Significance of Neonatal Heart Rate in the Delivery Room—A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Factors, Including Measurement Method, That Influence HR in Newborn Infants Immediately after Birth
3.1.1. First Reports of Normal HR Immediately after Birth—Pulse Oximetry
3.1.2. Recent Reports of Normal HR Immediately after Birth—Electrocardiogram
3.1.3. Delayed Cord Clamping
3.1.4. The Trigemino-Cardiac Reflex
3.1.5. Heart Rate in Hypoxemia and Asphyxia
3.2. Delivery Room HR as a Prognostic Indicator in Different Subgroups of Newborns
3.2.1. The Golden Minute
3.2.2. Prognostic Value and Significance of Delivery Room HR Assessment
4. Discussion
Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142, S185–S221. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.J.; Wyllie, J.P. Determination of heart rate in the baby at birth. Resuscitation 2004, 60, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Chitkara, R.; Rajani, A.K.; Oehlert, J.W.; Lee, H.C.; Epi, M.S.; Halamek, L.P. The accuracy of human senses in the detection of neonatal heart rate during standardized simulated resuscitation: Implications for delivery of care, training and technology design. Resuscitation 2013, 84, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Kamlin, C.O.; O’Donnell, C.P.; Everest, N.J.; Davis, P.G.; Morley, C.J. Accuracy of clinical assessment of infant heart rate in the delivery room. Resuscitation 2006, 71, 319–321. [Google Scholar] [CrossRef]
- Smit, M.; Dawson, J.A.; Ganzeboom, A.; Hooper, S.B.; van Roosmalen, J.; te Pas, A.B. Pulse oximetry in newborns with delayed cord clamping and immediate skin-to-skin contact. Arch. Dis. Child.-Fetal Neonatal Ed. 2014, 99, F309–F314. [Google Scholar] [CrossRef]
- Pichler, G.; Baik, N.; Urlesberger, B.; Cheung, P.Y.; Aziz, K.; Avian, A.; Schmolzer, G.M. Cord clamping time in spontaneously breathing preterm neonates in the first minutes after birth: Impact on cerebral oxygenation—A prospective observational study. J. Matern.-Fetal Neonatal Med. 2015, 29, 1570–1572. [Google Scholar] [CrossRef]
- Dawson, J.A.; Kamlin, C.O.; Vento, M.; Wong, C.; Cole, T.J.; Donath, S.M.; Davis, P.G.; Morley, C.J. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 2010, 125, e1340–e1347. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bulsara, J.S.; Das, M.K.; Waratakar, Y.; Saha, A.K.; Dubey, S.; Mehta, P.; Gupta, B.; Singh, A.K.; Indian Delayed Cord Clamp Study Group. Is Delaying Cord Clamping until Placenta Delivery Beneficial? Oxygen Saturation and Heart Rate Transition during the Initial 5 Minutes after Delivery in Indian Healthy Newborns. Am. J. Perinatol. 2020, 37, 738–744. [Google Scholar] [CrossRef]
- Dawson, J.A.; Kamlin, C.O.; Wong, C.; te Pas, A.B.; Vento, M.; Cole, T.J.; Donath, S.M.; Hooper, S.B.; Davis, P.G.; Morley, C.J. Changes in heart rate in the first minutes after birth. Arch. Dis. Child.-Fetal Neonatal Ed. 2010, 95, F177–F181. [Google Scholar] [CrossRef]
- Badurdeen, S.; Davis, P.G.; Hooper, S.B.; Donath, S.; Santomartino, G.A.; Heng, A.; Zannino, D.; Hoq, M.; Omar, F.K.C.; Kane, S.C.; et al. Physiologically based cord clamping for infants >/=32+0 weeks gestation: A randomised clinical trial and reference percentiles for heart rate and oxygen saturation for infants >/=35+0 weeks gestation. PLoS Med. 2022, 19, e1004029. [Google Scholar] [CrossRef]
