Association of Atherogenic Index of Plasma with Cardiometabolic Risk Factors and Markers in Lean 14-to-20-Year-Old Individuals: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.3. Sample Size Estimation
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Increased Atherogenic Risk
3.1.1. Males
3.1.2. Females
3.1.3. Between-Sex Comparison
3.2. Characteristics of Lean Subjects
3.3. Comparison of Lean Subjects with Low and Increased Atherogenic Risk
3.4. Relationship between AIP and Cardiovascular Risk Factors and Markers
3.5. Cardiometabolic Risk Factors and Markers across the AIP Quartiles in Subjects on Low Risk
3.5.1. Males
3.5.2. Females
3.6. Multivariate Regression of Cardiometabolic Risk Factors and Markers on the Atherogenic Index of Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobiasova, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Dobiásová, M.; Frohlich, J.; Sedová, M.; Cheung, M.C.; Brown, B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res. 2011, 52, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Nwagha, U.I.; Ikekpeazu, E.J.; Ejezie, F.E.; Neboh, E.E.; Maduka, I.C. Atherogenic index of plasma as useful predictor of cardiovascular risk among postmenopausal women in Enugu, Nigeria. Afr. Health Sci. 2010, 10, 248–252. [Google Scholar] [PubMed]
- Lioy, B.; Webb, R.J.; Amirabdollahian, F. The Association between the Atherogenic Index of Plasma and Cardiometabolic Risk Factors: A Review. Healthcare 2023, 11, 966. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Cho, Y.K.; Kim, Y.J.; Jung, C.H.; Lee, W.J.; Park, J.Y.; Huh, J.H.; Kang, J.G.; Lee, S.J.; Ihm, S.H. Association of the atherogenic index of plasma with cardiovascular risk beyond the traditional risk factors: A nationwide population-based cohort study. Cardiovasc. Diabetol. 2022, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-W.; Kao, T.-W.; Chang, P.-K.; Chen, W.-L.; Wu, L.-W. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: A 9-year longitudinal study. Sci. Rep. 2021, 11, 9900. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; He, L.; Xie, H.; Xie, X.; Wang, H. An Inverse Correlation between the Atherogenic Index of Plasma and Heart Failure: An Analysis of the National Health and Nutrition Examination Survey 2017-March 2020 Pre-Pandemic Data. J. Cardiovasc. Dev. Dis. 2022, 9, 412. [Google Scholar] [CrossRef]
- Montali, A.; Truglio, G.; Martino, F.; Ceci, F.; Ferraguti, G.; Ciociola, E.; Maranghi, M.; Gianfagna, F.; Iacoviello, L.; Strom, R.; et al. Atherogenic dyslipidemia in children: Evaluation of clinical, biochemical and genetic aspects. PLoS ONE 2015, 10, e0120099. [Google Scholar]
- Schefelker, J.M.; Peterson, A.L. Screening and Management of Dyslipidemia in Children and Adolescents. J. Clin. Med. 2022, 11, 6479. [Google Scholar] [CrossRef]
