Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants and Recruitment
2.3. Study Interventions
2.4. Sample Size Calculation
2.5. Data Collection
2.6. Biological Sample Collection and Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olsen, M.F.; Iuel-Brockdorff, A.S.; Yaméogo, C.W.; Cichon, B.; Fabiansen, C.; Filteau, S.; Phelan, K.; Ouédraogo, A.; Wells, J.C.; Briend, A.; et al. Early development in children with moderate acute malnutrition: A cross-sectional study in Burkina Faso. Matern. Child Nutr. 2020, 16, e12928. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF; World Bank. Levels and Trends in Child Malnutrition: UNICEF/WHO/World Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2023 Edition; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- National Institute of Population Research and Training (NIPORT); ICF. Bangladesh Demographic and Health Survey 2022: Key Indicators Report; NIPORT: Dhaka, Bangladesh; ICF: Rockville, MD, USA, 2023. [Google Scholar]
- Headey, D.; Heidkamp, R.; Osendarp, S.; Ruel, M.; Scott, N.; Black, R.; Shekar, M.; Bouis, H.; Flory, A.; Haddad, L.; et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet 2020, 396, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Picchioni, F.; Goulao, L.F.; Roberfroid, D. The impact of COVID-19 on diet quality, food security and nutrition in low and middle income countries: A systematic review of the evidence. Clin. Nutr. 2022, 41, 2955–2964. [Google Scholar] [CrossRef]
- World Health Organization. Supplementary Foods for the Management of Moderate Acute Malnutrition in Children Aged 6–59 Months; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Ruel, M.T.; Hoddinott, J. Investing in Early Childhood Nutrition; IFPRI: Washington, DC, USA, 2008. [Google Scholar]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Zambruni, M.; Melby, C.L.; Melby, P.C. Impact of Childhood Malnutrition on Host Defense and Infection. Clin. Microbiol. Rev. 2017, 30, 919–971. [Google Scholar] [CrossRef]
- Rytter, M.J.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition--a systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed]
- Thaxton, G.E.; Melby, P.C.; Manary, M.J.; Preidis, G.A. New Insights into the Pathogenesis and Treatment of Malnutrition. Gastroenterol. Clin. N. Am. 2018, 47, 813–827. [Google Scholar] [CrossRef]
- Prendergast, A.J.; Humphrey, J.H.; Mutasa, K.; Majo, F.D.; Rukobo, S.; Govha, M.; Mbuya, M.N.; Moulton, L.H.; Stoltzfus, R.J. Assessment of Environmental Enteric Dysfunction in the SHINE Trial: Methods and Challenges. Clin. Infect. Dis. 2015, 61 (Suppl. 7), S726–S732. [Google Scholar] [CrossRef]
- Seferidi, P.; Hone, T.; Duran, A.C.; Bernabe-Ortiz, A.; Millett, C. Global inequalities in the double burden of malnutrition and associations with globalisation: A multilevel analysis of Demographic and Health Surveys from 55 low-income and middle-income countries, 1992-2018. Lancet Glob. Health 2022, 10, e482–e490. [Google Scholar] [CrossRef]
- Petri, W.A., Jr.; Naylor, C.; Haque, R. Environmental enteropathy and malnutrition: Do we know enough to intervene? BMC Med. 2014, 12, 187. [Google Scholar] [CrossRef]