- Bjorland, P.A.; Ersdal, H.L.; Eilevstjonn, J.; Oymar, K.; Davis, P.G.; Rettedal, S.I. Changes in heart rate from 5 s to 5 min after birth in vaginally delivered term newborns with delayed cord clamping. Arch. Dis. Child.-Fetal Neonatal Ed. 2021, 106, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Van Vonderen, J.J.; Hooper, S.B.; Kroese, J.K.; Roest, A.A.; Narayen, I.C.; van Zwet, E.W.; te Pas, A.B. Pulse oximetry measures a lower heart rate at birth compared with electrocardiography. J. Pediatr. 2015, 166, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Kukka, A.J.; Berkelhamer, S.K.; Eilevstjonn, J.; Wood, T.R.; Basnet, O.; Kc, A. Observational study comparing heart rate in crying and non-crying but breathing infants at birth. BMJ Paediatr. Open 2023, 7, e001886. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D. Oxygen saturations immediately after birth. J. Pediatr. 2006, 148, 569–570. [Google Scholar] [CrossRef]
- Singh, J.K.; Kamlin, C.O.; Morley, C.J.; O’Donnell, C.P.; Donath, S.M.; Davis, P.G. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit. J. Paediatr. Child Health 2008, 44, 273–275. [Google Scholar] [CrossRef]
- Kamlin, C.O.; Dawson, J.A.; O’Donnell, C.P.; Morley, C.J.; Donath, S.M.; Sekhon, J.; Davis, P.G. Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room. J. Pediatr. 2008, 152, 756–760. [Google Scholar] [CrossRef]
- Katheria, A.; Rich, W.; Finer, N. Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics 2012, 130, e1177–e1181. [Google Scholar] [CrossRef]
- Mizumoto, H.; Tomotaki, S.; Shibata, H.; Ueda, K.; Akashi, R.; Uchio, H.; Hata, D. Electrocardiogram shows reliable heart rates much earlier than pulse oximetry during neonatal resuscitation. Pediatr. Int. 2012, 54, 205–207. [Google Scholar] [CrossRef]
- Lemke, R.P.; Farrah, M.; Byrne, P.J. Use of a new Doppler umbilical cord clamp to measure heart rate in newborn infants in the delivery room. e-JNR 2011, 1, 83–88. [Google Scholar]
- Myerburg, R.J.; Halperin, H.; Egan, D.A.; Boineau, R.; Chugh, S.S.; Gillis, A.M.; Goldhaber, J.I.; Lathrop, D.A.; Liu, P.; Niemann, J.T.; et al. Pulseless electric activity: Definition, causes, mechanisms, management, and research priorities for the next decade: Report from a National Heart, Lung, and Blood Institute workshop. Circulation 2013, 128, 2532–2541. [Google Scholar] [CrossRef]
- Ong, T.; Sobotka, K.S.; Siew, M.L.; Crossley, K.J.; van Vonderen, J.J.; Polglase, G.R.; Hooper, S.B. The cardiovascular response to birth asphyxia is altered by the surrounding environment. Arch. Dis. Child.-Fetal Neonatal Ed. 2016, 101, F540–F545. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.B.; Te Pas, A.B.; Lang, J.; van Vonderen, J.J.; Roehr, C.C.; Kluckow, M.; Gill, A.W.; Wallace, E.M.; Polglase, G.R. Cardiovascular transition at birth: A physiological sequence. Pediatr. Res. 2015, 77, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Polglase, G.R.; Blank, D.A.; Barton, S.K.; Miller, S.L.; Stojanovska, V.; Kluckow, M.; Gill, A.W.; LaRosa, D.; Te Pas, A.B.; Hooper, S.B. Physiologically based cord clamping stabilises cardiac output and reduces cerebrovascular injury in asphyxiated near-term lambs. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F530–F538. [Google Scholar] [CrossRef]
- Kc, A.; Singhal, N.; Gautam, J.; Rana, N.; Andersson, O. Effect of early versus delayed cord clamping in neonate on heart rate, breathing and oxygen saturation during first 10 minutes of birth—Randomized clinical trial. Matern. Health Neonatol. Perinatol. 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, K.; Martherus, T.; Lamberska, T.; Dekker, J.; Hooper, S.B.; Te Pas, A.B. Reflexes that impact spontaneous breathing of preterm infants at birth: A narrative review. Arch. Dis. Child.-Fetal Neonatal Ed. 2020, 105, 675–679. [Google Scholar] [CrossRef]