- Sapunar, J.; Aguilar-Farías, N.; Navarro, J.; Araneda, G.; Chandía-Poblete, D.; Manríquez, V.; Brito, R.; Cerda, Á. High prevalence of dyslipidemia and high atherogenic index of plasma in children and adolescents. Rev. Med. Chil. 2018, 146, 1112–1122. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, Á.; Perona, J.S.; Schmidt-RioValle, J.; Padez, C.; González-Jiménez, E. Assessment of Different Atherogenic Indices as Predictors of Metabolic Syndrome in Spanish Adolescents. Biol. Res. Nurs. 2022, 24, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Kammar-García, A.; López-Moreno, P.; Hernández-Hernández, M.E.; Ortíz-Bueno, A.M.; Martínez-Montaño, M.L.C. Atherogenic index of plasma as a marker of cardiovascular risk factors in Mexicans aged 18 to 22 years. Bayl. Univ. Med. Cent. Proc. 2020, 34, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Dağ, H.; İncirkuş, F.; Dikker, O. Atherogenic Index of Plasma (AIP) and Its Association with Fatty Liver in Obese Adolescents. Children 2023, 10, 641. [Google Scholar] [CrossRef]
- Nogay, N.H. Assessment of the correlation between the atherogenic index of plasma and cardiometabolic risk factors in children and adolescents: Might it be superior to the TG/HDL-C ratio? J. Pediatr. Endocrinol. Metab. 2017, 30, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Ostrihonova, T.; Rimarova, K.; Beresova, J.; Kontrosova, S.; Dorko, E.; Diabelkova, J. Prevalence and Trends of Metabolic Syndrome in Slovakia during the Period of 2003–2012. Cent. Eur. J. Public Health 2017, 25, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Rochlani, Y.; Pothineni, N.V.; Mehta, J.L. Metabolic Syndrome: Does it Differ Between Women and Men? Cardiovasc. Drugs Ther. 2015, 29, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Gurecka, R.; Koborova, I.; Sebek, J.; Sebekova, K. Presence of Cardiometabolic Risk Factors Is Not Associated with Microalbuminuria in 14-to-20-Years Old Slovak Adolescents: A Cross-Sectional, Population Study. PLoS ONE 2015, 10, e0129311. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 2014, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Hoste, L.; Dubourg, L.; Selistre, L.; De Souza, V.C.; Ranchin, B.; Hadj-Aïssa, A.; Cochat, P.; Martens, F.; Pottel, H. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol. Dial. Transplant. 2014, 29, 1082–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefikova, K.; Spustova, V.; Krivosikova, Z.; Oksa, A.; Gazdikova, K.; Fedelesova, V.; Dzurik, R. Insulin Resistance and Vitamin D Deficiency in Patients with Chronic Kidney Disease Stage 2–3. Physiol. Res. 2011, 60, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Csongová, M.; Scheijen, J.L.J.M.; van de Waarenburg, M.P.H.; Gurecká, R.; Koborová, I.; Tábi, T.; Szökö, É.; Schalkwijk, C.G.; Šebeková, K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients 2022, 14, 4929. [Google Scholar] [CrossRef] [PubMed]
- Soldatovic, I.; Vukovic, R.; Culafic, D.; Gajic, M.; Dimitrijevic-Sreckovic, V. siMS Score: Simple Method for Quantifying Metabolic Syndrome. PLoS ONE 2016, 11, e0146143. [Google Scholar] [CrossRef]
- Osborne, J.W.; Costello, A.B. Sample size and subject to item ratio in principal components analysis. Res. Eval. 2004, 9, 11. [Google Scholar]
- Asselbergs, F.W.; Lovering, R.C.; Drenos, F. Progress in genetic association studies of plasma lipids. Curr. Opin. Lipidol. 2013, 24, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Rašlová, K.; Dobiášová, M.; Hubáček, J.A.; Bencová, D.; Siváková, D.; Danková, Z.; Franeková, J.; Jabor, A.; Gašparovič, J.; Vohnout, B. Association of metabolic and genetic factors with cholesterol esterification rate in HDL plasma and atherogenic index of plasma in a 40 years old Slovak population. Physiol. Res. 2011, 60, 785–795. [Google Scholar] [CrossRef]
