *0.032 |
LVL tone (Hz) | 14.72 ± 1.37 | 13.37 ± 1.09 | 14.38 ± 1.41 | 2.51 | 0.095 |
LVL stiffness (N/m) | 252.21 ± 37.45 | 230.21 ± 38.57 | 247.86 ± 31.94 | 1.031 | 0.367 |
LVL elasticity (log) | 1.23 ± 0.15 | 1.19 ± 0.17 | 1.14 ± 0.32 | 0.449 | 0.641 |
RBF tone (Hz) | 14.42 ± 0.80 | 14.21 ± 1.26 | 14.25 ± 3.33 | 0.024 | 0.976 |
RBF stiffness (N/m) | 234.03 ± 32.79 | 222.8 ± 44.84 | 245.95 ± 32.65 | 1.322 | 0.279 |
RBF elasticity (log) | 1.10 ± 0.21 | 1.08 ± 0.18 | 1.08 ± 0.18 | 0.048 | 0.953 |
LBF tone (Hz) | 14.40 ± 1.10 | 14.17 ± 1.16 | 14.58 ± 1.27 | 0.332 | 0.719 |
LBF stiffness (N/m) | 239.52 ± 36.58 | 221.58 ± 48.87 | 239.05 ± 31.91 | 0.726 | 0.491 |
LBF elasticity (log) | 1.12 ± 0.17 | 1.05 ± 0.24 | 1.07 ± 0.18 | 0.363 | 0.698 |
RTA tone (Hz) | 17.29 ± 2.21 | 17.77 ± 1.03 | 17.72 ± 1.78 | 0.254 | 0.777 |
RTA stiffness (N/m) | 341.52 ± 45.96 | 366.95 ± 61.49 | 343.05 ± 52.14 | 0.703 | 0.502 |
RTA elasticity (log) | 0.79 ± 0.12 | 0.80 ± 0.07 | 0.77 ± 0.11 | 0.328 | 0.722 |
LTA tone (Hz) | 17.9 ± 1.27 | 18.21 ± 2.05 | 17.78 ± 1.99 | 0.161 | 0.852 |
LTA stiffness (N/m) | 357.31 ± 45.88 | 379.41 ± 84.92 | 349.26 ± 60.81 | 0.668 | 0.519 |
LTA elasticity (log) | 0.84 ± 0.10 | 1.12 ± 1.07 | 0.78 ± 0.08 | 1.562 | 0.223 |
RGL tone (Hz) | 15.53 ± 1.14 | 14.35 ± 0.81 | 14.89 ± 1.69 | 1.766 | 0.185 |
RGL stiffness (N/m) | 260.97 ± 31.69 | 256.12 ± 28.80 | 253.28 ± 44.06 | 0.153 | 0.859 |
RGL elasticity (log) | 1.12 ± 0.14 | 1.08 ± 0.19 | 1.02 ± 0.17 | 1.421 | 0.254 |
LGL tone (Hz) | 15.37 ± 1.40 | 14.65 ± 1.28 | 15.04 ± 1.91 | 0.456 | 0.637 |
LGL stiffness (N/m) | 263.85 ± 37.29 | 251.96 ± 31.80 | 259.51 ± 44.24 | 0.211 | 0.810 |
LGL elasticity (log) | 1.07 ± 0.17 | 1.05 ± 0.13 | 1.02 ± 0.24 | 0.272 | 0.763 |
RGM tone (Hz) | 14.67 ± 1.39 | 13.73 ± 1.08 | 14.19 ± 1.35 | 1.246 | 0.299 |
RGM stiffness (N/m) | 240.32 ± 30.68 | 225.5 ± 23.86 | 237.17 ± 32.95 | 0.599 | 0.555 |
RGM elasticity (log) | 1.16 ± 0.20 | 1.09 ± 0.07 | 1.11 ± 0.19 | 0.433 | 0.652 |
LGM tone (Hz) | 14.62 ± 1.33 | 14.35 ± 0.66 | 14.20 ± 1.26 | 0.465 | 0.632 |
LGM stiffness (N/m) | 237.85 ± 25.56 | 231.28 ± 21.74 | 232.95 ± 27.33 | 0.194 | 0.824 |
LGM elasticity (log) | 1.13 ± 0.20 | 1.11 ± 0.20 | 1.12 ± 0.16 | 0.016 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gönen, T.; Usgu, S.; Yakut, Y.; Akbayram, S. Evaluation of the Viscoelastic Properties of Lower-Extremity Muscles of Pediatric Hemophilia Patients Using Myotonometric Measurements. Children 2024, 11, 229. https://doi.org/10.3390/children11020229
Gönen T, Usgu S, Yakut Y, Akbayram S. Evaluation of the Viscoelastic Properties of Lower-Extremity Muscles of Pediatric Hemophilia Patients Using Myotonometric Measurements. Children. 2024; 11(2):229. https://doi.org/10.3390/children11020229
Chicago/Turabian StyleGönen, Tuğba, Serkan Usgu, Yavuz Yakut, and Sinan Akbayram. 2024. "Evaluation of the Viscoelastic Properties of Lower-Extremity Muscles of Pediatric Hemophilia Patients Using Myotonometric Measurements" Children 11, no. 2: 229. https://doi.org/10.3390/children11020229
APA StyleGönen, T., Usgu, S., Yakut, Y., & Akbayram, S. (2024). Evaluation of the Viscoelastic Properties of Lower-Extremity Muscles of Pediatric Hemophilia Patients Using Myotonometric Measurements. Children, 11(2), 229. https://doi.org/10.3390/children11020229