- Zhao, X.; Setchell, K.D.R.; Huang, R.; Mallawaarachchi, I.; Ehsan, L.; Dobrzykowski Iii, E.; Zhao, J.; Syed, S.; Ma, J.Z.; Iqbal, N.T.; et al. Bile Acid Profiling Reveals Distinct Signatures in Undernourished Children with Environmental Enteric Dysfunction. J. Nutr. 2021, 151, 3689–3700. [Google Scholar] [CrossRef] [PubMed]
- United Nations Children’s Fund. Strategy for improved nutrition of children and women in developing countries. Indian J. Pediatr. 1991, 58, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Iddrisu, I.; Monteagudo-Mera, A.; Poveda, C.; Pyle, S.; Shahzad, M.; Andrews, S.; Walton, G.E. Malnutrition and Gut Microbiota in Children. Nutrients 2021, 13, 2727. [Google Scholar] [CrossRef] [PubMed]
- Das, J.K.; Salam, R.A.; Hadi, Y.B.; Sadiq Sheikh, S.; Bhutta, A.Z.; Weise Prinzo, Z.; Bhutta, Z.A. Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes. Cochrane Database Syst. Rev. 2019, 5, Cd012611. [Google Scholar] [CrossRef] [PubMed]
- Gera, T.; Pena-Rosas, J.P.; Boy-Mena, E.; Sachdev, H.S. Lipid based nutrient supplements (LNS) for treatment of children (6 months to 59 months) with moderate acute malnutrition (MAM): A systematic review. PLoS ONE 2017, 12, e0182096. [Google Scholar] [CrossRef] [PubMed]
- Blanton, L.V.; Barratt, M.J.; Charbonneau, M.R.; Ahmed, T.; Gordon, J.I. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 2016, 352, 1533. [Google Scholar] [CrossRef]
- Lenters, L.; Wazny, K.; Bhutta, Z.A. Management of severe and moderate acute malnutrition in children. In Reproductive, Maternal, Newborn, and Child Health: Disease Control Priorities, 3rd ed.; World Bank: Washington, DC, USA, 2016; pp. 205–223. [Google Scholar]
- Owino, V.; Ahmed, T.; Freemark, M.; Kelly, P.; Loy, A.; Manary, M.; Loechl, C. Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics 2016, 138, e20160641. [Google Scholar] [CrossRef]
- Harper, K.M.; Mutasa, M.; Prendergast, A.J.; Humphrey, J.; Manges, A.R. Environmental enteric dysfunction pathways and child stunting: A systematic review. PLoS Negl. Trop. Dis. 2018, 12, e0006205. [Google Scholar] [CrossRef]
- Moya-Alvarez, V.; Sansonetti, P.J. Understanding the pathways leading to gut dysbiosis and enteric environmental dysfunction in infants: The influence of maternal dysbiosis and other microbiota determinants during early life. FEMS Microbiol. Rev. 2022, 46, fuac004. [Google Scholar] [CrossRef]
- Gehrig, J.L.; Venkatesh, S.; Chang, H.W.; Hibberd, M.C.; Kung, V.L.; Cheng, J.; Chen, R.Y.; Subramanian, S.; Cowardin, C.A.; Meier, M.F.; et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019, 365, eaau4732. [Google Scholar] [CrossRef]
- Chen, R.Y.; Mostafa, I.; Hibberd, M.C.; Das, S.; Lynn, H.M.; Webber, D.M.; Mahfuz, M.; Barratt, M.J.; Ahmed, T.; Gordon, J.I. Melding microbiome and nutritional science with early child development. Nat. Med. 2021, 27, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Y.; Mostafa, I.; Hibberd, M.C.; Das, S.; Mahfuz, M.; Naila, N.N.; Islam, M.M.; Huq, S.; Alam, M.A.; Zaman, M.U.; et al. A Microbiota-Directed Food Intervention for Undernourished Children. N. Engl. J. Med. 2021, 384, 1517–1528. [Google Scholar] [CrossRef]