- Dobiásová, M.; Raslová, K.; Rauchová, H.; Vohnout, B.; Ptácková, K.; Frohlich, J. Atherogenic lipoprotein profile in families with and without history of early myocardial infarction. Physiol. Res. 2001, 50, 1–8. [Google Scholar]
- Vrablík, M.; Dobiášová, M.; Zlatohlávek, L.; Urbanová, Z.; Češka, R. Biomarkers of cardiometabolic risk in obese/overweight children: Effect of lifestyle intervention. Physiol. Res. 2014, 63, 743–752. [Google Scholar] [CrossRef]
- Oravec, S.; Dukat, A.; Gavornik, P.; Kucera, M.; Gruber, K.; Gaspar, L.; Rizzo, M.; Toth, P.P.; Mikhailidis, D.P.; Banach, M. Atherogenic versus non-atherogenic lipoprotein profiles in healthy individuals. is there a need to change our approach to diagnosing dyslipidemia? Curr. Med. Chem. 2014, 21, 2892–2901. [Google Scholar] [CrossRef] [PubMed]
- Mokan, M.; Galajda, P.; Pridavkova, D.; Tomaskova, V.; Sutarik, L.; Krucinska, L.; Bukovska, A.; Rusnakova, G. Prevalence of diabetes mellitus and metabolic syndrome in Slovakia. Diabetes Res. Clin. Pract. 2008, 81, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Chen, S.; Wang, P.; Xu, Q.; Zhang, Y.; Luo, Y.; Wu, S.; Wang, A. Insulin resistance mediates obesity-related risk of cardiovascular disease: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 289. [Google Scholar] [CrossRef] [PubMed]
- Kunz, H.E.; Hart, C.R.; Gries, K.J.; Parvizi, M.; Laurenti, M.; Dalla Man, C.; Moore, N.; Zhang, X.; Ryan, Z.; Polley, E.C.; et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am. J. Physiol. Endocrinol. Metab. 2021, 321, E105–E121. [Google Scholar] [CrossRef]
- Karhapää, P.; Malkki, M.; Laakso, M. Isolated Low HDL Cholesterol: An Insulin-Resistant State. Diabetes 1994, 43, 411–417. [Google Scholar] [CrossRef]
- Glueck, C.J.; Khan, N.A.; Umar, M.; Uppal, M.S.; Ahmed, W.; Morrison, J.A.; Goldenberg, N.; Wang, P. Insulin Resistance and Triglycerides. J. Investig. Med. 2009, 57, 874–881. [Google Scholar] [CrossRef]
- Šebeková, K.; Staruchová, M.; Mišľanová, C.; Líšková, A.; Horváthová, M.; Tulinská, J.; Lehotská Mikušová, M.; Szabová, M.; Gurecká, R.; Koborová, I.; et al. Association of Inflammatory and Oxidative Status Markers with Metabolic Syndrome and Its Components in 40-To-45-Year-Old Females: A Cross-Sectional Study. Antioxidants 2023, 12, 1221. [Google Scholar] [CrossRef]
- Turpin, C.; Catan, A.; Meilhac, O.; Bourdon, E.; Canonne-Hergaux, F.; Rondeau, P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 5843. [Google Scholar] [CrossRef]
- Michel, J.B.; Martin-Ventura, J.L. Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. Int. J. Mol. Sci. 2020, 21, 6756. [Google Scholar] [CrossRef]
- Dzis, Y.; Tomashevska, O.; Petrukh, A. Relationships between lipid profile and complete blood cell count parameters. Acta Med. Leopoliensia 2022, 28, 97–113. [Google Scholar] [CrossRef]