- Kuypers, K.; Lamberska, T.; Martherus, T.; Dekker, J.; Bohringer, S.; Hooper, S.B.; Plavka, R.; Te Pas, A.B. The effect of a face mask for respiratory support on breathing in preterm infants at birth. Resuscitation 2019, 144, 178–184. [Google Scholar] [CrossRef]
- Gaertner, V.D.; Ruegger, C.M.; O’Currain, E.; Kamlin, C.O.F.; Hooper, S.B.; Davis, P.G.; Springer, L. Physiological responses to facemask application in newborns immediately after birth. Arch. Dis. Child.-Fetal Neonatal Ed. 2021, 106, 381–385. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Ramji, S.; Rootwelt, T.; Vento, M. Response to resuscitation of the newborn: Early prognostic variables. Acta Paediatr. 2005, 94, 890–895. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Rootwelt, T.; Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: An international controlled trial: The Resair 2 study. Pediatrics 1998, 102, e1. [Google Scholar] [CrossRef]
- Ramji, S.; Ahuja, S.; Thirupuram, S.; Rootwelt, T.; Rooth, G.; Saugstad, O.D. Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr. Res. 1993, 34, 809–812. [Google Scholar] [CrossRef]
- Ramji, S.; Rasaily, R.; Mishra, P.K.; Narang, A.; Jayam, S.; Kapoor, A.N.; Kambo, I.; Mathur, A.; Saxena, B.N. Resuscitation of asphyxiated newborns with room air or 100% oxygen at birth: A multicentric clinical trial. Indian Pediatr. 2003, 40, 510–517. [Google Scholar] [PubMed]
- Pejovic, N.J.; Trevisanuto, D.; Lubulwa, C.; Myrnerts Hook, S.; Cavallin, F.; Byamugisha, J.; Nankunda, J.; Tylleskar, T. Neonatal resuscitation using a laryngeal mask airway: A randomised trial in Uganda. Arch. Dis. Child. 2018, 103, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Kibsgaard, A.; Ersdal, H.; Kvaloy, J.T.; Eilevstjonn, J.; Rettedal, S. Newborns requiring resuscitation: Two thirds have heart rate >/=100 beats/minute in the first minute after birth. Acta Paediatr. 2023, 112, 697–705. [Google Scholar] [CrossRef]
- Thallinger, M.; Ersdal, H.L.; Francis, F.; Yeconia, A.; Mduma, E.; Kidanto, H.; Linde, J.E.; Eilevstjonn, J.; Gunnes, N.; Stordal, K. Born not breathing: A randomised trial comparing two self-inflating bag-masks during newborn resuscitation in Tanzania. Resuscitation 2017, 116, 66–72. [Google Scholar] [CrossRef]
- Vento, M.; Moro, M.; Escrig, R.; Arruza, L.; Villar, G.; Izquierdo, I.; Roberts, L.J., 2nd; Arduini, A.; Escobar, J.J.; Sastre, J.; et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 2009, 124, e439–e449. [Google Scholar] [CrossRef] [PubMed]
- Bresesti, I.; Avian, A.; Bruckner, M.; Binder-Heschl, C.; Schwaberger, B.; Baik-Schneditz, N.; Schmolzer, G.; Pichler, G.; Urlesberger, B. Impact of bradycardia and hypoxemia on oxygenation in preterm infants requiring respiratory support at birth. Resuscitation 2021, 164, 62–69. [Google Scholar] [CrossRef]
- Badurdeen, S.; Brooijmans, E.; Blank, D.A.; Kuypers, K.L.A.M.; Te Pas, A.B.; Roberts, C.; Polglase, G.R.; Hooper, S.B.; Davis, P.G. Heart Rate Changes following Facemask Placement in Infants Born at >/=32+0 Weeks of Gestation. Neonatology 2023, 120, 624–632. [Google Scholar]