- Däbritz, J.; Musci, J.; Foell, D. Diagnostic utility of faecal biomarkers in patients with irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Crossley, J.R.; Elliott, R.B. Simple method for diagnosing protein-losing enteropathies. Br. Med. J. 1977, 1, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Crenn, P.; Vahedi, K.; Lavergne-Slove, A.; Cynober, L.; Matuchansky, C.; Messing, B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003, 124, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Barzał, J.A.; Szczylik, C.; Rzepecki, P.; Jaworska, M.; Anuszewska, E. Plasma citrulline level as a biomarker for cancer therapy-induced small bowel mucosal damage. Acta Biochim. Pol. 2014, 61, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.W.; Poon, T.C.; Lam, H.S.; Cheung, H.M.; Ma, T.P.; Chan, K.Y.; Wong, R.P.; Leung, K.T.; Lam, M.M.; Li, K.; et al. Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann. Surg. 2013, 258, 1111–1118. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Leite, A.M.; Pinkerton, R.; Medeiros, P.H.; Cavalcante, P.A.; DeBoer, M.; Kosek, M.; Duggan, C.; Gewirtz, A.; Kagan, J.C.; et al. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Brazil. PLoS ONE 2016, 11, e0158772. [Google Scholar] [CrossRef]
- Mostafa, I.; Nahar, N.N.; Islam, M.M.; Huq, S.; Mustafa, M.; Barratt, M.; Gordon, J.I.; Ahmed, T. Proof-of-concept study of the efficacy of a microbiota-directed complementary food formulation (MDCF) for treating moderate acute malnutrition. BMC Public Health 2020, 20, 242. [Google Scholar] [CrossRef]
- Jianfeng, G.; Weiming, Z.; Ning, L.; Fangnan, L.; Li, T.; Nan, L.; Jieshou, L. Serum citrulline is a simple quantitative marker for small intestinal enterocytes mass and absorption function in short bowel patients. J. Surg. Res. 2005, 127, 177–182. [Google Scholar] [CrossRef]
- Ioannou, H.P.; Fotoulaki, M.; Pavlitou, A.; Efstratiou, I.; Augoustides-Savvopoulou, P. Plasma citrulline levels in paediatric patients with celiac disease and the effect of a gluten-free diet. Eur. J. Gastroenterol. Hepatol. 2011, 23, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Shardell, M.; Trehan, I.; Moaddel, R.; Maleta, K.M.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.; Ferrucci, L.; Manary, M.J. Metabolic alterations in children with environmental enteric dysfunction. Sci. Rep. 2016, 6, 28009. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, A.C.; Wolters, V.M.; Adriaanse, M.P.; Van den Neucker, A.M.; van Bijnen, A.A.; Houwen, R.; Buurman, W.A. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J. Gastroenterol. 2011, 46, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Adriaanse, M.P.; Tack, G.J.; Passos, V.L.; Damoiseaux, J.G.; Schreurs, M.W.; van Wijck, K.; Riedl, R.G.; Masclee, A.A.; Buurman, W.A.; Mulder, C.J.; et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 2013, 37, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Keddy, K.H.; Saha, S.; Okeke, I.N.; Kalule, J.B.; Qamar, F.N.; Kariuki, S. Combating Childhood Infections in LMICs: Evaluating the contribution of Big Data Big data, biomarkers and proteomics: Informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021, 73, 103668. [Google Scholar] [CrossRef]
- Morseth, M.S.; Strand, T.A.; Torheim, L.E.; Chandyo, R.K.; Ulak, M.; Shrestha, S.K.; Shrestha, B.; Henjum, S. Nutrient intake and environmental enteric dysfunction among Nepalese children 9-24 months old-the MAL-ED birth cohort study. Pediatr. Res. 2018, 84, 509–515. [Google Scholar] [CrossRef]