- Barbieri, M.; Ragno, E.; Benvenuti, E.; Zito, G.A.; Corsi, A.; Ferrucci, L.; Paolisso, G. New aspects of the insulin resistance syndrome: Impact on haematological parameters. Diabetologia 2001, 44, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, I.; Taniyama, M.; Toyama, K.; Homori, M.; Ishikawa, K. Stimulatory effect of human insulin on erythroid progenitors (CFU-E and BFU-E) in human CD34+ separated bone marrow cells and the relationship between insulin and erythropoietin. Stem Cells 1994, 12, 329–338. [Google Scholar] [CrossRef]
- Ratajczak, J.; Zhang, Q.; Pertusini, E.; Wojczyk, B.S.; Wasik, M.A.; Ratajczak, M.Z. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions--comparison to other cytokines and growth factors. Leukemia 1998, 12, 371–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varlamov, O.; Bethea, C.L.; Roberts, C.T., Jr. Sex-specific differences in lipid and glucose metabolism. Front. Endocrinol. 2014, 5, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldhoon-Hainerova, I.; Zamrazilova, H.; Dusatkova, L.; Sedlackova, B.; Hlavaty, P.; Hill, M.; Hampl, R.; Kunesova, M.; Hainer, V. Glucose homeostasis and insulin resistance: Prevalence, gender differences and predictors in adolescents. Diabetol. Metab. Syndr. 2014, 6, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Hu, J.W.; Wang, Y.; Wang, K.K.; Zheng, W.L.; Chu, C.; Ma, Q.; Yan, Y.; Liao, Y.Y.; Mu, J.J. Association between atherogenic index of plasma and subclinical renal damage over a 12-year follow-up: Hanzhong adolescent hypertension study. Eur. J. Clin. Nutr. 2020, 74, 278–284. [Google Scholar] [CrossRef]
- Zhou, Y.; Shang, X. Usefulness of atherogenic index of plasma for estimating reduced eGFR risk: Insights from the national health and nutrition examination survey. Postgrad. Med. 2021, 133, 278–285. [Google Scholar] [CrossRef]
- Sievers, C.; Klotsche, J.; Pieper, L.; Schneider, H.J.; März, W.; Wittchen, H.U.; Stalla, G.K.; Mantzoros, C. Low testosterone levels predict all-cause mortality and cardiovascular events in women: A prospective cohort study in German primary care patients. Eur. J. Endocrinol. 2010, 163, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J. Sex. Med. 2018, 15, 1260–1271. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Tsiligiannis, S.; Panay, N. Cardiovascular Risk in Perimenopausal Women. Curr. Vasc. Pharmacol. 2019, 17, 591–594. [Google Scholar] [CrossRef]
Males (n = 912) | Females (n = 1100) | p | |
---|---|---|---|
Atherogenic index of plasma | −0.23 ± 0.20 | −0.28 ± 0.20 | <0.001 |
Age, years | 17.2 ± 1.4 | 17.2 ± 1.4 | 0.644 |
Waist circumference, cm | 75.3 ± 5.1 | 69.0 ± 5.0 | <0.001 |
Waist/height | 0.421 ± 0.027 | 0.416 ± 0.030 | <0.001 |
Body mass index, kg/m2 | 21.1 ± 2.0 | 20.6 ± 2.0 | <0.001 |
Total body fat, % | 14.1 ± 4.6 | 28.1 ± 5.5 | <0.001 |
Systolic blood pressure, mm Hg | 120 ± 11 | 106 ± 9 | <0.001 |
Diastolic blood pressure, mm Hg | 72 ± 7 | 70 ± 7 | <0.001 |
Heart rate, b/min | 77 ± 13 | 81 ± 12 | <0.001 |
Fasting plasma glucose, mmol/L | 4.9 ± 0.4 | 4.7 ± 0.4 | <0.001 |
Fasting plasma insulin, I.U./µL | 8.4 (5.4; 13.1) | 9.3 (6.0; 14.5) | <0.001 |
QUICKI | 0.349 ± 0.025 | 0.347 ± 0.025 | 0.025 |
HDL-C, mmol/L | 1.27 ± 0.23 | 1.55 ± 0.30 | <0.001 |
nonHDL-C, mmol/L | 2.46 ± 0.60 | 2.69 ± 0.68 | <0.001 |
TAG, mmol/L | 0.74 (0.51; 1.07) | 0.79 (0.52; 1.19) | <0.001 |
Uric acid, µmol/L | 344 ± 57 | 253 ± 49 | <0.001 |