- McCarthy, L.K.; Morley, C.J.; Davis, P.G.; Kamlin, C.O.; O’Donnell, C.P. Timing of interventions in the delivery room: Does reality compare with neonatal resuscitation guidelines? J. Pediatr. 2013, 163, 1553–1557.e1. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Aziz, K.; Escobedo, M.B.; Kapadia, V.S.; Kattwinkel, J.; Perlman, J.M.; Simon, W.M.; Weiner, G.M.; Zaichkin, J.G. Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S543–S560. [Google Scholar] [CrossRef]
- Yam, C.H.; Dawson, J.A.; Schmolzer, G.M.; Morley, C.J.; Davis, P.G. Heart rate changes during resuscitation of newly born infants < 30 weeks gestation: An observational study. Arch. Dis. Child.-Fetal Neonatal Ed. 2011, 96, F102–F107. [Google Scholar] [CrossRef]
- Palme-Kilander, C.; Tunell, R. Pulmonary gas exchange during facemask ventilation immediately after birth. Arch. Dis. Child. 1993, 68, 11–16. [Google Scholar] [CrossRef]
- Kapadia, V.; Oei, J.L.; Finer, N.; Rich, W.; Rabi, Y.; Wright, I.M.; Rook, D.; Vermeulen, M.J.; Tarnow-Mordi, W.O.; Smyth, J.P.; et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: A retrospective cohort study of randomised trials of high vs. low initial oxygen concentration and an individual patient data analysis. Resuscitation 2021, 167, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.L.; Finer, N.N.; Saugstad, O.D.; Wright, I.M.; Rabi, Y.; Tarnow-Mordi, W.; Rich, W.; Kapadia, V.; Rook, D.; Smyth, J.P.; et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F446–F454. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D.; Kirpalani, H. Searching for evidence in neonatology. Acta Paediatr. 2023, 112, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
Author Year | Method for HR Measurement | N | GA, Mean (Range or SD) | BW, Mean (Range or SD) | Results | Cord Clamping | Delivery Mode |
---|---|---|---|---|---|---|---|
Dawson et al., 2010 [9] | PO—sensor right hand and wrist (1–10 min) | Total = 468 Term = 308 Preterm = 160 | GA 38 (25–42) wks (all) GA 40 (37–42) wks (term) GA 33 (25–36) wks (preterm) | 2970 (625–5135) g | HR rose more slowly in infants born: 1. Preterm; 2. Via caesarian section; 3. To mothers who received anesthetics and narcotics during labor. | ECC No ISSC | NVD/Instrument/CS |
Smit et al., 2014 [5] | PO—sensor right hand and wrist (1–10 min) | Leiden = 109 International ref.range = 308 | GA 40 (37–42) wks | 3575 (482) g | The HR in the Leiden cohort was lower (p < 0.05) and increased more slowly in the first 3 min. In the first min of life, tachycardia (HR > 180 bpm) occurred less frequently and bradycardia (HR < 80 bpm) more often (p < 0.05) | DCC ISSC | NVD |
Mukherjee et al., 2020 [8] | PO—sensor right hand and wrist (30 s–5 min) | DCC-NVD = 170 ECC-NVD = 178 ECC-CS = 101 | GA ≥ 34 wks | DCC-NVD; 2540 (2340–2870) g * ECC-NVD: 2600 (2320–2820) g * | The median HR of the DCC-NVD group was significantly lower than in the ECC-NVD group at 1 min and significantly higher at 4 and 5 min. There was no between-group difference according to GA or BW. | DCC ECC | NVD/CS |
Badurdeen et al., 2022 [10] | 3-lead ECG (1–10 min) | n = 295 | GA ≥ 35 + 0 wks * GA 39.6 (38.6–40.6) wks * | 3.40 [3.08–3.70] kg * | PBCC resulted in similar mean HR compared to ECC in infants receiving resuscitation: Mean HR between 60–120 s after birth was 154 bpm in PBCC vs. 158 bpm in ECC. Percentile chart for HR and SpO2; non-ventilated infants receiving DCC (observational arm group). | DCC | NVD/CS |
Bjorland et al., 2020 [11] | NeoBeat (5 s–5 min) | n = 898 | GA 40 (1) wks | 3594 (478) g | During the first 30 s after birth, the HR increased from median (IQR) 122 (98–146) bpm to 168 (145–185) bpm with a maximum of 175 (157–189) bpm 61 s after birth and then slowly decreasing. | DCC ISSC | NVD |