- Jannat, K.; Kader, M.A.; Parvez, S.M.; Thomson, R.; Rahman, M.; Kabir, M.; Agho, K.; Haque, R.; Merom, D. Faecal markers of intestinal inflammation in slum infants following yogurt intervention: A pilot randomized controlled trial in Bangladesh. Front. Microbiomes 2023, 2, 1029839. [Google Scholar] [CrossRef]
- Hossain, M.S.; Begum, S.; Rahman, M.M.; Parvez, M.; Mazumder, R.N.; Sarker, S.A.; Hasan, M.M.; Fahim, S.M.; Gazi, M.A.; Das, S.; et al. Environmental enteric dysfunction and small intestinal histomorphology of stunted children in Bangladesh. PLoS Negl. Trop. Dis. 2023, 17, e0010472. [Google Scholar] [CrossRef]
Variables | MDCF (n = 62) | RUSF (n = 62) |
---|---|---|
Child age (month) 1 | 15.31 (±1.93) | 15.51 (±2.01) |
Males 2 | 43.55 (27) | 41.94 (26) |
Weight (kg) 1 | 7.32 (±0.67) | 7.28 (±0.64) |
Length (cm) 1 | 72.97 (±3.53) | 73.06 (±3.17) |
MUAC (in cm) 1 | 12.78 (±0.53) | 12.69 (±0.44) |
Any illness symptoms in the preceding 7 days 2,3 | 59.68 (37) | 37.10 (23) |
Weight-for-length z-score 1 | −2.31 (±0.29) | −2.40 (±0.27) |
Length-for-age z-score 1 | −2.08 (±1.15) | −2.08 (±1.12) |
Maternal age (years) 1 | 23.92 (±5.05) | 24.25 (±4.75) |
Number of family members 1 | 5.03 (±2.89) | 4.94 (±1.75) |
Biomarkers | MDCF-2 Group, Mean (±SD) | RUSF Group, Mean (±SD) |
---|---|---|
Stool MPO (ng/mL) in log scale | 7.67 (±0.99) | 7.79 (±1.18) |
Stool NEO (nmol/L) in log scale | 6.81 (±1.09) | 6.96 (±1.12) |
Stool A1AT (mg/mL) in log scale | −0.41 (±0.90) | −0.50 (±0.82) |
Plasma Citrulline (µmol/L) | 517.44 (±211.45) | 661.82 (±233.82) |
Plasma I-FABP (ng/mL) in log scale | 0.70 (±0.47) | 0.65 (±0.47) |
Biomarkers | Mean Diff-in-Diff 1 [95% CI] | p-Value | Mean Diff-in-Diff 2 [95% CI] | p-Value |
---|---|---|---|---|
Plasma | ||||
Plasma Citrulline (µmol/L) | 126.78 [3.59, 242.60] | 0.036 | 123.10 [3.60, 242.61] | 0.044 |
Plasma I-FABP (ng/mL) in log scale | −0.098 [−0.42, 0.17] | 0.517 | −0.13 [−0.42, 0.17] | 0.404 |
Stool | ||||
Stool MPO (ng/mL) in log scale | −0.11 [−0.65, 0.43] | 0.687 | −0.11 [−0.65, 0.43] | 0.693 |
Stool NEO (nmol/L) in log scale | −0.078 [−0.68, 0.52] | 0.798 | −0.068 [−0.66, 0.53] | 0.821 |
Stool A1AT (mg/mL) in log scale | −0.31 [−0.77, 0.14] | 0.173 | −0.28 [−0.73, 0.17] | 0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, I.; Sthity, R.A.; Lamiya, U.H.; Tariqujjaman, M.; Mahfuz, M.; Hasan, S.M.T.; Ahmed, T. Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition. Children 2024, 11, 69. https://doi.org/10.3390/children11010069
Mostafa I, Sthity RA, Lamiya UH, Tariqujjaman M, Mahfuz M, Hasan SMT, Ahmed T. Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition. Children. 2024; 11(1):69. https://doi.org/10.3390/children11010069
Chicago/Turabian StyleMostafa, Ishita, Rahvia Alam Sthity, Umme Habiba Lamiya, Md. Tariqujjaman, Mustafa Mahfuz, S. M. Tafsir Hasan, and Tahmeed Ahmed. 2024. "Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition" Children 11, no. 1: 69. https://doi.org/10.3390/children11010069
APA StyleMostafa, I., Sthity, R. A., Lamiya, U. H., Tariqujjaman, M., Mahfuz, M., Hasan, S. M. T., & Ahmed, T. (2024). Effect of Gut Microbiota-Directed Complementary Food Supplementation on Fecal and Plasma Biomarkers of Gut Health and Environmental Enteric Dysfunction in Slum-Dwelling Children with Moderate Acute Malnutrition. Children, 11(1), 69. https://doi.org/10.3390/children11010069