eGFR, ml/min/1.73 m2 | 111 ± 21 | 107 ± 16 | <0.001 |
CRP, mg/L | 0.4 (0.1, 1.1) | 0.4 (0.1, 1.5) | 0.001 |
Hcy, µmol/L | 11.2 (7.7; 16.4) | 9.4 (7.0; 12.7) | <0.001 |
Adiponectin, µg/mL | 13.8 (7.0; 27.1) | 18.9 (9.5; 37.7) | <0.001 |
cMSS5 | 1.86 ± 0.36 | 1.74 ± 0.37 | <0.001 |
cMSS3 | 2.64 ± 0.13 | 2.48 ± 0.12 | 0.044 |
Erythrocytes, 1012/L | 5.1 ± 0.3 | 4.5 ± 0.3 | <0.001 |
Leukocytes, 109/L | 6.2 ± 1.4 | 6.7 ± 1.7 | <0.001 |
Testosterone, nmol/L | 19.6 (12.0; 31.8) | 2.0 (1.3; 3.1) | <0.001 |
Estradiol, pmol/L | 265 (183; 383) | 329 (196; 554) | <0.001 |
Prevalence | pChi | ||
SBP ≥ 130 mm Hg, n (%) | 170 (18.6) | 14 (1.3) | <0.001 |
DBP ≥ 85 mm Hg, n (%) | 42 (4.6) | 35 (3.2) | 0.103 |
Elevated SBP or DBP, n (%) | 184 (20.2) | 431 (3.9) | <0.001 |
Glucose ≥ 5.6 mmol/L, n (%) | 59 (6.5) | 19 (1.7) | <0.001 |
Insulin ≥ 20 mlU/L, n (%) | 26 (2.9) | 42 (3.8) | 0.265 |
QUICKI ≤ 319, n (%) | 84 (9.2) | 120 (10.9) | 0.235 |
HDL-C < 1.03 (males and females <16 years), <1.29 (females ≥ 16 years) mmol/L, n (%) | 109 (12.0) | 178 (16.2) | 0.007 |
nonHDL-C ≥ 3.8 mmol/L, n (%) | 24 (2.6) | 72 (6.5) | <0.001 |
TAG > 1.7 mmol/L, n (%) | 23 (2.5) | 50 (4.5) | 0.016 |
CRP > 3 mg/L, n (%) | 47 (5.2) | 82 (7.5) | 0.044 |
Low Risk (AIP < 0.11) | Increased Risk (AIP ≥ 0.11) | p | |||||
---|---|---|---|---|---|---|---|
Males | Females | Males | Females | Sex | AIPcat | S*AIP | |
n (%) | 875 (43.5) | 1072 (53.3) | 37 (1.8) | 28 (1.4) | − | − | − |
AIP | −0.25 ± 0.17 | −0.30 ± 0.18 | 0.23 ± 0.11 | 0.21 ± 0.07 | 0.114 | <0.001 | 0.603 |
Waist cf., cm | 75.2 ± 5.1 | 68.9 ± 5.0 | 78.2 ± 5.8 | 70.5 ± 6.5 | <0.001 | <0.001 | 0.259 |
WHtR | 0.420 ± 0.027 | 0.416 ± 0.030 | 0.44 ± 0.03 | 0.42 ± 0.04 | 0.009 | <0.001 | 0.151 |
BMI, kg/m2 | 21.1 ± 2.0 | 20.6 ± 2.0 | 22.0 ± 2.0 | 21.2 ± 2.2 | 0.014 | 0.003 | 0.621 |
TBF, % | 14.1 ± 4.6 | 28.0 ± 5.5 | 15.4 ± 5.2 | 30.1 ± 6.3 | <0.001 | 0.008 | 0.539 |
SBP, mm Hg | 120 ± 11 | 106 ± 9 | 121 ± 11 | 107 ± 10 | <0.001 | 0.682 | 0.902 |
DBP, mm Hg | 72 ± 7 | 70 ± 7 | 73 ± 6 | 69 ± 8 | <0.001 | 0.476 | 0.353 |
HR, b/min | 77 ± 13 | 81 ± 12 | 75 ± 10 | 82 ± 11 | 0.002 | 0.589 | 0.314 |
FPG, mmol/L | 4.9 ± 0.4 | 4.7 ± 0.4 | 4.9 ± 0.4 | 4.7 ± 0.4 | <0.001 | 0.740 | 0.806 |
FPI, IU/µl | 8.4 (5.4; 12.9) | 9.3 (6.0; 14.4) | 10.0 (5.4; 18.4) | 12.7 (7.8; 20.9) | 0.003 | <0.001 | 0.220 |
QUICKI | 0.350 ± 0.025 | 0.347 ± 0.025 | 0.342 ± 0.032 | 0.332 ± 0.024 | 0.041 | <0.001 | 0.201 |
HDL-C, mmol/L | 1.28 ± 0.22 | 1.55 ± 0.30 | 1.03 ± 0.20 | 1.35 ± 0.29 | <0.001 | <0.001 | 0.399 |
nonHDL-C, mmol/L | 2.44 ± 0.58 | 2.66 ± 0.66 | 3.05 ± 0.86 | 3.70 ± 0.80 | <0.001 | <0.001 | 0.019 |
TAG, mmol/L | 0.71 (0.51; 0.99) | 0.77 (0.53; 1.13) | 1.71 (1.34; 2.18) | 1.65 (1.04; 2.61) | 0.001 | <0.001 | 0.124 |
Uric acid, µmol/L | 344 ± 57 | 253 ± 49 | 351 ± 64 | 249 ± 50 | <0.001 | 0.836 | 0.425 |
eGFR, ml/min/1.73 m2 | 111 ± 21 | 107 ± 16 | 104 ± 18 | 111 ± 15 | 0.474 | 0.502 | 0.023 |
CRP, mg/L | 0.4 (0.1, 1.2) | 0.4 (0.1, 1.6) | 0.6 (0.2, 1.7) | 1.3 (0.4, 4.4) | 0.001 | <0.001 | 0.084 |
Hcy, µmol/L | 11.2 (7.7; 16.2) | 9.4 (7.0; 12.7) | 12.8 (8.3; 19.7) | 10.1 (7.4; 13.8) | <0.001 | 0.024 | 0.385 |
Adiponectin, µg/mL | 13.7 (7.0; 27.0) | 18.9 (9.5; 37.7) | 13.1 (6.8; 25.2) | 16.7 (8.0; 35.3) | 0.001 | 0.370 | 0.750 |