Kukka et al., 2023 [13] | NeoBeat (10–180 s) | 1. Crying = 115 2. Non-crying breathing = 54 | GA ≥ 33 wks 1. GA 39.2 (1.3) 2. GA 39.1 (1.6) | 1. 3065.7 (414.8) g 2. 3047.2 (410.5) g | There was no difference in median HR between the groups. Non-crying but breathing infants had higher odds of bradycardia (HR < 100 bpm, adjusted OR 2.64, 95% CI 1.34 to 5.17) and tachycardia (HR > 200 bpm, adjusted OR 2.86, 95% CI 1.50–5.47). | ECC/DCC in both groups | NVD/ Instrument |
Van vonderen et al., 2015 ** [12] | PO/ 3-lead ECG | n = 48 term/preterm infants | GA 36 (27–41) wks | 2848 (1694–3356) g * | First 2 min HRPO was significantly lower than HRECG, 94 (67–144) vs. 150 (91–153) bpm at 60 s. (p < 0.001) and 83 (67–145) vs. 158 (119–176) bpm at 120 s. (p < 0.001). The largest difference was observed between 60 and 120 s after birth; sixty-four percent of the infants had bradycardia (HR < 100 bpm) according to PO, while only twenty-seven percent had bradycardia according to ECG. | Unknown | NVD/CS |
Dawson et al., 2010 [9] | Smit et al., 2014 [5] | Mukherjee et al., 2020 [8] | Van Vonderen et al., 2015 ** [12] | Badurdeen et al., 2022 [10] | Bjorland et al., 2020 [11] | Kukka et al., 2023 [13] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Term Infants n = 308 | Preterm Infants n = 160 | Term Infant, DCC, ISSC n = 109 | Term/Late Preterm DCC n = 170 | Term/Late Preterm ECC n = 178 | Term/Preterm Infant n = 53 | Term Infants, ≥GA35, DCC n = 295 | Term Infant DCC, ISSC n = 898 | Term/Late Preterm Crying | Term/Late Preterm Non-Crying Breathing | ||
Time: | HRPO | HRPO | HRPO | HRPO | HRPO | HRPO | HRECG | HRECG | NeoBeat | NeoBeat | NeoBeat |
10 s | - | - | - | - | - | - | - | - | 129 (102–154) | 157 (118–174) | 155 (104–178) |
30 s | - | - | - | 99 (81–138) | 88 (48–120) | - | - | - | 168 (146–185) | 168 (146–182) | 164 (140–173) |
60 s | 99 (66–132) | 96 (72–122) | 61 (42–146) | 128 (96–153) | 140 (127–152) | 94 (67–144) | 150 (91–153) | 171 (156–186) | 174 (157–189) | 168 (151–182) | 162 (149–185) |
90 s | 127 (94–158) | 110 (87–144) | - | - | - | 81 (60–109) | 148 (83–170) | – | 173 (157–187) | 169 (154–183) | 164 (156–188) |
120 s | 144 (115–171) | 122 (100–144) | 85 (67–164) | 150 (130–158) | 148 (128–159) | 83 (67–145) | 158 (119–176) | 173 (158–187) | 171 (156–185) | 169 (156–183) | 174 (161–191) |
180 s | 160 (138–180) | 142 (122–160) | 157 (145–169) | 151 (137–158) | 146 (129–157) | - | - | 172 (158–186) | 168 (153–182) | 169 (156–182) | 170 (161–195) |
240 s | 163 (145–181) | 154 (137–170) | 152 (140–163) | 154 (140–160) | 148 (136–159) | - | - | 171 (157–184) | 167 (153–181) | - | - |
300 s | 164 (147–180) | 156 (142–171) | 150 (140–161) | 168 (160–174) | 159 (144–168) | - | - | 169 (156–182) | 167 (152–179) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nerdrum Aagaard, E.; Solevåg, A.L.; Saugstad, O.D. Significance of Neonatal Heart Rate in the Delivery Room—A Review. Children 2023, 10, 1551. https://doi.org/10.3390/children10091551
Nerdrum Aagaard E, Solevåg AL, Saugstad OD. Significance of Neonatal Heart Rate in the Delivery Room—A Review. Children. 2023; 10(9):1551. https://doi.org/10.3390/children10091551
Chicago/Turabian StyleNerdrum Aagaard, Ellisiv, Anne Lee Solevåg, and Ola Didrik Saugstad. 2023. "Significance of Neonatal Heart Rate in the Delivery Room—A Review" Children 10, no. 9: 1551. https://doi.org/10.3390/children10091551