cMSS5 | 1.83 ± 0.31 | 1.71 ± 0.34 | 2.71 ± 0.34 | 2.71 ± 0.31 | 0.197 | <0.001 | 0.150 |
cMSS3 | 2.64 ± 0.13 | 2.48 ± 0.12 | 2.68 ± 0.14 | 2.50 ± 0.15 | 0.035 | <0.001 | 0.540 |
RBC, 1012/L | 5.1 ± 0.3 | 4.5 ± 0.3 | 5.2 ± 0.3 | 4.6 ± 0.3 | <0.001 | 0.040 | 0.446 |
WBC, 109/L | 6.2 ± 1.4 | 6.7 ± 1.7 | 6.6 ± 1.6 | 7.1 ± 2.0 | 0.017 | 0.057 | 0.876 |
TST, nmol/L | 19.6 (12.1; 31.9) | 2.0 (1.3; 3.1) | 18.0 (10.8; 29.9) | 1.7 (1.1; 2.7) | <0.001 | 0.040 | 0.446 |
Estradiol, pmol/L | 265 (184; 383) | 332 (197; 561) | 237 (185; 305) | 255 (171; 380) | 0.266 | 0.006 | 0.031 |
Prevalence | |||||||
eSBP, n (%) | 163 (18.6) | 12 (1.1) | 7 (18.9) | 2 (7.1) | <0.001 | 0.368 | 0.413 |
eDBP, n (%) | 40 (4.6) | 34 (3.2) | 2 (5.4) | 1 (3.6) | 0.508 | 0.801 | 0.929 |
eBP, n (%) | 177 (20.2) | 41 (3.8) | 7 (18.9) | 2 (7.1) | <0.001 | 0.797 | 0.553 |
eFPG, n (%) | 56 (6.4) | 17 (1.6) | 3 (8.1) | 2 (7.1) | 0.236 | 0.137 | 0.430 |
eFPI, n (%) | 23 (2.6) | 38 (3.5) | 3 (8.1) | 4 (14.3) | 0.122 | <0.001 | 0.252 |
lQUICKI, n (%) | 74 (8.4) | 113 (10.5) | 10 (27.0) | 7 (25.3) | 0.991 | <0.001 | 0.591 |
lHDL-C, n (%) | 90 (10.3) | 166 (15.5) | 19 (51.4) | 12 (42.9) | 0.707 | <0.001 | 0.118 |
enon-HDL-C, n (%) | 17 (1.9) | 60 (5.6) | 7 (18.9) | 12 (42.9) | <0.001 | <0.001 | <0.001 |
eTAG, n (%) | 3 (0.3) | 26 (2.4) | 20 (54.1) | 24 (85.7) | <0.001 | <0.001 | <0.001 |
eCRP, n (%) | 43 (4.9) | 73 (6.8) | 4 (10.8) | 9 (32.1) | <0.001 | <0.001 | 0.002 |
All | Low Risk | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Males (n = 912) | Females (n = 1100) | p r to z | Males (n = 875) | Females (n = 1072) | p r to z | |||||
r | p | r | p | r | p | r | p | |||
Waist cf. | 0.133 | <0.001 | 0.066 | 0.028 | 0.131 | 0.078 | 0.010 | 0.050 | 0.100 | 0.535 |
WHtR | 0.135 | <0.001 | 0.079 | 0.009 | 0.208 | 0.081 | 0.016 | 0.067 | 0.028 | 0.767 |
BMI | 0.117 | <0.001 | 0.100 | 0.001 | 0.704 | 0.086 | 0.011 | 0.086 | 0.005 | 1.000 |
TBF | 0.130 | <0.001 | 0.135 | <0.001 | 0.912 | 0.117 | 0.001 | 0.119 | <0.001 | 0.968 |
DBP | 0.085 | 0.010 | 0.051 | 0.091 | 0.447 | 0.075 | 0.026 | 0.055 | 0.070 | 0.660 |
FPI | 0.221 | <0.001 | 0.207 | <0.001 | 0.741 | 0.223 | <0.001 | 0.190 | <0.001 | 0.447 |
QUICKI | −0.216 | <0.001 | −0.199 | <0.001 | 0.689 | −0.213 | <0.001 | −0.176 | <0.001 | 0.401 |
HDL-C | −0.580 | <0.001 | −0.405 | <0.001 | <0.001 | −0.556 | <0.001 | −0.402 | <0.001 | <0.001 |
nonHDL-C | 0.404 | <0.001 | 0.444 | <0.001 | 0.258 | 0.362 | <0.001 | 0.399 | <0.001 | 0.342 |
TAG | 0.915 | <0.001 | 0.897 | <0.001 | 0.024 | 0.904 | <0.001 | 0.890 | <0.001 | 0.116 |
eGFR | −0.077 | 0.019 | −0.013 | 0.672 | 0.153 | −0.055 | 0.106 | −0.027 | 0.376 | 0.542 |
CRP | 0.075 | 0.024 | 0.234 | <0.001 | <0.001 | 0.049 | 0.146 | 0.208 | <0.001 | 0.001 |
Hcy | 0.102 | 0.002 | 0.067 | 0.026 | 0.430 | 0.088 | 0.010 | 0.065 | 0.034 | 0.610 |
Adiponectin | −0.051 | 0.127 | −0.147 | <0.001 | 0.031 | −0.048 | 0.165 | −0.152 | <0.001 | 0.021 |
cMSS5 | 0.874 | <0.001 | 0.826 | <0.001 | <0.001 | 0.837 | <0.001 | 0.792 | <0.001 | 0.003 |
cMSS3 | 0.098 | 0.003 | 0.043 | 0.152 | 0.219 | 0.078 | 0.022 | 0.035 | 0.254 | 0.342 |
RBC | 0.189 | <0.001 | 0.028 | 0.356 | <0.001 | 0.190 | <0.001 | 0.028 | 0.355 | 0.001 |
WBC | 0.155 | <0.001 | 0.158 | <0.001 | 0.944 | 0.152 | <0.001 | 0.158 | <0.001 | 0.897 |
TST | −0.034 | 0.389 | −0.154 | <0.001 | 0.007 | −0.019 | 0.644 | −0.195 | <0.001 | <0.001 |
E2 | −0.054 | 0.173 | −0.175 | <0.001 | 0.006 | −0.048 | 0.501 | −0.149 | <0.001 | 0.025 |
Q1 (n = 218) (−0.90, −0.37] | Q2 (n = 219) (−0.37, −0.25] | Q3 (n = 219) (−0.25, −0.12] | Q4 (n = 219) (−0.12, 0.11] | p | |
---|---|---|---|---|---|
AIP | −0.47 ± 0.08 | −0.31 ± 0.04 *** | −0.19 ± 0.04 ***,+++ | −0.03 ± 0.06 ***,+++,### | <0.001 |
Waist cf., cm | 74.9 ± 4.8 | 74.7 ± 5.1 | 75.2 ± 5.3 | 76.0 ± 5.1 + | 0.027 |
WHtR | 0.420 ± 0.025 | 0.416 ± 0.027 | 0.420 ± 0.027 | 0.426 ± 0.027 ++ | 0.002 |
BMI, kg/m2 | 20.9 ± 1.9 | 21.0 ± 1.9 | 21.0 ± 2.1 | 21.4 ± 1.9 * | 0.030 |
TBF, % | 13.4 ± 4.4 | 13.8 ± 4.3 | 14.1 ± 4.7 | 15.0 ± 4.7 **,+ | 0.003 |
FPI, IU/µl | 7.5 (4.8; 11.5) | 8.1 (5.5; 11.9) | 8.2 (5.6; 12.2) | 10.4 (6.5; 16.7) ***,+++,### | <0.001 |
QUICKI | 0.356 ± 0.026 | 0.350 ± 0.022 | 0.350 ± 0.023 | 0.341 ± 0.025 ***,++,## | <0.001 |
HDL-C, mmol/L | 1.46 ± 0.22 | 1.32 ± 0.19 *** | 1.22 ± 0.16 ***,+++ | 1.14 ± 0.17 ***,+++,### | <0.001 |
nonHDL-C, mmol/L | 2.18 ± 0.50 | 2.34 ± 0.54 * | 2.48 ± 0.53 ***,+ | 2.74 ± 0.59 ***,+++,### | <0.001 |
TAG, mmol/L | 0.48 (0.39; 0.60) | 0.64 (0.55; 0.74) *** | 0.78 (0.67; 0.90) ***,+++ | 1.06 (0.89; 1.26) ***,+++,### | <0.001 |
CRP, mg/L | 0.3 (0.1, 1.0) | 0.3 (0.1, 1.0) | 0.4 (0.1, 1.2) | 0.4 (0.1, 1.35) | 0.186 |
Adiponectin, µg/mL | 13.4 (6.9; 26.2) | 15.2 (7.5; 30.7) | 13.5 (7.0; 25.7) | 13.1 (6.6; 26.1) | 0.098 |
cMSS5 | 1.49 ± 0.23 | 1.73 ± 0.18 *** | 1.91 ± 0.16 ***,+++ | 2.17 ± 0.18 ***,+++,## | <0.001 |
Erythrocytes, 1012/L | 5.0 ± 0.3 | 5.1 ± 0.3 | 5.1 ± 0.3 ** | 5.2 ± 0.3 *** | <0.001 |
Leukocytes, 109/L | 5.9 ± 1.5 | 6.2 ± 1.3 | 6.3 ± 1.4 * | 6.5 ± 1.5 *** | 0.001 |
TST | 19.6 (12.3; 31.3) | 20.3 (13.6; 30.3) | 19.7 (11.3; 34.4) | 19.0 (11.6; 31.3) | 0.694 |
Estradiol | 265 (187; 376) | 273 (199; 374) | 256 (169; 389) | 267 (191; 374) | 0.510 |
Prevalence | pchi | ||||
Insulin ≥20 mlU/L, n (%) | 6 (2.8) | 2 (0.9) | 4 (1.8) | 11 (5.0) | 0.046 |
QUICKI ≤319, n (%) | 13 (6.0) | 12 (5.5) | 14 (6.4) | 35 (16.0) | <0.001 |
HDL-C <1.03 (M), n (%) | 2 (0.9) | 12 (5.5) | 19 (8.7) | 57 (26.0) | <0.001 |
nonHDL-C ≥ 3.8 mmol/L, n (%) | 2 (0.9) | 1 (0.5) | 4 (1.8) | 10 (4.6) | 0.009 |
TAG >1.7 mmol/L, n (%) | 0 | 0 | 0 | 3 (1.4) | 0.029 |
CRP >3 mg/L, n (%) | 5 (2.3) | 7 (3.2) | 12 (5.5) | 20 (9.1) | 0.005 |
Q1 (n = 268) (−1.02, −0.42] | Q2 (n = 268) (−0.42, −0.29] | Q3 (n = 268) (−0.29, −0.17] | Q4 (n = 268) (−0.17, −0.11] | p | |
---|---|---|---|---|---|
AIP | −0.53 ± 0.09 | −0.38 ± 0.04 *** | −0.23 ± 0.03 ***,+++ | −0.07 ± 0.07 ***,+++,### | <0.001 |
WHtR | 0.414 ± 0.032 | 0.414 ± 0.030 | 0.416 ± 0.030 | 0.421 ± 0.030 * | 0.024 |
BMI, kg/m2 | 20.3 ± 2.0 | 20.6 ± 2.0 | 20.7 ± 2.0 | 20.8 ± 2.0 * | 0.017 |
TBF, % | 27.2 ± 5.5 | 27.5 ± 5.9 | 28.3 ± 5.4 | 29.0 ± 5.1 **,++ | <0.001 |
FPI, IU/µl | 8.4 (5.4; 13.3) | 8.8 (5.7; 13.6) | 9.1 (6.1; 13.5) | 10.8 (7.0; 16.5) ***,+++,### | <0.001 |
QUICKI | 0.352 ± 0.027 | 0.350 ± 0.024 | 0.348 ± 0.023 | 0.339 ± 0.023 ***,+++,### | <0.001 |
HDL-C, mmol/L | 1.72 ± 0.29 | 1.58 ± 0.26 *** | 1.49 ± 0.26 ***,++ | 1.42 ± 0.29 ***,+++,## | <0.001 |
nonHDL-C, mmol/L | 2.38 ± 0.57 | 2.55 ± 0.57 * | 2.70 ± 0.61 ***,+ | 3.03 ± 0.68 ***,+++,### | <0.001 |
TAG, mmol/L | 0.50 (0.40; 0.63) | 0.68 (0.57; 0.82) *** | 0.86 (0.71; 1.04) ***,+++ | 1.19 (0.93; 1.51) ***,+++,### | <0.001 |
CRP, mg/L | 0.3 (0.1, 0.9) | 0.4 (0.1, 1.3) | 0.5 (0.1, 1.5) ** | 0.6 (0.2, 2.2) ***,+++ | <0.001 |
Adiponectin, µg/mL | 21.8 (11.3; 42.2) | 19.1 (9.6; 38.0) | 19.0 (9.6; 37.3) | 16.4 (8.1; 33.1) *** | <0.001 |
cMSS5 | 1.39 ± 0.25 | 1.61 ± 0.22 *** | 1.78 ± 0.20 ***,+++ | 2.08 ± 0.22 ***,+++,## | <0.001 |
Erythrocytes, 1012/L | 4.5 ± 0.3 | 4.5 ± 0.3 | 4.5 ± 0.3 | 4.5 ± 0.3 | 0.940 |
Leukocytes, 109/L | 6.4 ± 1.6 | 6.5 ± 1.7 | 6.8 ± 1.6 * | 7.1 ± 1.9 ***,++ | <0.001 |
TST | 2.2 (1.5; 3.3) | 2.1 (1.3; 3.4) | 2.0 (1.4; 3.0) | 1.9 (1.2; 2.8) **,+ | 0.003 |
Estradiol | 359 (220; 588) | 338 (200; 572) | 333 (196; 566) | 301 (177; 514) ** | 0.010 |
Prevalence | pchi | ||||
Insulin ≥ 20 mlU/L, n (%) | 8 (3.0) | 12 (4.5) | 5 (1.9) | 13 (4.9) | 0.215 |
QUICKI ≤319, n (%) | 22 (8.2) | 28 (10.4) | 21 (7.8) | 42 (15.7) | 0.011 |
HDL-C (<1.03 aged ≤15, <1.29 aged >15 years) mmol/L, n (%) | 8 (3.0) | 23 (8.6) | 45 (16.8) | 90 (33.6) | <0.001 |
nonHDL-C ≥3.8 mmol/L, n (%) | 6 (2.2) | 5 (1.9) | 12 (4.5) | 37 (13.8) | <0.001 |
TAG >1.7 mmol/L, n (%) | 0 | 0 | 0 | 26 (9.7) | <0.001 |
CRP >3 mg/L, n (%) | 9 (3.4) | 16 (6.0) | 18 (6.7) | 30 (11.2) | 0.004 |
Males | Females | |||
---|---|---|---|---|
VIP | ||||
All | Low Risk | All | Low Risk | |
Non-high-density lipoprotein cholesterol | 1.97 | 1.90 | 1.93 | 1.92 |
Erythrocyte count | 1.15 | 1.12 | 0.28 | 0.31 |
QUICKI | 1.05 | 1.15 | 0.89 | 0.87 |
Waist/height | 1.03 | 0.98 | 0.82 | 0.87 |
Leukocyte count | 0.94 | 0.87 | 0.69 | 0.78 |
C-reactive protein | 0.66 | 0.71 | 1.26 | 1.20 |
Testosterone | 0.51 | 0.56 | 0.75 | 0.72 |
Estradiol | 0.18 | 0.31 | 0.79 | 0.67 |
Adiponectin | 0.05 | 0.42 | 0.71 | 0.82 |
R2 | 0.20 | 0.20 | 0.29 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šebeková, K.; Gurecká, R.; Csongová, M.; Koborová, I.; Celec, P. Association of Atherogenic Index of Plasma with Cardiometabolic Risk Factors and Markers in Lean 14-to-20-Year-Old Individuals: A Cross-Sectional Study. Children 2023, 10, 1144. https://doi.org/10.3390/children10071144
Šebeková K, Gurecká R, Csongová M, Koborová I, Celec P. Association of Atherogenic Index of Plasma with Cardiometabolic Risk Factors and Markers in Lean 14-to-20-Year-Old Individuals: A Cross-Sectional Study. Children. 2023; 10(7):1144. https://doi.org/10.3390/children10071144
Chicago/Turabian StyleŠebeková, Katarína, Radana Gurecká, Melinda Csongová, Ivana Koborová, and Peter Celec. 2023. "Association of Atherogenic Index of Plasma with Cardiometabolic Risk Factors and Markers in Lean 14-to-20-Year-Old Individuals: A Cross-Sectional Study" Children 10, no. 7: 1144. https://doi.org/10.3390/children10071144
APA StyleŠebeková, K., Gurecká, R., Csongová, M., Koborová, I., & Celec, P. (2023). Association of Atherogenic Index of Plasma with Cardiometabolic Risk Factors and Markers in Lean 14-to-20-Year-Old Individuals: A Cross-Sectional Study. Children, 10(7), 1144. https://doi.org/10.3390/children10071144